• Title/Summary/Keyword: Junction breakdown

Search Result 153, Processing Time 0.021 seconds

Low Resistance SC-SJ(Shielding Connected-Super Junction) 4H-SiC UMOSFET with 3.3kV Breakdown Voltage (3.3kV 항복 전압을 갖는 저저항 SC-SJ(Shielding Connected-Super Junction) 4H-SiC UMOSFET)

  • Kim, Jung-hun;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.756-761
    • /
    • 2019
  • In this paper, we propose SC-SJ(Shielding Connected-Super Junction) UMOSFET structure in which p-pillars of conventional 4H-SiC Super Junction UMOSFET structures are placed under the shielding region of UMOSFET. In the case of the proposed SC-SJ UMOSFET, the p-pillar and the shielding region are coexisted so that no breakdown by the electric field occurs in the oxide film, which enables the doping concentration of the pillar to be increased. As a result, the on-resistance is lowered to improve the static characteristics of the device. Through the Sentaurus TCAD simulation, the static characteristics of proposed structure and conventional structure were compared and analyzed. The SC-SJ UMOSFET achieves a 50% reduction in on-resistance compared to the conventional structure without any change in the breakdown voltage.

A Study on Field Ring Design of 600 V Super Junction Power MOSFET (600 V급 Super Junction MOSFET을 위한 Field Ring 설계의 관한 연구)

  • Hong, Young-Sung;Jung, Eun-Sik;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.276-281
    • /
    • 2012
  • Power semiconductor devices are widely used as high voltage applications to inverters and motor drivers, etc. The blocking voltage is one of the most important parameters for power semiconductor devices. Generally most of field effect concentrations shows on the edge of power devices. Can be improve the breakdown characteristic using edge termination technology. In this paper, considering the variables that affect the breakdown voltage and optimization of parameters result for 600 V Super Junction MOSFET Field ring.

Optimized doping density and doping profile of pn junction for using high power device

  • Jang, Geon-Tae
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.347-349
    • /
    • 2016
  • 본 논문에서는 dopant density에 의존적인 pn junction의 breakdown 특성을 향상시키기 위하여, doping density와 doping profile에 대하여 분석했다. Doping density와 doping profile은 역방향 junction breakdown voltage를 결정하는 중요한 요소인 공핍영역의 두께와 공핍영역 내에 인가되는 electric field를 결정한다. Uniform doping profile과 Gaussian doping profile을 비교했고, 고전압 환경에서 사용할 수 있는 소자를 제작하는데 더욱 적절한 doping profile과 doping 농도에 대해 기술했다.

  • PDF

Developing of Super Junction MOSFET According to Charge Imbalance Effect (전하 불균형 효과를 고려한 Super Junction MOSFET 개발에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.613-617
    • /
    • 2014
  • This paper was analyzed electrical characteristics of super junction power MOSFET considering to charge imbalance. We extracted optimal design and process parameter at -15% of charge imbalance. Considering extracted design and process parameters, we fabricated super junction MOSFET and analyzed electrical characteristics. We obtained 600~650 V breakdown voltage, $224{\sim}240m{\Omega}$ on resistance. This paper was showed superior on resistance of super junction MOSFET. We can use for automobile industry.

A Negative Curvature effect for breakdown voltage of lateral junction on SOI (SOI 수평형 접합의 항복 전압 향상을 인한 Negative Curvature(NC) 효과)

  • Byun, Dae-Seok;Choi, Yearn-Ik;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.243-245
    • /
    • 1993
  • The negative curvature effect on the breakdown voltage of p-n junction, which may realize 1-D breakdown voltage due to the lower peak electric field at the junction, is proposed and verified by the fabrication of lateral diode on Silicon-on-Insulator (SOI) together with MEDICI simulation. The experimental and simulation results show good agreements with the theoretical expectation. The proposed method is effectively applicable to the lateral, especially on SOI, power devices.

