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Network-on-chip (NoC) is an emerging design paradigm 
intended to cope with future systems-on-chips (SoCs) 
containing numerous built-in cores. Since NoCs have some 
outstanding features regarding design complexity, timing, 
scalability, power dissipation and so on, widespread 
interest in this novel paradigm is likely to grow. The test 
strategy is a significant factor in the practicality and 
feasibility of NoC-based SoCs. Among the existing test 
issues for NoC-based SoCs, test access mechanism 
architecture and test scheduling particularly dominate the 
overall test performance. In this paper, we propose an 
efficient NoC-based SoC test scheduling algorithm based 
on a rectangle packing approach used for current SoC tests. 
In order to adopt the rectangle packing solution, we 
designed specific methods and configurations for testing 
NoC-based SoCs, such as test packet routing, test pattern 
generation, and absorption. Furthermore, we extended 
and improved the proposed algorithm using multiple test 
clocks. Experimental results using some ITC'02 
benchmark circuits show that the proposed algorithm can 
reduce the overall test time by up to 55%, and 20% on 
average compared with previous works. In addition, the 
computation time of the algorithm is less than one second 
in most cases. Consequently, we expect the proposed 
scheduling algorithm to be a promising and competitive 
method for testing NoC-based SoCs. 
 

Keywords: NoC test, test scheduling, rectangle packing, 
network-based TAM. 
                                                               

Manuscript received Dec. 23, 2005; revised May 29, 2006. 
Jin-Ho Ahn (phone: + 82 2 2123 2775, email: sominaby@soc.yonsei.ac.kr) and Sungho 

Kang (shkang@yonsei.ac.kr) are with Department of Electrical & Electronic Engineering, 
Yonsei University, Seoul, Korea. 

I. Introduction 

It is expected that systems-on-chips (SoCs) including 
hundreds of embedded cores will appear in the near future 
through the development of a design methodology based on 
intellectual properties and deep submicron manufacturing 
technology. In such a highly dense SoC design, a 
communication scheme among built-in cores will be a main 
design constraint and will dominate the issues of system 
architecture, performance, robustness, power consumption, and 
cost. Until now, the shared bus has been generally exploited for 
the interconnection architecture within systems. However, due 
to increases in the number of embedded cores, system 
frequency, and deep submicron technologies, designers are 
contending with difficulties related to signal and power 
integrity within the shared bus architecture, and they will 
require new models and templates suitable for future SoCs. 
One such emerging approach is the network-on-chip (NoC)-
based architecture and platform [1]. An NoC can be defined as 
an interconnection model implemented on a chip in the form of 
a micro-network [2]. An on-chip implementation of a network-
based interconnection paradigm provides many advantages 
such as scalability and configurability [3]. For example, it is 
easier to add or delete built-in cores on an NoC structure. 
Moreover, the network operation clock can be arbitrarily 
determined since an on-chip network does not require strict 
clock synchronization with embedded cores like computer 
networks do. This is an important feature of any NoC-based 
SoC that includes multiple operation clocks. The basic 
structure of NoC-based SoCs consists of routers, functional and 
storage cores, routing channel connecting cores, and network 
interfaces (NIs) bridging between a core and a router [4]. The 
cores communicate with each other by sending and receiving 
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packets composed of a header, payload, and trailer. Packet-
based communication schemes can effectively utilize the full 
resources and bandwidth of networks. 

