
ETRI Journal, Volume 28, Number 4, August 2006 Jin-Ho Ahn et al. 475

Network-on-chip (NoC) is an emerging design paradigm
intended to cope with future systems-on-chips (SoCs)
containing numerous built-in cores. Since NoCs have some
outstanding features regarding design complexity, timing,
scalability, power dissipation and so on, widespread
interest in this novel paradigm is likely to grow. The test
strategy is a significant factor in the practicality and
feasibility of NoC-based SoCs. Among the existing test
issues for NoC-based SoCs, test access mechanism
architecture and test scheduling particularly dominate the
overall test performance. In this paper, we propose an
efficient NoC-based SoC test scheduling algorithm based
on a rectangle packing approach used for current SoC tests.
In order to adopt the rectangle packing solution, we
designed specific methods and configurations for testing
NoC-based SoCs, such as test packet routing, test pattern
generation, and absorption. Furthermore, we extended
and improved the proposed algorithm using multiple test
clocks. Experimental results using some ITC'02
benchmark circuits show that the proposed algorithm can
reduce the overall test time by up to 55%, and 20% on
average compared with previous works. In addition, the
computation time of the algorithm is less than one second
in most cases. Consequently, we expect the proposed
scheduling algorithm to be a promising and competitive
method for testing NoC-based SoCs.

Keywords: NoC test, test scheduling, rectangle packing,
network-based TAM.

Manuscript received Dec. 23, 2005; revised May 29, 2006.
Jin-Ho Ahn (phone: + 82 2 2123 2775, email: sominaby@soc.yonsei.ac.kr) and Sungho

Kang (shkang@yonsei.ac.kr) are with Department of Electrical & Electronic Engineering,
Yonsei University, Seoul, Korea.

I. Introduction

It is expected that systems-on-chips (SoCs) including
hundreds of embedded cores will appear in the near future
through the development of a design methodology based on
intellectual properties and deep submicron manufacturing
technology. In such a highly dense SoC design, a
communication scheme among built-in cores will be a main
design constraint and will dominate the issues of system
architecture, performance, robustness, power consumption, and
cost. Until now, the shared bus has been generally exploited for
the interconnection architecture within systems. However, due
to increases in the number of embedded cores, system
frequency, and deep submicron technologies, designers are
contending with difficulties related to signal and power
integrity within the shared bus architecture, and they will
require new models and templates suitable for future SoCs.
One such emerging approach is the network-on-chip (NoC)-
based architecture and platform [1]. An NoC can be defined as
an interconnection model implemented on a chip in the form of
a micro-network [2]. An on-chip implementation of a network-
based interconnection paradigm provides many advantages
such as scalability and configurability [3]. For example, it is
easier to add or delete built-in cores on an NoC structure.
Moreover, the network operation clock can be arbitrarily
determined since an on-chip network does not require strict
clock synchronization with embedded cores like computer
networks do. This is an important feature of any NoC-based
SoC that includes multiple operation clocks. The basic
structure of NoC-based SoCs consists of routers, functional and
storage cores, routing channel connecting cores, and network
interfaces (NIs) bridging between a core and a router [4]. The
cores communicate with each other by sending and receiving

Test Scheduling of NoC-Based SoCs
Using Multiple Test Clocks

 Jin-Ho Ahn and Sungho Kang

476 Jin-Ho Ahn et al. ETRI Journal, Volume 28, Number 4, August 2006

packets composed of a header, payload, and trailer. Packet-
based communication schemes can effectively utilize the full
resources and bandwidth of networks.

Like all other SoCs, NoC-based SoCs must be tested for
manufacturing defects. The general issues of SoC tests include
the design of test wrappers, and test access mechanism (TAM)
architectures, and test scheduling methods. The test wrapper is
the logic added around an embedded core to isolate it from the
surrounding logic and to provide test access to the core through a
TAM. A TAM is the physical mechanism connecting cores from
test sources or sinks, and it determines how efficiently test stimuli
and test results can be transported. Test scheduling is applied to
find the test organization that minimizes the overall test time
while considering the test power and TAM architecture. NoC-
based SoCs have nearly the same traditional test methodologies
as common SoCs. However, some test issues incorporating NoC
characteristics remain as unresolved problems under
investigation. In particular, TAM research is one of the most
active research areas in testing NoC-based SoCs. Among earlier
TAM architectures for SoCs, an on-chip test bus was the most
efficient form. Figure 1 shows a basic bus-based TAM
architecture. However, it may be impractical to have a TAM
solely for the purpose of testing in NoC-based SoCs because test
costs such as those for the silicon area and pin count will be
much higher. Thus, the reuse of NoCs as TAMs is a very
attractive and logical goal. In an NoC-based TAM, all test data
should come in a packet type. For this reason, it is difficult to
assign TAM pins to cores by a bit scale. This constraint renders
many test scheduling ideas based on a common SoC structure
not directly applicable to testing NoC-based SoCs. Therefore, an
efficient test scheduling method using an NoC-based TAM is
important to minimize the overall system test time. In this paper,
we propose a novel NoC-based SoC test scheduling, reusing the
NoC for data communications as a TAM with variable test
clocks. First, we designed a new NoC-based test platform,
including test packet generation and routing. The proposed test
platform helped us utilize previous test scheduling algorithms
designed to test common SoCs [5]-[14]. Among the SoC test
scheduling algorithms, we chose a rectangle packing approach to
solve the NoC-based SoCs test scheduling problem. The
rectangle packing heuristic was first introduced in [6]. The SoC
test scheduling problem was formulated as a 2-dimensional bin
packing problem, and each core was represented by a rectangle,
the width of which was the number of SoC pins allocated, and
the height of which was the core test time given the number of
SoC pins [6]. A technique based on rectangle packing has been
used for wrapper/TAM co-optimization and test scheduling for
SoCs [7]. A restricted 3-dimensional bin-packing model [8] and
techniques based on rectangle packing [9] have been used for
power constrained SoC test scheduling. In this paper, we

extended the rectangle packing procedure proposed in [7] for its
simplicity and feasibility. In addition, we improved the proposed
scheduling algorithm by factoring in multiple test clocks.