  • PDF

The Electrical Characteristics of Power FET using Super Junction for Advance Power Modules

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.360-364
    • /
    • 2013
  • The maximum breakdown voltage's characteristic within the Super Junction MOSFET structure comes from N-Drift and P-Pillar's charge balance. By developing P-Pillar from Planar MOSFET, it was confirmed that the breakdown voltage is improved through charge balance, and by setting the gate voltage at 10V, the characteristic comparisons of Planar MOSFET and Super Junction MOSFET are shown in picture 6. The results show that it had the same breakdown voltage as Planar MOSFET which increased temperature resistance by 87.4% at $.019{\Omega}cm^2$ which shows that by the temperature resistance increasing, the power module's power dissipation improved.

Structure Modeling of 100 V Class Super-junction Trench MOSFET with Specific Low On-resistance

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • For the conventional power metal-oxide semiconductor field-effect transistor (MOSFET) device structure, there exists a tradeoff relationship between specific on-resistance ($R_{ON.SP}$) and breakdown voltage ($V_{BR}$). In order to overcome the tradeoff relationship, a uniform super-junction (SJ) trench metal-oxide semiconductor field-effect transistor (TMOSFET) structure is studied and designed. The structure modeling considering doping concentrations is performed, and the distributions at breakdown voltages and the electric fields in a SJ TMOSFET are analyzed. The simulations are successfully optimized by the using of the SILVACO TCAD 2D device simulator, Atlas. In this paper, the specific on-resistance of the SJ TMOSFET is successfully obtained 0.96 $m{\Omega}{\cdot}cm^2$, which is of lesser value than the required one of 1.2 $m{\Omega}{\cdot}cm^2$ at the class of 100 V and 100 A for BLDC motor.

Analytical Model of Breakdown Voltages for Abrupt pn Junctions in III-V Binary Semiconductors (III-V족 반도체에서 계단형 pn 접합의 해석적 항복전압 모델)

  • 정용성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.1-9
    • /
    • 2004
  • Analytical expressions for breakdown voltages of abrupt pn junction in GaP, GaAs and InP of III-V binary semiconductors was induced. Getting analytical breakdown voltage, effective ionization coefficients were extracted using ionization coefficient parameters for each materials. The result of analytical breakdown voltages followed by ionization integral agrees well with numerical and experimental results within 10% in error.

A study on the breakdown characteristics of power p-n junction device using field limiting ring and side insulator wall (전계제한테와 측면 유리 절연막 사용한 전력용 p-n 접합 소자의 항복 특성 연구)

  • 허창수;추은상
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.386-392
    • /
    • 1996
  • Zinc-Borosilicate is used as a side insulator wall to make high breakdown voltage with one Field Limiting Ring in a power p-n junction device in simulation. It is known that surface charge density can be yield at the interface of Zinc-Borosilicate glass / silicon system. When the glass is used as a side insulator wall, surface charge varied potential distribution and breakdown voltage is improved 1090 V under the same structure.The breakdown voltage under varying the surface charge density has a limit value. When the epitaxial thickness is varied, the position of FLR doesn't influence to the breakdown characteristic not only under non punch-through structure but also under punch-through structure. (author). 7 refs., 12 figs., 2 tabs.

  • PDF

Analytical Breakdown Voltages of $p^{+}n$ Junction in Power Semiconductor Devices (전력 반도체 $p^{+}n$ 접합의 해석적 항복전압)

  • Chung, Yong Sung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.10 s.340
    • /
    • pp.9-18
    • /
    • 2005
  • Analytical expressions for breakdown voltages of abrupt $p^{+}n$ junction of Si, GaAs, InP and In$In_{0.53}Ga_{0.47}AS$ were induced. Getting analytical breakdown voltages, effective ionization coefficients were extracted using lucky drift parameters of Marsland for each materials. The results of analytical breakdown voltages followed by ionization integral agreed well with experimental result within 10$\%$ in error for the doping concentration in the range of $10^{14}cm\;^{-3}\~5\times10\;^{17}cm\;^{-3}$.