Like all other SoCs, NoC-based SoCs must be tested for 
manufacturing defects. The general issues of SoC tests include 
the design of test wrappers, and test access mechanism (TAM) 
architectures, and test scheduling methods. The test wrapper is 
the logic added around an embedded core to isolate it from the 
surrounding logic and to provide test access to the core through a 
TAM. A TAM is the physical mechanism connecting cores from 
test sources or sinks, and it determines how efficiently test stimuli 
and test results can be transported. Test scheduling is applied to 
find the test organization that minimizes the overall test time 
while considering the test power and TAM architecture. NoC-
based SoCs have nearly the same traditional test methodologies 
as common SoCs. However, some test issues incorporating NoC 
characteristics remain as unresolved problems under 
investigation. In particular, TAM research is one of the most 
active research areas in testing NoC-based SoCs. Among earlier 
TAM architectures for SoCs, an on-chip test bus was the most 
efficient form. Figure 1 shows a basic bus-based TAM 
architecture. However, it may be impractical to have a TAM 
solely for the purpose of testing in NoC-based SoCs because test 
costs such as those for the silicon area and pin count will be 
much higher. Thus, the reuse of NoCs as TAMs is a very 
attractive and logical goal. In an NoC-based TAM, all test data 
should come in a packet type. For this reason, it is difficult to 
assign TAM pins to cores by a bit scale. This constraint renders 
many test scheduling ideas based on a common SoC structure 
not directly applicable to testing NoC-based SoCs. Therefore, an 
efficient test scheduling method using an NoC-based TAM is 
important to minimize the overall system test time. In this paper, 
we propose a novel NoC-based SoC test scheduling, reusing the 
NoC for data communications as a TAM with variable test 
clocks. First, we designed a new NoC-based test platform, 
including test packet generation and routing. The proposed test 
platform helped us utilize previous test scheduling algorithms 
designed to test common SoCs [5]-[14]. Among the SoC test 
scheduling algorithms, we chose a rectangle packing approach to 
solve the NoC-based SoCs test scheduling problem. The 
rectangle packing heuristic was first introduced in [6]. The SoC 
test scheduling problem was formulated as a 2-dimensional bin 
packing problem, and each core was represented by a rectangle, 
the width of which was the number of SoC pins allocated, and 
the height of which was the core test time given the number of 
SoC pins [6]. A technique based on rectangle packing has been 
used for wrapper/TAM co-optimization and test scheduling for 
SoCs [7]. A restricted 3-dimensional bin-packing model [8] and 
techniques based on rectangle packing [9] have been used for 
power constrained SoC test scheduling. In this paper, we 

extended the rectangle packing procedure proposed in [7] for its 
simplicity and feasibility. In addition, we improved the proposed 
scheduling algorithm by factoring in multiple test clocks. 

In the next section, we review prior studies and present the 
new contribution of our work. In section III, an NoC-based test 
platform for the proposed scheduling algorithm is introduced. 
We elucidate why the use of multiple test clocks is significant 
and how it can be implemented in section IV. The proposed 
scheduling method, which efficiently optimizes core 
assignment and schedules test order based on a rectangle 
packing approach, is presented with a pseudo-code in section V. 
The experimental results using ITC'02 benchmark circuits and 
comparisons with previous results are given in section VI. 
Finally, conclusions are presented in section VII. 
 

 

Fig. 1. Bus-based TAM architecture for SoC test. 
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II. Related Research and Summary of Contributions 

The general concept of testing NoC-based SoCs was first 
shown in [4]. Before the built-in core test, the communication 
infrastructure of an NoC should be tested. The primary issues 
and methodologies regarding testing communication resources 
are introduced in [15]. After verifying the communication 
resource, we can advance to the standard core test using an on-
chip network as a TAM. An early approach to the subject of 
test architectures utilizing an on-chip network was shown in 
[16]. The proposed network-oriented test architecture, novel 
indirect and modular architecture (NIMA), laid the 
groundwork for realizing a test architecture that benefits from 
the reuse of an NoC interconnect template. 

Test scheduling algorithms for NoC-based SoCs can be 
grouped roughly into two main categories: packet-based and 
core-based scheduling. Packet-based scheduling determines the 
order of generation and transmission of test packets for cores 
according to the priority of each core. Cota and others have 
proposed test scheduling based on a packet-switching protocol 
[17]. Test vectors and responses per core are represented as a 
set of packets to be transmitted throughout the network, and the 
packets are scheduled to minimize the total test time using test 
parallelism [17]. ‘Test parallelism’ denotes that several cores 
are tested simultaneously, improving test efficiency through 
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fully utilizing the network bandwidth. Enhanced versions of 
this algorithm have been reported that include the addition of 
power constraints [18]. Embedded processors have been used 
for test sources and sinks to increase test parallelism [19]. 

Core-based scheduling determines the test order of each core 
[20]-[21]. In this approach, the scheduler assigns each core a 
routing path, including an input port, an output port, and 
corresponding channels that transport test vectors from the 
input to the core and test responses from the core to the output. 
Once a core is scheduled on a path, all resources on that path 
are reserved for the core test until the entire test is completed. 
Because the proposed idea maintains test pipelining from a test 
vector input to a test response output for a core under test 
(CUT), it shows fairly good scheduling results. The term ‘test 
pipelining’ means the continuous, concurrent operation of scan 
input of a test vector and output of a response. As collision 
among the routed test data causes test pipelining to be broken, 
the corresponding routing path for each CUT has to be 
reserved. However, the reservation of a path reduces test 
parallelism. Evidently, packet-based scheduling is suitable for 
globally asynchronous and locally synchronous (GALS) 
architecture, and promises to fully exploit NoC characteristics. 
Even though the packet-based approach has merit, its test 
scheduling results are inferior to those of core-based methods 
so far. 