In the next section, we review prior studies and present the
new contribution of our work. In section III, an NoC-based test
platform for the proposed scheduling algorithm is introduced.
We elucidate why the use of multiple test clocks is significant
and how it can be implemented in section IV. The proposed
scheduling method, which efficiently optimizes core
assignment and schedules test order based on a rectangle
packing approach, is presented with a pseudo-code in section V.
The experimental results using ITC'02 benchmark circuits and
comparisons with previous results are given in section VI.
Finally, conclusions are presented in section VII.

Fig. 1. Bus-based TAM architecture for SoC test.

Test
controller Core Core Core

Test access
interface

Test access
interface

Test access
interface

Control
signals

N bit bus

Wrapper

II. Related Research and Summary of Contributions

The general concept of testing NoC-based SoCs was first
shown in [4]. Before the built-in core test, the communication
infrastructure of an NoC should be tested. The primary issues
and methodologies regarding testing communication resources
are introduced in [15]. After verifying the communication
resource, we can advance to the standard core test using an on-
chip network as a TAM. An early approach to the subject of
test architectures utilizing an on-chip network was shown in
[16]. The proposed network-oriented test architecture, novel
indirect and modular architecture (NIMA), laid the
groundwork for realizing a test architecture that benefits from
the reuse of an NoC interconnect template.

Test scheduling algorithms for NoC-based SoCs can be
grouped roughly into two main categories: packet-based and
core-based scheduling. Packet-based scheduling determines the
order of generation and transmission of test packets for cores
according to the priority of each core. Cota and others have
proposed test scheduling based on a packet-switching protocol
[17]. Test vectors and responses per core are represented as a
set of packets to be transmitted throughout the network, and the
packets are scheduled to minimize the total test time using test
parallelism [17]. ‘Test parallelism’ denotes that several cores
are tested simultaneously, improving test efficiency through

ETRI Journal, Volume 28, Number 4, August 2006 Jin-Ho Ahn et al. 477

fully utilizing the network bandwidth. Enhanced versions of
this algorithm have been reported that include the addition of
power constraints [18]. Embedded processors have been used
for test sources and sinks to increase test parallelism [19].

Core-based scheduling determines the test order of each core
[20]-[21]. In this approach, the scheduler assigns each core a
routing path, including an input port, an output port, and
corresponding channels that transport test vectors from the
input to the core and test responses from the core to the output.
Once a core is scheduled on a path, all resources on that path
are reserved for the core test until the entire test is completed.
Because the proposed idea maintains test pipelining from a test
vector input to a test response output for a core under test
(CUT), it shows fairly good scheduling results. The term ‘test
pipelining’ means the continuous, concurrent operation of scan
input of a test vector and output of a response. As collision
among the routed test data causes test pipelining to be broken,
the corresponding routing path for each CUT has to be
reserved. However, the reservation of a path reduces test
parallelism. Evidently, packet-based scheduling is suitable for
globally asynchronous and locally synchronous (GALS)
architecture, and promises to fully exploit NoC characteristics.
Even though the packet-based approach has merit, its test
scheduling results are inferior to those of core-based methods
so far.

Recently, a new test scheduling idea was proposed
improving the limitation of the NoC-based TAM. In [21], the
idle channel width of a TAM that cannot contribute to reducing
the overall system test time is efficiently utilized through a
combination of an on-chip clocking and parallel-serial
conversion of test data. In order to preserve test pipelining,
however, the test clock generated from an on-chip PLL for a
CUT should increase in proportion to the number of test
vectors transmitted together through a test packet. For example,
let the size of a test packet for a CUT be 32 and the number of
wrapper scan chains of the CUT be 2. In this case, a test packet
can contain 16 test vectors. Thus, the test clock frequency of
the CUT supplied from the PLL should be 16 times as fast as
the operation frequency of the NoC-based TAM for test
pipelining of the CUT. Considering the difficulty of an on-chip
PLL design, we cannot help but limit the frequency and
number of test clocks generated by the PLL, and therefore idle
channel widths still remain.

Consequently, the test scheduling heuristics proposed so far
for the testing of NoC-based SoCs are different from the SoC
tests in previous studies, owing to the limits of NoC-based
TAMs. Therefore, it is necessary to integrate both methods to
enhance test efficiency. The major technical contributions
made in this paper are the following:

(1) We exploit test scheduling methods based on common

SoC architectures to test NoC-based SoCs. Though any
heuristic approach for SoC test scheduling can be applied
to NoC-based SoCs, we chose and extened the rectangle
packing heuristic presented in [7] on the basis of its
simplicity and feasibility.

(2) In order to apply the rectangle packing algorithm to NoC-
based SoC test scheduling, we designed a new NoC-based
test platform defined as specific methods and
configurations for testing NoC-based SoCs such as test
packet routing, test pattern generation, and absorption. Its
details are presented in section III.

