• Title/Summary/Keyword: K&C test

Search Result 10,686, Processing Time 0.041 seconds

The design of C-GIS and the analysis of its Performance test results (C-GIS의 설계 및 성능평가 결과분석)

  • Shin, Y.J.;Kim, M.H.;Ryu, H.K.;Lee, Y.H.;Kim, C.H.;Kim, J.K.;Kim, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.551-553
    • /
    • 2002
  • The cubicle type GIS rated at 25.8kV has been designed and manufactured by Jinkwang E&C eacently with their own technologies and KERI's assistances. The C-GIS has been tested to check the design capability for reference before conducting the type test. The operating characteristics test, short time withstand current and peak withstand current test, basic short circuit test duty T60 for preconditioning test, cable charging current switching test, capacitor bank current switching test, basic short circuit test duty T100s and T100a, single phase earth fault test, double earth fault test has been conducted. The test results show that the design and the manufacturing of the C-GIS has an enough capability to pass through the type test except the occurrence of 2 NSDDs in the cable charging current switching test and the instability of opening time at the minimum operating voltage. The problems shown in the tests will be improved soon and the successful pass will be expected in the following type test.

  • PDF

Test Scheduling of NoC-Based SoCs Using Multiple Test Clocks

  • Ahn, Jin-Ho;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.475-485
    • /
    • 2006
  • Network-on-chip (NoC) is an emerging design paradigm intended to cope with future systems-on-chips (SoCs) containing numerous built-in cores. Since NoCs have some outstanding features regarding design complexity, timing, scalability, power dissipation and so on, widespread interest in this novel paradigm is likely to grow. The test strategy is a significant factor in the practicality and feasibility of NoC-based SoCs. Among the existing test issues for NoC-based SoCs, test access mechanism architecture and test scheduling particularly dominate the overall test performance. In this paper, we propose an efficient NoC-based SoC test scheduling algorithm based on a rectangle packing approach used for current SoC tests. In order to adopt the rectangle packing solution, we designed specific methods and configurations for testing NoC-based SoCs, such as test packet routing, test pattern generation, and absorption. Furthermore, we extended and improved the proposed algorithm using multiple test clocks. Experimental results using some ITC'02 benchmark circuits show that the proposed algorithm can reduce the overall test time by up to 55%, and 20% on average compared with previous works. In addition, the computation time of the algorithm is less than one second in most cases. Consequently, we expect the proposed scheduling algorithm to be a promising and competitive method for testing NoC-based SoCs.

  • PDF

Hybrid Test Data Transportation Scheme for Advanced NoC-Based SoCs

  • Ansari, M. Adil;Kim, Dooyoung;Jung, Jihun;Park, Sungju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.85-95
    • /
    • 2015
  • Network-on-chip (NoC) has evolved to overcome the issues of traditional bus-based on-chip interconnect. In NoC-reuse as TAM, the test schedulers are constrained with the topological position of cores and test access points, which may negatively affect the test time. This paper presents a scalable hybrid test data transportation scheme that allows to simultaneously test multiple heterogeneous cores of NoC-based SoCs, while reusing NoC as TAM. In the proposed test scheme, single test stimuli set of multiple CUTs is embedded into each flit of the test stimuli packets and those packets are multicast to the targeted CUTs. However, the test response packets of each CUT are unicast towards the tester. To reduce network load, a flit is filled with maximum possible test response sets before unicasting towards the tester. With the aid of Verilog and analytical simulations, the proposed scheme is proved effective and the results are compared with some recent techniques.

Estimating coefficient of consolidation and hydraulic conductivity from piezocone test results - Case studies

  • Hossain, Md. Julfikar;Chai, Jinchun
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.577-592
    • /
    • 2014
  • The methods for estimating in-situ hydraulic conductivity ($k_{hp}$) and coefficient of consolidation ($c_{hp}$) in the horizontal direction from piezocone penetration and dissipation test results have been investigated using test results at two sites in Saga, Japan. At the two sites the laboratory values of hydraulic conductivity ($k_v$) and coefficient of consolidation ($c_v$) in the vertical direction are also available. Comparing $k_{hp}$ with $k_v$ and $c_{hp}$ with $k_v$ values, suitable methods for estimating $k_{hp}$ and $c_{hp}$ values are recommended. For the two sites, where $k_{hp}{\approx}k_v$ and $c_{hp}{\approx}2c_v$. It is suggested that the estimated values of $k_{hp}$ and $c_{hp}$ can be used in engineering design.