Recently, a new test scheduling idea was proposed 
improving the limitation of the NoC-based TAM. In [21], the 
idle channel width of a TAM that cannot contribute to reducing 
the overall system test time is efficiently utilized through a 
combination of an on-chip clocking and parallel-serial 
conversion of test data. In order to preserve test pipelining, 
however, the test clock generated from an on-chip PLL for a 
CUT should increase in proportion to the number of test 
vectors transmitted together through a test packet. For example, 
let the size of a test packet for a CUT be 32 and the number of 
wrapper scan chains of the CUT be 2. In this case, a test packet 
can contain 16 test vectors. Thus, the test clock frequency of 
the CUT supplied from the PLL should be 16 times as fast as 
the operation frequency of the NoC-based TAM for test 
pipelining of the CUT. Considering the difficulty of an on-chip 
PLL design, we cannot help but limit the frequency and 
number of test clocks generated by the PLL, and therefore idle 
channel widths still remain. 

Consequently, the test scheduling heuristics proposed so far 
for the testing of NoC-based SoCs are different from the SoC 
tests in previous studies, owing to the limits of NoC-based 
TAMs. Therefore, it is necessary to integrate both methods to 
enhance test efficiency. The major technical contributions 
made in this paper are the following: 

(1) We exploit test scheduling methods based on common 

SoC architectures to test NoC-based SoCs. Though any 
heuristic approach for SoC test scheduling can be applied 
to NoC-based SoCs, we chose and extened the rectangle 
packing heuristic presented in [7] on the basis of its 
simplicity and feasibility. 

(2) In order to apply the rectangle packing algorithm to NoC-
based SoC test scheduling, we designed a new NoC-based 
test platform defined as specific methods and 
configurations for testing NoC-based SoCs such as test 
packet routing, test pattern generation, and absorption. Its 
details are presented in section III. 

(3) Most SoCs consist of cores in variable clock domains. 
Some of those should be tested at-speed, and some should 
not. Thus, we consider test scheduling using multiple test 
clocks for a practical application. Particulars are presented 
in section IV. 

III. NoC-Based SoC Test Platform 

1. NoC Basics 

An NoC can be characterized by several parameters such as 
topology, network protocol, structure, and control of a router. In 
this study, we assumed an NoC which uses a 2-D mesh 
topology, XY routing, and wormhole switching. A mesh 
structure is one of the most practical and widespread NoC 
topologies. Each router in a mesh is connected to its four 
neighboring routers via a bi-directional channel and an 
embedded core is attached to the router. The core 
communicates with the router through NI parsing or by 
making packet headers. The header contains information like 
the destination or origin of the packet. In wormhole switching, 
a packet is broken up into flits and they are transported in a 
pipelined manner. The flit is a unit of flow control. As common 
wormhole switching requires very small buffers and is 
implemented in hardware, it is suitable for multi-processor 
systems. XY routing, also known as dimension-order routing, 
is very popular for its simplicity and its capability of routing 
without deadlock. In XY routing, a packet is first routed on the 
X direction and then on the Y direction before reaching its 
destination. The simple NoC structure mentioned above is 
shown in Fig. 2. All routers have flit buffers at input ports and 
the flit size is the same as the channel width of the NoC. 

2. Test Resources and Configuration for Testing NoC-Based 
SoC 

A test resource denotes any specific logic required for a test 
operation. In this paper, a test source, sink, and controller are 
mainly used for test resources. A test source can generate test 
vectors at a rate of up to one packet per network time step, and  
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Fig. 2. Basic NoC structure. 
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a test sink can absorb test responses at the same rate as the test 
source. While a multi-source/sink mode has been used in 
previous studies [17]-[21], we adopt a single test source and 
sink attached directly to a router. Since test data should move 
on a network in a packet type, we assume the test source and 
sink include an NI internally for network routing. A test 
controller ensures that test sources and sinks satisfy test 
pipelining and parallelism by means of a predetermined test 
schedule. The number of test sources and sinks in a multi-
source/sink mode corresponds to the difference of clock rate 
between an on-chip network and CUTs in a single source and 
sink mode. For example, if an on-chip network operates two 
times faster than the CUT, it produces the same effect as if 
there were two test sources and two sinks. 