(3) Most SoCs consist of cores in variable clock domains.
Some of those should be tested at-speed, and some should
not. Thus, we consider test scheduling using multiple test
clocks for a practical application. Particulars are presented
in section IV.

III. NoC-Based SoC Test Platform

1. NoC Basics

An NoC can be characterized by several parameters such as
topology, network protocol, structure, and control of a router. In
this study, we assumed an NoC which uses a 2-D mesh
topology, XY routing, and wormhole switching. A mesh
structure is one of the most practical and widespread NoC
topologies. Each router in a mesh is connected to its four
neighboring routers via a bi-directional channel and an
embedded core is attached to the router. The core
communicates with the router through NI parsing or by
making packet headers. The header contains information like
the destination or origin of the packet. In wormhole switching,
a packet is broken up into flits and they are transported in a
pipelined manner. The flit is a unit of flow control. As common
wormhole switching requires very small buffers and is
implemented in hardware, it is suitable for multi-processor
systems. XY routing, also known as dimension-order routing,
is very popular for its simplicity and its capability of routing
without deadlock. In XY routing, a packet is first routed on the
X direction and then on the Y direction before reaching its
destination. The simple NoC structure mentioned above is
shown in Fig. 2. All routers have flit buffers at input ports and
the flit size is the same as the channel width of the NoC.

2. Test Resources and Configuration for Testing NoC-Based
SoC

A test resource denotes any specific logic required for a test
operation. In this paper, a test source, sink, and controller are
mainly used for test resources. A test source can generate test
vectors at a rate of up to one packet per network time step, and

478 Jin-Ho Ahn et al. ETRI Journal, Volume 28, Number 4, August 2006

Fig. 2. Basic NoC structure.

C

C

C

C

C

C

R R R

R R R

R R R

C

NI NI NI

NI NI NI

NI

R: Router, NI: Network interface, C: Core

Routing channel

P2

P1

P# Data packet

Header Payload Trailer

a test sink can absorb test responses at the same rate as the test
source. While a multi-source/sink mode has been used in
previous studies [17]-[21], we adopt a single test source and
sink attached directly to a router. Since test data should move
on a network in a packet type, we assume the test source and
sink include an NI internally for network routing. A test
controller ensures that test sources and sinks satisfy test
pipelining and parallelism by means of a predetermined test
schedule. The number of test sources and sinks in a multi-
source/sink mode corresponds to the difference of clock rate
between an on-chip network and CUTs in a single source and
sink mode. For example, if an on-chip network operates two
times faster than the CUT, it produces the same effect as if
there were two test sources and two sinks.

3. Generation and Transmission of Test Packets

Common SoC test scheduling achieves minimal test time by
assigning the proper TAM width to each core. However,
because NoC-based TAMs are not reconfigurable, we use the
idea found in [21] to vary the size of TAM width available for
scheduling. A packet can transfer multiple test vectors if the
packet size is multiple times larger than the vector size [21].
The test vector size is identical to the TAM width assigned to a
core. For example, let us assume that a test vector is 8-bit and a
packet is 32-bit. In this case, the packet can transfer 4 vectors at
a time. Such a packet generation scheme can reduce the overall
test time by efficiently utilizing the network bandwidth in the
spatial domain. Next, we propose a test packet transmission
method including multiple vectors without the test clock
multiplications used in [21].

Fig. 3. Example of test packet generation and transmission.

P1 P2

CLKN

Test packet gen.
in test source

Test vector for CUT1

Vector 1

Vector 2

16
32

P1: Test packet for CUT1

P1 P3 P1 P2 P1 P3

Vector 1 8

P2: Test packet for CUT2

Vector 2
Vector 3
Vector 4

32

P3: Test packet for CUT3

CLKT

vec. 1 vec. 2 vec. 3 vec. 4

Vector 18
Vector 2
Vector 3
Vector 4

32

Test vector for CUT2
vec. 1 vec. 2 vec. 3 vec. 4

Test vector for CUT3 vec. 1 vec. 2 vec. 3 vec. 4

t1 t2 t3 t4

An example of the proposed packet transmission is shown in

Fig. 3. We assumed that the channel width of the network is
32-bit and CUT1, CUT2, and CUT3 are assigned to 16-, 8-, and
8-bit TAM widths, respectively. CLKN is a network clock,
CLKT is a CUT test clock and all clocks have the same
frequency. First, P1 for CUT1 is transmitted at cycle t1. Since
P1 has two test vectors, the test source can deliver P2 at the
next t2 cycle. In t3, P1 should be sent again for test pipelining of
CUT1. P3 is delivered at t4. The above process is repeated until
the test of any one of the CUTs is done. In this paper, we
confine the TAM width to the power of 2, that is, 1, 2,…, 2k
(2k ≤ W, W is the channel width of a network) for the
simplicity of calculating transmission cycles. Because this
time-division packet transmission allows a test scheduler to
fully exploit the network bandwidth in the time domain,
additional reduction of test application time can be realized.

4. Routing Strategy of Test Packets

As stated earlier, test packet collisions on a network should
be avoided to preserve test pipelining. Instead of the path
reservation that has been used in the past, a new test packet
routing method using its routing characteristics is presented in
this section.