NoC Test Scheduling Based on a Rectangle Packing Algorithm (Rectangle Packing 방식 기반 NoC 테스트 스케쥴링)

  • Ahn Jin-Ho;Kim Gunbae;Kang Sungho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.71-78
    • /
    • 2006
  • An NoC (Networks-on-Chip) is an emerging design paradigm intended to cope with a future SoC containing numerous built-in cores. In an NoC, the test strategy is very significant for its practicality and feasibility. Among existing test issues, TAM architecture and test scheduling will particularly dominate the overall test performance. In this paper, we address an efficient NoC test scheduling algorithm based on a rectangle packing approach used for an SoC test. In order to adopt the rectangle packing solution as an NoC test scheduling algorithm we design the configuration about test resources and test methods suitable for an NoC structure. Experimental results using some ITC'02 benchmark circuits show the proposed algorithm can reduce the overall test time by up to $55\%$ in comparison with previous works.

IEEE 1500 Wrapper and Test Control for Low-Cost SoC Test (저비용 SoC 테스트를 위한 IEEE 1500 래퍼 및 테스트 제어)

  • Yi, Hyun-Bean;Kim, Jin-Kyu;Jung, Tae-Jin;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.65-73
    • /
    • 2007
  • This paper introduces design-for-test (DFT) techniques for low-cost system-on-chip (SoC) test. We present a Scan-Test method that controls IEEE 1500 wrapper thorough IEEE 1149.1 SoC TAP (Test Access Port) and design an at-speed test clock generator for delay fault test. Test cost can be reduced by using small number of test interface pins and on-chip test clock generator because we can use low-price automated test equipments (ATE). Experimental results evaluate the efficiency of the proposed method and show that the delay fault test of different cores running at different clocks test can be simultaneously achieved.

Design of Test Access Mechanism for AMBA based SoC (AMBA 기반 SoC 테스트를 위한 접근 메커니즘 설계)

  • Min, Pil-Jae;Song, Jae-Hoon;Yi, Hyun-Bean;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.74-79
    • /
    • 2006
  • Test Interface Controller (TIC) provided by ARM Ltd. is widely used for functional testing of System-on-Chip (SoC) adopting Advanced Microcontroller Bus Architecture (AMBA) bus system. Accordingly, this architecture has a deficiency of not being able to concurrently shifting in and out the structural scan test patterns through the TIC and AMBA bus. This paper introduces a new AMBA based Test Access Mechanism (ATAM) for speedy testing of SoCs embedding ARM cores. While preserving the compatability with the ARM TIC, since scan in and out operations can be performed simultaneously, test application time through the expensive Automatic Test Equipment (ATE) can be drastically reduced.

SA-Based Test Scheduling to Reduce the Test Time of NoC-Based SoCS (SA 기법 응용 NoC 기반 SoC 테스트 시간 감소 방법)

  • Ahn, Jin-Ho;Kim, Hong-Sik;Kim, Hyun-Jin;Park, Young-Ho;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.93-100
    • /
    • 2008
  • In this paper, we address a novel simulated annealing(SA)-based test scheduling method for testing network-on-chip (NoC)-based systems-on-chip(SoCs), on the assumption that the test platform proposed in [1] is installed. The proposed method efficiently mixed the rectangle packing method with SA and improved the scheduling results by locally changing the test access mechanism(TAM) widths for cores and the testing orders. Experimental results using ITC'02 benchmark circuits show that the proposed algorithm can efficiently reduce the overall test time.

An Efficient Design Technique for Concurrent Core Testing of AMBA-based SoC (AMBA 기반 SoC의 병렬 코어 테스트를 위한 효과적인 테스트 설계 기술)

  • Song, Jae-Hoon;Oh, Jung-Sub;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.44-54
    • /
    • 2011
  • The goal of this paper is reducing the test time for AMBA-based SoC. To achieve this goal, the design technique that can test several cores concurrently by reusing AMBA as TAM is proposed. The additional control logic for structural parallel core test is minimized by reusing TIC which is originally used for functional test of AMBA. SoC reliability and test time reduction can be significantly achieved with the concurrent core test technique as well as functional test.

The Effect of Reliability Test on Failure mode for Flip-Chip BGA C4 bump (FC-BGA C4 bump의 신뢰성 평가에 따른 파괴모드 연구)

  • Huh, Seok-Hwan;Kim, Kang-Dong;Jang, Jung-Soon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.45-52
    • /
    • 2011
  • It is known that test methods to evaluate solder joint reliability are die shock test, die shear test, 3points bending test, and thermal shock test. The present study investigated the effects of failure mode on 3 types (as-reflowed, $85^{\circ}C$/85%RH treatment, and $150^{\circ}C$/10hr aging) of solder joints for flip-chip BGA package by using various test methods. The test methods and configurations are reported in detail, i.e. die shock, die shear, 3points bending, and thermal shock test. We focus on the failure mode of solder joints under various tests. The test results indicate that die shock and die shear test method can reveal brittle fracture in flip-chip ball grid array (FCBGA) packages with higher sensitivity.