3. Generation and Transmission of Test Packets 

Common SoC test scheduling achieves minimal test time by 
assigning the proper TAM width to each core. However, 
because NoC-based TAMs are not reconfigurable, we use the 
idea found in [21] to vary the size of TAM width available for 
scheduling. A packet can transfer multiple test vectors if the 
packet size is multiple times larger than the vector size [21]. 
The test vector size is identical to the TAM width assigned to a 
core. For example, let us assume that a test vector is 8-bit and a 
packet is 32-bit. In this case, the packet can transfer 4 vectors at 
a time. Such a packet generation scheme can reduce the overall 
test time by efficiently utilizing the network bandwidth in the 
spatial domain. Next, we propose a test packet transmission 
method including multiple vectors without the test clock 
multiplications used in [21]. 

 

Fig. 3. Example of test packet generation and transmission. 

P1 P2

CLKN

Test packet gen.
in test source

Test vector for CUT1

Vector 1

Vector 2 

16
32

P1: Test packet for CUT1

P1 P3 P1 P2 P1 P3

Vector 1 8

P2: Test packet for CUT2 

Vector 2 
Vector 3 
Vector 4 

32 

P3: Test packet for CUT3

CLKT

vec. 1 vec. 2 vec. 3 vec. 4 

Vector 18
Vector 2
Vector 3
Vector 4

32

Test vector for CUT2
vec. 1 vec. 2 vec. 3 vec. 4 

Test vector for CUT3 vec. 1 vec. 2 vec. 3 vec. 4

t1 t2 t3 t4 

 
 
An example of the proposed packet transmission is shown in 

Fig. 3. We assumed that the channel width of the network is 
32-bit and CUT1, CUT2, and CUT3 are assigned to 16-, 8-, and 
8-bit TAM widths, respectively. CLKN is a network clock, 
CLKT is a CUT test clock and all clocks have the same 
frequency. First, P1 for CUT1 is transmitted at cycle t1. Since 
P1 has two test vectors, the test source can deliver P2 at the 
next t2 cycle. In t3, P1 should be sent again for test pipelining of 
CUT1. P3 is delivered at t4. The above process is repeated until 
the test of any one of the CUTs is done. In this paper, we 
confine the TAM width to the power of 2, that is, 1, 2,…, 2k 
(2k ≤ W, W is the channel width of a network) for the 
simplicity of calculating transmission cycles. Because this 
time-division packet transmission allows a test scheduler to 
fully exploit the network bandwidth in the time domain, 
additional reduction of test application time can be realized. 

4. Routing Strategy of Test Packets 

As stated earlier, test packet collisions on a network should 
be avoided to preserve test pipelining. Instead of the path 
reservation that has been used in the past, a new test packet 
routing method using its routing characteristics is presented in 
this section. 

Test vector packets from the test source to the CUTs show a 
‘one-to-many’ communication pattern. In a one-to-many 
pattern, just one node is identified as a sender and the other 
nodes are receivers. If one sender transmits test packets in order 
and they move with XY routing, there will be no collision 
between test vector packets. However, the test response packets 
show a ‘many-to-one’ pattern because there is one test sink 
receiver, but there are many CUT senders. Since the 
transmission time of each CUT is not uniform, response packet 
collision should be expected. In order to solve this problem, we 
use the ‘global combining’ method [22]. Global combining  
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Fig. 4. Test packet routing with global combining. 
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Fig. 5. Test configuration example of an NoC-based d695 circuit.
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removes packet collision by combining different packets into 
one packet. XY routing is still valid even when global 
combining is used. 

Figure 4 illustrates the process of packet routing using global 
combining. All of the basic conditions in Fig. 4 are equal to 
those of Fig. 3. When CUT1 generates a response packet, P1, 
the response value will be located on the upper 16 bits of P1. In 
the case of P2, the response is located on the upper 8 bits 
within the lower 16 bits. P3 will use the other 8 bits for 
response data. Thus, the packet header must also include a 
piece of information, which indicates the relevant bits of the 
response. If P1, P2, and P3 arrive at the router, R4, 
simultaneously, R4 combines the input packets into one output 
packet, and forwards it. Since a test scheduler makes the total 
sum of TAM widths of CUTs tested at the same time less than 
the channel width of the network, it is very efficient to use 
global combining to solve the packet collision problem. 