Test vector packets from the test source to the CUTs show a
‘one-to-many’ communication pattern. In a one-to-many
pattern, just one node is identified as a sender and the other
nodes are receivers. If one sender transmits test packets in order
and they move with XY routing, there will be no collision
between test vector packets. However, the test response packets
show a ‘many-to-one’ pattern because there is one test sink
receiver, but there are many CUT senders. Since the
transmission time of each CUT is not uniform, response packet
collision should be expected. In order to solve this problem, we
use the ‘global combining’ method [22]. Global combining

ETRI Journal, Volume 28, Number 4, August 2006 Jin-Ho Ahn et al. 479

Fig. 4. Test packet routing with global combining.

R1

R3

R4

R2

Test response
absorption
in test sink

Response

NULL

16
32

P1: Test response packet of CUT1

Response 8

P2: Test response packet of CUT2

32

P3: Test response packet of CUT3

NULL

NULL

Respons8

32
NULL

Response16
32Response

Response
8
8

Fig. 5. Test configuration example of an NoC-based d695 circuit.

R

1

2

4

7

10

6

8

5

3

9

Test
source

Test
source

R R

R R R

R R R

R R R

R R R

Test
controller

removes packet collision by combining different packets into
one packet. XY routing is still valid even when global
combining is used.

Figure 4 illustrates the process of packet routing using global
combining. All of the basic conditions in Fig. 4 are equal to
those of Fig. 3. When CUT1 generates a response packet, P1,
the response value will be located on the upper 16 bits of P1. In
the case of P2, the response is located on the upper 8 bits
within the lower 16 bits. P3 will use the other 8 bits for
response data. Thus, the packet header must also include a
piece of information, which indicates the relevant bits of the
response. If P1, P2, and P3 arrive at the router, R4,
simultaneously, R4 combines the input packets into one output
packet, and forwards it. Since a test scheduler makes the total
sum of TAM widths of CUTs tested at the same time less than
the channel width of the network, it is very efficient to use
global combining to solve the packet collision problem.

In spite of this routing scheme, it is possible that a test vector

packet will collide with a response packet. This problem can be
solved by placing a test source and sink on the opposite side of
a row or column in an NoC and not installing another core in
the row or column.

From the presentations given so far, we show as an example
the overall configuration to test an NoC-based D695
benchmark circuit in Fig. 5.

IV. Test Scheduling Using Multiple Test Clocks

For a given core, the test time varies with the TAM width in
a staircase pattern. For the sake of simplicity, this means that an
increase of the TAM width of a core cannot always decrease
the test time of the core. However, the increase in speed of the
core test clock can always reduce the core test time as much as
the test clock is increased; but the decrease of test parallelism
due to the additional usage of network bandwidth is the
downside of the test clock increase. Therefore, in order to
maximize the effect using multiple test clocks for practicality as
well as test efficiency, we must efficiently determine the test
clock rates and schedule the test organization.

For example, let the clock rate of an on-chip network be 30
MHz and let the channel width be 10 bits (Fig. 6). Also, we
assume the test times of core 1, core 2, and core 3 to be 200,
100, and 100 cycles, respectively, if a 10 MHz test clock is
applied. In Fig. 6(a), since all cores can be tested at the same
time, we simply see that the required time to test all cores is
200. Next, in Fig. 6(b), if we apply a 20 MHz test clock to test

Fig. 6. Test scheduling example using multiple test clocks.

3

2

1

3 100

Test
time

B/W

100

100

200100
Test
time

B/W

200100

1 200

2 100

Test
time

B/W

150100
Test
time

B/W

200100

1 200 31

3 100

200 2 2

(a) fT1= fT2 = fT3 = 10 MHz (b) fT1= 20 MHz, fT2=fT3=10 MHz

(c) fT1=fT2=20 MHz, fT3=10 MHz (d) fT1=fT2=fT3=20 MHz

B/W = Bandwidth of network,
fT# = Test clock frequency of core #

480 Jin-Ho Ahn et al. ETRI Journal, Volume 28, Number 4, August 2006

core 1, the overall test time will be unchanged as core 2 and
core 3 should be tested sequentially. However, when the core 2
test clock is also doubled, as shown in Fig. 6(c), the overall test
time can be reduced to 150. In the final example (Fig. 6(d)), if
all cores are tested with a 20 MHz clock, the test time becomes
200 because cores are tested one by one to preserve test
pipelining. As we can see in this example, under variable test
clock domains, we should determine the clock rate and the core
test order in consideration of several constraints, such as the
extent of network bandwidth usage, power consumption, and
precedence rules between cores. Note that no test clock should
be faster than the network clock for test pipelining on the test
platform. A detailed procedure to determine the test clock rate
for each core will be presented in section V.2.

V. Test Scheduling Based on a Rectangle Packing

1. Problem Formulation

NoC-based SoC test scheduling can be formulated in terms
of a rectangle packing problem if the test platform described in
section III is used. For example, Fig. 7 illustrates the
relationship between the test time and TAM width for a core.
The test time varies with the TAM width in a staircase pattern,
and the testing of a core is represented as a rectangle whose
height indicates the TAM width assigned to that core; width
denotes the test time of the core for the corresponding value of
the TAM width. Thus we can obtain a number for the TAM
width and the test time combinations for the same core. Taken
as a whole, a test scheduler picks up just one rectangle from the
candidate rectangle set of each core, and then packs it into a bin
of a fixed height and an unlimited width until the bin is filled
with rectangles of all cores embedded in an SoC, while
minimizing the overall width of the bin without overflowing
the bin’s height.

Fig. 7. Relationship between test time and TAM width of a core.

TAM width (bits)
1 5 10 15 20 25 30

Te
st

 ti
m

e
(c

yc
le

s)

Candidate
rectangle set (R)

t(16)

16

t(16)

We now take up the NoC-based SoC scheduling problem in
terms of a rectangle packing modeling. First, we assume that an
NoC-based SoC N includes m cores and has the channel width
W. Also, let wi be the TAM width assigned to core i embedded to
N and ti be the test time of core i for wi. All rectangles of core i, Ri,
are represented as an ordered pair such that

() ,21,1,)(),(Wmiktkw k
iii ≤≤≤≤=R

where k denotes the number of TAM widths available for a
time-division transmission. Note that Ri is ‘Pareto-optimal.’
The scheduling problem can be summarized as selecting one
rectangle ri from Ri, (1≤i≤m), packing the selected rectangles
into a bin of height W and unbounded width without
overlapping between the ri rectangles and minimizing the
width of the bin.

Up to this point, the scheduling problem has had the same
clock rate for the on-chip network and the core test clocks.
However, as remarked in section III.2, a single source/sink
mode is used in this paper instead of a multi-source/sink mode
used in previous works. Therefore, we extend the
aforementioned problem definition to a multiple bin packing
problem. Let the network clock frequency be fN and the test
clock frequency of the cores be fT. Further, let fN be n times
faster than fT. Note that n is an integer value. Since a test
scheduler can operate n times more within a period of test
clock and the overall test time is measured by the test clock, we
regard n as the number of bins to be packed by the core
rectangles. In this multiple bin packing problem, we determine
that a rectangle cannot be separated into multiple bins for a
simple calculation of a time-division transmission time.

2. Test Scheduling Procedure

Before beginning the scheduling, we designed test wrappers
for embedded cores and found Ri. Though any wrapper design
procedure can be applied, we use the ‘one-element exchange’
algorithm [14]. Additionally, the one-element exchange can
optimize the result of partitioning scan chains initially derived
from applying the ‘largest processing time’ (LPT), as the results
from the LPT are not always best-optimized. Then, the
heuristic procedure to solve the scheduling problem modeled in
section V.1 is advanced. While many ideas have been proposed,
we chose and extended the TAM_optimizer [7] for its
simplicity and feasibility. In this section, all basic notations are
identical to the comments in section V.1.

In the TAM_optimizer, first a scheduler calculates a
preferred TAM width wprefer for each core through heuristic
ideas. Then, cores assigned to preferred TAM widths are
scheduled in succession on the basis of their test time. The
scheduler also supplements cores to idle room or assigns

ETRI Journal, Volume 28, Number 4, August 2006 Jin-Ho Ahn et al. 481

Fig. 8. Data structure of a core.

// Preferred TAM width for the core
// Assigned TAM width for the core
// Test start time
// Test end time
// Indicates the core has been scheduled
// Indicates testing has completed
// Position of bin that the core is scheduled
// Test clock rate

1. wprefer

2. wassigned
3. begin_time
4. end_time
5. scheduled
6. completed
7. bin_pos
8. clk_mode

Fig. 9. Preferred TAM width calculation.

1. for (i = 1; i ≤m; i++) {//m is the number of embedded cores.
Ai(k) = wi(k) * T(wi(k)), (1≤2k

≤W);// W is the channel width.
Set wprefer(i) = wi(k),
where wi(k) is the highest Pareto-optimal width,

such that (Ai(k) - Ai(0))≤ (p * Ai(0));
 Tsum = Tsum + T(wprefer(i));
 }
2. for (i = 1; i≤m; i++) {

Update wprefer(i) = wi(k),
where wi(k) is the highest Pareto-optimal width in Ri,

if (T(wprefer(i)) / Tsum)≥q;
 }

additional TAM widths available to cores scheduled earlier to
reduce the overall test time. While the basic scheduling
methods are nearly the same as the TAM_optimizer, some
parts are added or modified. We now explain them in detail.

A. Data Structure

The data structure of a core is shown in Fig. 8. In the data
structure, bpos(i) denotes the position of the bin including core
i, and clk_mode(i) is the test clock rate of core i relative to the
normal test clock. For example, if clk_mode(i) is 2, the current
test clock frequency of core i becomes two times faster than the
test clock frequency set up at the beginning of the scheduling.
Note that we assumed that test clock frequencies of cores are
uniform at the start-up.

B. Calculation of Preferred TAM Width

The calculation procedure of wprefer is presented in Fig. 9. In
Fig. 9, let T(wi) be the test time of core i where a TAM width wi
and Ai(k) indicate the result of wi(k)·T(wi(k)), (1≤2k≤W). In
our algorithm, wprefer(i) is set to the highest wi in Ri such that the
difference between Ai(k) and Ai(0) is less than the p% of Ai(0).
Furthermore, we assign a core, the TAM width providing the
corresponding core with the best test time, if T(wprefer) of the
core is more than the q% of the total sum of T(wprefer) of all
embedded cores. The search space to find the best p and q is
selected on an experimental basis. These heuristic approaches
can make the proposed method applicable to various test

circuits.

C. Multiple Bin Packing

The clock rate of a network is a factor n of the core test clock
rate and n corresponds to the number of input and output pairs
(see III.2 and V.1). In order to solve a multiple bin packing
problem, we use an incremental packing on the basis of a
‘cur_time.’ The cur_time indicates the time trying to put a new
rectangle into the bin with available space. First, the bin having
the minimum cur_time among n bins is chosen to pack
rectangles. If no rectangle is available to fill the bin in the
cur_time, the cur_time of the current bin moves to the shortest
end time in cores scheduled earlier within the bin. In this way, n
bins are packed step by step.