In spite of this routing scheme, it is possible that a test vector 

packet will collide with a response packet. This problem can be 
solved by placing a test source and sink on the opposite side of 
a row or column in an NoC and not installing another core in 
the row or column.  

From the presentations given so far, we show as an example 
the overall configuration to test an NoC-based D695 
benchmark circuit in Fig. 5. 

IV. Test Scheduling Using Multiple Test Clocks 

For a given core, the test time varies with the TAM width in 
a staircase pattern. For the sake of simplicity, this means that an 
increase of the TAM width of a core cannot always decrease 
the test time of the core. However, the increase in speed of the 
core test clock can always reduce the core test time as much as 
the test clock is increased; but the decrease of test parallelism 
due to the additional usage of network bandwidth is the 
downside of the test clock increase. Therefore, in order to 
maximize the effect using multiple test clocks for practicality as 
well as test efficiency, we must efficiently determine the test 
clock rates and schedule the test organization. 

For example, let the clock rate of an on-chip network be 30 
MHz and let the channel width be 10 bits (Fig. 6). Also, we 
assume the test times of core 1, core 2, and core 3 to be 200, 
100, and 100 cycles, respectively, if a 10 MHz test clock is 
applied. In Fig. 6(a), since all cores can be tested at the same 
time, we simply see that the required time to test all cores is 
200. Next, in Fig. 6(b), if we apply a 20 MHz test clock to test 
 

 

Fig. 6. Test scheduling example using multiple test clocks. 
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core 1, the overall test time will be unchanged as core 2 and 
core 3 should be tested sequentially. However, when the core 2 
test clock is also doubled, as shown in Fig. 6(c), the overall test 
time can be reduced to 150. In the final example (Fig. 6(d)), if 
all cores are tested with a 20 MHz clock, the test time becomes 
200 because cores are tested one by one to preserve test 
pipelining. As we can see in this example, under variable test 
clock domains, we should determine the clock rate and the core 
test order in consideration of several constraints, such as the 
extent of network bandwidth usage, power consumption, and 
precedence rules between cores. Note that no test clock should 
be faster than the network clock for test pipelining on the test 
platform. A detailed procedure to determine the test clock rate 
for each core will be presented in section V.2. 

V. Test Scheduling Based on a Rectangle Packing 

1. Problem Formulation 

NoC-based SoC test scheduling can be formulated in terms 
of a rectangle packing problem if the test platform described in 
section III is used. For example, Fig. 7 illustrates the 
relationship between the test time and TAM width for a core. 
The test time varies with the TAM width in a staircase pattern, 
and the testing of a core is represented as a rectangle whose 
height indicates the TAM width assigned to that core; width 
denotes the test time of the core for the corresponding value of 
the TAM width. Thus we can obtain a number for the TAM 
width and the test time combinations for the same core. Taken 
as a whole, a test scheduler picks up just one rectangle from the 
candidate rectangle set of each core, and then packs it into a bin 
of a fixed height and an unlimited width until the bin is filled 
with rectangles of all cores embedded in an SoC, while 
minimizing the overall width of the bin without overflowing 
the bin’s height. 
 

 

Fig. 7. Relationship between test time and TAM width of a core.
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We now take up the NoC-based SoC scheduling problem in 
terms of a rectangle packing modeling. First, we assume that an 
NoC-based SoC N includes m cores and has the channel width 
W. Also, let wi be the TAM width assigned to core i embedded to 
N and ti be the test time of core i for wi. All rectangles of core i, Ri, 
are represented as an ordered pair such that 

( ) ,21,1,)(),( Wmiktkw k
iii ≤≤≤≤=R  

where k denotes the number of TAM widths available for a 
time-division transmission. Note that Ri is ‘Pareto-optimal.’ 
The scheduling problem can be summarized as selecting one 
rectangle ri from Ri, (1≤i≤m), packing the selected rectangles 
into a bin of height W and unbounded width without 
overlapping between the ri rectangles and minimizing the 
width of the bin. 

Up to this point, the scheduling problem has had the same 
clock rate for the on-chip network and the core test clocks. 
However, as remarked in section III.2, a single source/sink 
mode is used in this paper instead of a multi-source/sink mode 
used in previous works. Therefore, we extend the 
aforementioned problem definition to a multiple bin packing 
problem. Let the network clock frequency be fN and the test 
clock frequency of the cores be fT. Further, let fN be n times 
faster than fT. Note that n is an integer value. Since a test 
scheduler can operate n times more within a period of test 
clock and the overall test time is measured by the test clock, we 
regard n as the number of bins to be packed by the core 
rectangles. In this multiple bin packing problem, we determine 
that a rectangle cannot be separated into multiple bins for a 
simple calculation of a time-division transmission time. 

2. Test Scheduling Procedure 

Before beginning the scheduling, we designed test wrappers 
for embedded cores and found Ri. Though any wrapper design 
procedure can be applied, we use the ‘one-element exchange’ 
algorithm [14]. Additionally, the one-element exchange can 
optimize the result of partitioning scan chains initially derived 
from applying the ‘largest processing time’ (LPT), as the results 
from the LPT are not always best-optimized. Then, the 
heuristic procedure to solve the scheduling problem modeled in 
section V.1 is advanced. While many ideas have been proposed, 
we chose and extended the TAM_optimizer [7] for its 
simplicity and feasibility. In this section, all basic notations are 
identical to the comments in section V.1. 

In the TAM_optimizer, first a scheduler calculates a 
preferred TAM width wprefer for each core through heuristic 
ideas. Then, cores assigned to preferred TAM widths are 
scheduled in succession on the basis of their test time. The 
scheduler also supplements cores to idle room or assigns  
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Fig. 8. Data structure of a core. 
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Fig. 9. Preferred TAM width calculation. 
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additional TAM widths available to cores scheduled earlier to 
reduce the overall test time. While the basic scheduling 
methods are nearly the same as the TAM_optimizer, some 
parts are added or modified. We now explain them in detail. 

A. Data Structure   

The data structure of a core is shown in Fig. 8. In the data 
structure, bpos(i) denotes the position of the bin including core 
i, and clk_mode(i) is the test clock rate of core i relative to the 
normal test clock. For example, if clk_mode(i) is 2, the current 
test clock frequency of core i becomes two times faster than the 
test clock frequency set up at the beginning of the scheduling. 
Note that we assumed that test clock frequencies of cores are 
uniform at the start-up. 

B. Calculation of Preferred TAM Width   

The calculation procedure of wprefer is presented in Fig. 9. In 
Fig. 9, let T(wi) be the test time of core i where a TAM width wi 
and Ai(k) indicate the result of wi(k)·T(wi(k)), (1≤2k≤W). In 
our algorithm, wprefer(i) is set to the highest wi in Ri such that the 
difference between Ai(k) and Ai(0) is less than the p% of Ai(0). 
Furthermore, we assign a core, the TAM width providing the 
corresponding core with the best test time, if T(wprefer) of the 
core is more than the q% of the total sum of T(wprefer) of all 
embedded cores. The search space to find the best p and q is 
selected on an experimental basis. These heuristic approaches 
can make the proposed method applicable to various test 

circuits. 

C. Multiple Bin Packing  

The clock rate of a network is a factor n of the core test clock 
rate and n corresponds to the number of input and output pairs 
(see III.2 and V.1). In order to solve a multiple bin packing 
problem, we use an incremental packing on the basis of a 
‘cur_time.’ The cur_time indicates the time trying to put a new 
rectangle into the bin with available space. First, the bin having 
the minimum cur_time among n bins is chosen to pack 
rectangles. If no rectangle is available to fill the bin in the 
cur_time, the cur_time of the current bin moves to the shortest 
end time in cores scheduled earlier within the bin. In this way, n 
bins are packed step by step. 

D. Consideration of Multi-clock   

In the domain of a bin packing problem, the increase of a test 
clock causes the width of a rectangle to decrease, but the height 
to increase in proportion to the decrease in width. For example, 
let the rectangle ri operate fT initially. If we assign 2fT to ri as a test 
clock, then the width and height of ri becomes ti/2 and 2wi, 
respectively. In this paper, we restrict the maximum test clock 
rate to 2fT and consider two multi-clock modes similar to [21]. In 
one case, the test clock is predetermined. Only the cores fulfilling 
the condition that T(W) = T(W/2) can be tested by the faster 
clock 2fT . In the other case, we assign the clock 2fT to a core, as 
long as there are enough TAM lines available during the 
scheduling of the core. If TAM lines are short for the faster clock, 
the normal test clock fT is tried instead. The detailed pseudo-code 
of the proposed scheduling procedure is shown in Fig.10. 