D. Consideration of Multi-clock

In the domain of a bin packing problem, the increase of a test
clock causes the width of a rectangle to decrease, but the height
to increase in proportion to the decrease in width. For example,
let the rectangle ri operate fT initially. If we assign 2fT to ri as a test
clock, then the width and height of ri becomes ti/2 and 2wi,
respectively. In this paper, we restrict the maximum test clock
rate to 2fT and consider two multi-clock modes similar to [21]. In
one case, the test clock is predetermined. Only the cores fulfilling
the condition that T(W) = T(W/2) can be tested by the faster
clock 2fT . In the other case, we assign the clock 2fT to a core, as
long as there are enough TAM lines available during the
scheduling of the core. If TAM lines are short for the faster clock,
the normal test clock fT is tried instead. The detailed pseudo-code
of the proposed scheduling procedure is shown in Fig.10.

VI. Experimental Results

We simulated four ITC’02 benchmark circuits [23] to
evaluate the proposed scheduling algorithm. All of our
simulations were conducted on a SUN UltraSPARC III with
1.2 GHz processors. Table 1 displays the experimental results
where a common clock was used for the core test. Column 2 of
the table shows the test configuration method related to the
number of test sources and sinks as stated in section III.2. In
order to make comparisons with previous results, we assumed
that the network clock frequency fN could increase up to four
times as fast as the core test clock frequency fT, that is, n = fN / fT
and n is an integer. Column 3 lists the results of packet-based
test scheduling by Cota and others [18], and Columns 4 and 6
show the results of core-based test scheduling without on-chip
clocking by Liu and others [20]-[21]. The network channel
width is either 32 or 16 bits. Table 2 contains the scheduling
results derived from two multi-test clock modes. We confined

482 Jin-Ho Ahn et al. ETRI Journal, Volume 28, Number 4, August 2006

Fig. 10. Procedure of test scheduling.

1. Compute Ri from wrapper design of cores ;
2. while p≤ 50% {
3. while q≤ 30% {
4. Initialize C[m], cur_time[bin_pos] = 0, next_time[bin_pos] = 0, wavail[bin_pos] = W;
5. Calculate wprefer of C[m];
6. while there exists a core not tested {
 Select TAM position, p, that has the lowest cur_time;
 // Start of rectangle packing heuristics for a bin p
 If (wavail[p] ≥ 0) {
 If core i can be found, such that (wprefer(i)*2 ≤ wavail[p] AND T(wprefer(i))/2 is maximum) OR
 (wprefer(i) ≤ wavail[p] AND T(wprefer(i)) is maximum) {
 set bin_pos(i) AND clk_mode(i);

Rectangle packing process with assigning wprefer(i)*clk_mode(i) to cores; // refer to [7] about details
 }
 Else {
 If core i can be found, such that (bin_pos(i) = p) AND (scheduled(i) = YES) AND (completed(i) = NO)
 AND (end_time(i) > cur_time[p]) AND end_time(i) is minimum {
 next_time[p] = end_time(i);
 }
 If core i can be found, such that (scheduled(i) = NO) AND

 ((T(wavail[p]/2) + cur_time[p]) ≤ next_time[p] AND (T(wavail[p]/2) + cur_time[p]) is maximum) OR
(T(wavail[p]) + cur_time[p]) ≤ next_time[p] AND (T(wavail[p]) + cur_time[p]) is maximum)) {

 set bin_pos(i) AND clk_mode(i);
 find w(i), where w(i) is the highest Pareto-optimal width, such that w(i) ≤ wavail[p]/clk_mode(i);
 Rectangle packing process with rectangle insertion in idle time; // refer to [7] about details
 }
 Else {
 If core i can be found, such that (bin_pos(i) = p) AND (scheduled(i) = YES) AND (completed(i) = NO) AND

(begin_time(i) = cur_time[p]) AND (wassigned(i)*clk_mode(i) ≤ wavail[p]) AND
(T(wassigned(i)) - T(wassigned(i)+wavail[p]/clk_mode(i))) / clk_mode(i)) is maximum {

 find w(i), where w (i) is the highest Pareto-optimal width, such that w (i) ≤ wassigned(i) + wavail[p]/ clk_mode(i);
 Rectangle packing process with increasing TAM widths to fill idle time; // refer to [7] about details
 }
 Else {
 set wavail[p] = 0;
 }
 }
 }
 }
 Else {
 move to next and update information; // refer to [7] about details
 }
 } // End of rectangle packing heuristics for a bin p
 If max. cur_time[bin_pos] is less than current Best_test_time,
 Update Best_test_time = cur_time[bin_pos];
 Increase q by 5%;
 }
 Increase p by 5%;
 }
7. return Best_test_time;

the test clock of all cores to fT or 2fT under the multi-clock
mode. In case 1 in Table 2, we assigned a 2fT clock to core i if
Ti(W) = Ti(W/2). On the other hand, the test clock fT or 2fT was
dynamically chosen according to the TAM width available in
case 2. In Table 2, we compared the test times of the proposed
method with those of [21] using on-chip clocking.

Our algorithm significantly improves on earlier methods in
all cases regardless of circuit sizes, channel width W, and
network speed n (Tables 1 and 2). However, there are some
cases in which the overall test time is not decreased despite the
increase of the network clock rate. This is because the test time
reaches the lower bound due to bottleneck cores. In order to

ETRI Journal, Volume 28, Number 4, August 2006 Jin-Ho Ahn et al. 483

Table 1. Experimental results under single test clock mode.

W = 32 W = 16
Benchmark No. of IO or n

[18] [21] Proposed [21] Proposed

2/2 or 2 26012 18869 13732 26200 23193

3/3 or 3 20753 13412 9869 17807 16197
D695

10 cores
4/4 or 4 14785 10705 9869 16197 12192

2/2 or 2 31898 25062 14794 28635 17798

3/3 or 3 22648 17925 14794 19620 14794
G1023

14 cores
4/4 or 4 18851 16489 14794 17925 14794

2/2 or 2 315708 271384 138990 331672 249164

3/3 or 3 222432 180905 102965 221134 177009
P22810
30 cores

4/4 or 4 170999 150921 102965 166800 145417

2/2 or 2 - 611991 470011 935987 932380

3/3 or 3 - 482352 341858 734390 623715
P93791
32 cores

4/4 or 4 435787 333091 259263 502876 470011

Table 2. Experimental results under multi-test clock mode.

Case 1 Case 2

W = 32 W = 16 W = 32 W = 16 Benchmark No. of IO or n

[21] Proposed [21] Proposed [21] Proposed [21] Proposed

2/2 or 2 15570 11978 22779 21571 14176 11013 24848 21460

3/3 or 3 10705 9869 15223 15196 9073 8082 16226 15100
D695

10 cores
4/4 or 4 10705 9869 14945 12192 9073 6096 15813 12081

2/2 or 2 16286 9822 19888 17461 15662 8899 20482 17056

3/3 or 3 10941 7550 13338 11462 11546 7397 14986 11756
G1023

14 cores
4/4 or 4 9163 7397 11172 10248 9788 7397 12581 9735

2/2 or 2 187061 127480 270722 248382 177915 124463 261185 227127

3/3 or 3 124787 93102 180977 170999 120840 91409 187663 152873
P22810
30 cores

4/4 or 4 99345 72981 150594 145417 98842 72981 150091 139320

2/2 or 2 608809 470011 933119 932380 488171 457274 935343 912193

3/3 or 3 479403 341858 732888 623715 391339 328248 786818 608504
P93791
32 cores

4/4 or 4 333091 259263 502876 470011 281518 238078 553860 468846

illustrate this point, we give an example of the scheduling result
of P22810 in Fig. 11 when W = 32 and n = 3. In Fig. 11(a), the
test time of core 1 does not decrease any more, even though the
TAM width for core 1 is increased. Thus, core 1 becomes a
bottleneck and dominates the overall test time of the system. In
Fig. 11(b), since clk_mode of core 1 increases, the test time of
core 1 is cut in half, and the system test time is diminished. In
addition, the computation time of our algorithm is no more
than one second in most cases. This is a very encouraging
indicator for the practicality and feasibility of the proposed
algorithm.

VII. Conclusions

In this paper, we proposed a new test scheduling algorithm
for NoC-based SoCs using the rectangle packing solution used
in testing common SoCs. In order to implement the rectangle
packing approach on an NoC structure, we designed test
resource configuration and test methods, such as test packet
generation and routing. Furthermore, we extended the
algorithm and improved test efficiency with multiple test
clocks. Experimental results using some ITC'02 benchmark
circuits showed that the proposed algorithm can provide

484 Jin-Ho Ahn et al. ETRI Journal, Volume 28, Number 4, August 2006

Fig. 11. Test scheduling results of P22810 (W = 32, n = 3).

1

21

2

26

18

25

5

9

16

31
TAM 0 (Bin 0)

31

31

0 102965

87607

86273

8

8

72981

32

728844

70199
8

61100 8

52798

8
4

8

23

16

37085

33410

28078 29824 30602

40062

29 13
31370

27

22

10

42183

44187
19

24

46217

20
55966

7
84390

28 17

59205

3
79752

15

67254

61669

12
82136

11

81526

6

4

77257

0

0
30

74094 75169

idle time

TAM 1 (Bin 1)

TAM 2 (Bin 2)

26084
14

(a) Result using a single test clock (all clk_mode(i) = 1)

2

26

31
TAM 0 (Bin 0)

0 72981

1

31
TAM 1 (Bin 1)

0 51482

21 16
31

TAM 2 (Bin 2)

0

43803

16

49299

25
78902

9

83794

5
82032

18

73734

16

16

3

82307

16

7
91409

16

8

12
84870

20 91308

10

 88211
87059

6
86308

23 87062

15
85384

84856

24

19 86389

28
85413

85811

17 87320

4
85983

13
16 85890

85597

27 29
85763

30

87016

clk_mode = 2

81559

85529

11 90201

14
22

(b) Result using multiple test clocks (max. clk_mode(i) = 2)

idle time

superior results under all conditions.

Consequently, as the proposed scheduling algorithm and test
platform seem to be very efficient and feasible for testing NoC-
based SoCs, we expect further related research will be
stimulated.

References

[1] L. Benini and G. D. Micheli, “Networks on Chips: A New SoC
Paradigm,” IEEE Computer, vol 35, Jan. 2002, pp. 70-78.

[2] A. Ivanov and G. D. Micheli, “The Network-on-Chip Paradigm in
Practice and Research,” IEEE Design and Test of Computers,
Sep.-Oct. 2005, pp. 399-403.

[3] P. Guerrier and A. Greiner, “A Generic Architecture for On-Chip
Packet-Switched Interconnections,” Proc. DATE, Mar. 2000, pp.
250-256.