VI. Experimental Results 

We simulated four ITC’02 benchmark circuits [23] to 
evaluate the proposed scheduling algorithm. All of our 
simulations were conducted on a SUN UltraSPARC III with 
1.2 GHz processors. Table 1 displays the experimental results 
where a common clock was used for the core test. Column 2 of 
the table shows the test configuration method related to the 
number of test sources and sinks as stated in section III.2. In 
order to make comparisons with previous results, we assumed 
that the network clock frequency fN could increase up to four 
times as fast as the core test clock frequency fT, that is, n = fN / fT 
and n is an integer. Column 3 lists the results of packet-based 
test scheduling by Cota and others [18], and Columns 4 and 6 
show the results of core-based test scheduling without on-chip 
clocking by Liu and others [20]-[21]. The network channel 
width is either 32 or 16 bits. Table 2 contains the scheduling 
results derived from two multi-test clock modes. We confined  
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Fig. 10. Procedure of test scheduling. 

1. Compute Ri from wrapper design of cores ; 
2. while p≤ 50%  { 
3.  while q≤ 30% {  
4.    Initialize C[m], cur_time[bin_pos] = 0, next_time[bin_pos] = 0, wavail[bin_pos] = W;  
5.    Calculate wprefer of C[m]; 
6.    while there exists a core not tested { 
        Select TAM position, p, that has the lowest cur_time; 
        // Start of rectangle packing heuristics for a bin p  
        If (wavail[p] ≥  0) { 
           If core i can be found, such that (wprefer(i)*2 ≤  wavail[p]  AND T(wprefer(i))/2 is maximum) OR 
                                           (wprefer(i) ≤  wavail[p]  AND T(wprefer(i)) is maximum)  { 
             set bin_pos(i) AND clk_mode(i); 

Rectangle packing process with assigning wprefer(i)*clk_mode(i) to cores; // refer to [7] about details  
          } 
          Else { 
              If core i can be found, such that (bin_pos(i) =  p) AND (scheduled(i) =  YES) AND (completed(i) =  NO)  
                                               AND (end_time(i) > cur_time[p])  AND end_time(i) is minimum  { 
              next_time[p] = end_time(i); 
            }  
              If core i can be found, such that (scheduled(i) =  NO) AND 

 ((T(wavail[p]/2) + cur_time[p]) ≤  next_time[p] AND (T(wavail[p]/2) + cur_time[p]) is maximum) OR 
(T(wavail[p]) + cur_time[p]) ≤  next_time[p] AND (T(wavail[p]) + cur_time[p]) is maximum)) { 

                   set bin_pos(i) AND clk_mode(i); 
                 find w(i), where w(i) is the highest Pareto-optimal width, such that w(i) ≤  wavail[p]/clk_mode(i); 
                 Rectangle packing process with rectangle insertion in idle time; // refer to [7] about details  
              } 
                Else { 
                  If core i can be found, such that (bin_pos(i) = p) AND (scheduled(i) = YES) AND (completed(i) = NO) AND 

(begin_time(i) = cur_time[p]) AND (wassigned(i)*clk_mode(i) ≤  wavail[p])  AND 
(T(wassigned(i)) - T(wassigned(i)+wavail[p]/clk_mode(i))) / clk_mode(i)) is maximum { 

                  find w(i), where w (i) is the highest Pareto-optimal width, such that w (i) ≤  wassigned(i) + wavail[p]/ clk_mode(i); 
                  Rectangle packing process with increasing TAM widths to fill idle time; // refer to [7] about details  
                } 
                Else { 
                  set wavail[p] = 0; 
                } 
              } 
          } 
        } 
        Else { 
          move to next and update information; // refer to [7] about details 
        } 
      }  // End of rectangle packing heuristics for a bin p  
     If max. cur_time[bin_pos] is less than current Best_test_time, 
     Update Best_test_time = cur_time[bin_pos]; 
     Increase q by 5%; 
    } 
   Increase p by 5%; 
  } 
7. return Best_test_time; 

 
the test clock of all cores to fT or 2fT under the multi-clock 
mode. In case 1 in Table 2, we assigned a 2fT clock to core i if 
Ti(W) = Ti(W/2). On the other hand, the test clock fT or 2fT was  
dynamically chosen according to the TAM width available in 
case 2. In Table 2, we compared the test times of the proposed 
method with those of [21] using on-chip clocking. 

Our algorithm significantly improves on earlier methods in 
all cases regardless of circuit sizes, channel width W, and 
network speed n (Tables 1 and 2). However, there are some 
cases in which the overall test time is not decreased despite the 
increase of the network clock rate. This is because the test time 
reaches the lower bound due to bottleneck cores. In order to  
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Table 1. Experimental results under single test clock mode. 

W = 32 W = 16 
Benchmark No. of IO or n 

[18] [21] Proposed [21] Proposed 

2/2 or 2 26012 18869 13732 26200 23193 

3/3 or 3 20753 13412 9869 17807 16197 
D695  

10 cores 
4/4 or 4 14785 10705 9869 16197 12192 

2/2 or 2 31898 25062 14794 28635 17798 

3/3 or 3 22648 17925 14794 19620 14794 
G1023  

14 cores 
4/4 or 4 18851 16489 14794 17925 14794 

2/2 or 2 315708 271384 138990 331672 249164 

3/3 or 3 222432 180905 102965 221134 177009 
P22810 
30 cores 

4/4 or 4 170999 150921 102965 166800 145417 

2/2 or 2 - 611991 470011 935987 932380 

3/3 or 3 - 482352 341858 734390 623715 
P93791 
32 cores 

4/4 or 4 435787 333091 259263 502876 470011 

Table 2. Experimental results under multi-test clock mode. 

Case 1 Case 2 

W = 32 W = 16 W = 32 W = 16 Benchmark No. of IO or n 

[21] Proposed [21] Proposed [21] Proposed [21] Proposed

2/2 or 2 15570 11978 22779 21571 14176 11013 24848 21460 

3/3 or 3 10705 9869 15223 15196 9073 8082 16226 15100 
D695  

10 cores 
4/4 or 4 10705 9869 14945 12192 9073 6096 15813 12081 

2/2 or 2 16286 9822 19888 17461 15662 8899 20482 17056 

3/3 or 3 10941 7550 13338 11462 11546 7397 14986 11756 
G1023  

14 cores 
4/4 or 4 9163 7397 11172 10248 9788 7397 12581 9735 

2/2 or 2 187061 127480 270722 248382 177915 124463 261185 227127 

3/3 or 3 124787 93102 180977 170999 120840 91409 187663 152873 
P22810 
30 cores 

4/4 or 4 99345 72981 150594 145417 98842 72981 150091 139320 

2/2 or 2 608809 470011 933119 932380 488171 457274 935343 912193 

3/3 or 3 479403 341858 732888 623715 391339 328248 786818 608504 
P93791 
32 cores 

4/4 or 4 333091 259263 502876 470011 281518 238078 553860 468846 

 

illustrate this point, we give an example of the scheduling result 
of P22810 in Fig. 11 when W = 32 and n = 3. In Fig. 11(a), the 
test time of core 1 does not decrease any more, even though the 
TAM width for core 1 is increased. Thus, core 1 becomes a 
bottleneck and dominates the overall test time of the system. In 
Fig. 11(b), since clk_mode of core 1 increases, the test time of 
core 1 is cut in half, and the system test time is diminished. In 
addition, the computation time of our algorithm is no more 
than one second in most cases. This is a very encouraging 
indicator for the practicality and feasibility of the proposed 
algorithm. 

VII. Conclusions 

In this paper, we proposed a new test scheduling algorithm 
for NoC-based SoCs using the rectangle packing solution used 
in testing common SoCs. In order to implement the rectangle 
packing approach on an NoC structure, we designed test 
resource configuration and test methods, such as test packet 
generation and routing. Furthermore, we extended the 
algorithm and improved test efficiency with multiple test 
clocks. Experimental results using some ITC'02 benchmark 
circuits showed that the proposed algorithm can provide 
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Fig. 11. Test scheduling results of P22810 (W = 32, n = 3). 
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superior results under all conditions. 

Consequently, as the proposed scheduling algorithm and test 
platform seem to be very efficient and feasible for testing NoC-
based SoCs, we expect further related research will be 
stimulated. 
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