[4] B. Vermeulen, J. Dielissen, K. Goossens, and C. Ciordas,
“Bringing Communication Networks on a Chip: Test and
Verification Implications,” IEEE Commun. Magazine, vol. 41,
Sep. 2003, pp. 74-81.

[5] K. Chakrabarty, “Test Scheduling for Core-Based Systems Using
Mixed-Integer Linear Programming,” IEEE Trans. on CAD, Oct.
2000, pp. 1163-1174.

[6] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman,
Y. Zaidan, and S. M. Reddy, “Resource Allocation and Test
Scheduling for Concurrent Test of Core-Based SOC Design,”

Proc. ATS, 2001, pp. 265-270.
[7] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “On Using

Rectangle Packing for SOC Wrapper/TAM Co-optimization,”
Proc. VTS, 2002, pp.253-258.

[8] Y. Huang, S. M. Reddy, W.-T. Cheng, P. Reuter, N. Mukherjee,
C.-C. Tsai, O. Samman, and Y. Zaidan, “Optimal Core Wrapper
Width Selection and SOC Test Scheduling Based on 3-D Bin
Packing Algorithm,” Proc. ITC, 2002, pp. 74-82.

[9] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Wrapper/TAM
Co-optimization, Constraint-Driven Test Scheduling, and Test
Data Volume Reduction for SOCs,” Proc. DAC, 2002, pp. 685-
690.

[10] E. Larsson and Z. Peng, “A Reconfigurable Power-Conscious
Core Wrapper and its Application to SOC Test Scheduling,”
Proc. ITC, Sep. 2003, pp. 1135-1144.

[11] S. Koranne and V. Iyengar, “On the Use of k-tuples for SoC Test
Schedule Representation,” Proc. ITC, 2002, pp. 539-548.

[12] W. Zou, S. R. Reddy, I. Pomeranz, and Y. Huang, “SOC Test
Scheduling Using Simulated Annealing,” Proc. VTS, Apr. 2003,
pp. 325-330.

[13] Y. Xia, M. Chrzanowska-Jeske, B. Wang, and M. Jeske, “Using a
Distributed Rectangle Bin-Packing Approach for Core-based
SoC Test Scheduling with Power Constraints,” Proc. ICCAD,
Nov. 2003, pp. 100-105.

[14] J. Im, S. Chun, G. Kim, J.-H. Ahn, and S. Kang, “RAIN
(RAndom INsertion) Scheduling Algorithm for SoC Test,” Proc.

ETRI Journal, Volume 28, Number 4, August 2006 Jin-Ho Ahn et al. 485

ATS, Nov. 2004, pp 242-247.
[15] P. P. Pande, G. D. Micheli, C. Grecu, A. Ivanov, and R. Saleh,

“Design, Synthesis, and Test of Networks on Chips,” IEEE
Design and Test of Computers, Sep.-Oct. 2005, pp. 404-413.

[16] M. Nahvi and A. Ivanov, “Indirect Test Architecture for SoC
Testing,” IEEE Trans. on CAD, vol. 23, no. 7, July 2004, pp.
1128-1142.

[17] E. Cota, M. Kreutz, C. A. Zeferino, L. Carro, M. Lubaszewski,
and A. Susin, “The Impact of NoC Reuse on the Testing of Core-
based Systems,” Proc. VTS, Apr. 2003, pp. 128-133.

[18] E. Cota, L. Carro, F. Wagner, and M. Lubaszewski, “Power-
Aware NoC Reuse on the Testing of Core-Based Systems,” Proc.
ITC, vol. 1, Sep. 2003, pp. 612-621.

[19] A. M. Amory, E. Cota, F. Wagner, L. Carro, M. Lubaszewski,
and F. G. Moraes, “Reducing Test Time with Processor Reuse in
Network-on-Chip Based System,” Proc. SBCCI ‘04, Sep. 2004,
pp. 111-116.

[20] C. Liu, E. Cota, H. Sharif, and D. K. Pradhan, “Test Scheduling
for Network-on-Chip with BIST and Precedence Constraints,”
Proc. ITC, Oct. 2004, pp. 1369-1378.

[21] C. Liu, V. Iyengar, J. Shi, and E. Cota, “Power-Aware Test
Scheduling in Network-on-Chip Using Variable-Rate On-Chip
Clocking,” Proc. VTS, May 2005, pp. 349-354.

[22] J. Duato, Interconnection Networks: An Engineering Approach,
Morgan Kaufmann Publishers, San Francisco, CA, USA, 2003.

[23] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, ITC'02 SoC Test
Benchmarks, http://www.hitech-projects.com/itc02socbenchm

Jin-Ho Ahn received the BS and MS degrees
in electrical engineering from Yonsei University,
Seoul, Korea, in 1997. He was a Research
Engineer with DTV Lab in LG Electronics. He
is currently working toward the PhD degree in
electrical and electronic engineering at Yonsei
University. His research interests focus on

design and testing of NoC-based SoCs.

Sungho Kang received the BS degree from
Seoul National University, Seoul, Korea, and
the MS and PhD degrees in electrical and
computer engineering from the University of
Texas at Austin in 1992. He was a Research
Scientist with the Schlumberger Laboratory for
Computer Science, Schlumberger Inc. and a

Senior Staff Engineer with the Semiconductor Systems Design
Technology, Motorola Inc. Since 1994, he has been a Professor with
the Department of Electrical and Electronic Engineering, Yonsei
University, Seoul, Korea. His main research interests include VLSI
design and testing, design for testability, BIST, defect diagnosis and
design for manufacturability.

