DOI QR코드

DOI QR Code

Low Resistance SC-SJ(Shielding Connected-Super Junction) 4H-SiC UMOSFET with 3.3kV Breakdown Voltage

3.3kV 항복 전압을 갖는 저저항 SC-SJ(Shielding Connected-Super Junction) 4H-SiC UMOSFET

  • Kim, Jung-hun (Dept. of Electronics Engineering, Sogang University) ;
  • Kim, Kwang-Soo (Dept. of Electronics Engineering, Sogang University)
  • Received : 2019.07.20
  • Accepted : 2019.09.17
  • Published : 2019.09.30

Abstract

In this paper, we propose SC-SJ(Shielding Connected-Super Junction) UMOSFET structure in which p-pillars of conventional 4H-SiC Super Junction UMOSFET structures are placed under the shielding region of UMOSFET. In the case of the proposed SC-SJ UMOSFET, the p-pillar and the shielding region are coexisted so that no breakdown by the electric field occurs in the oxide film, which enables the doping concentration of the pillar to be increased. As a result, the on-resistance is lowered to improve the static characteristics of the device. Through the Sentaurus TCAD simulation, the static characteristics of proposed structure and conventional structure were compared and analyzed. The SC-SJ UMOSFET achieves a 50% reduction in on-resistance compared to the conventional structure without any change in the breakdown voltage.

본 논문에서는 기존 4H-SiC SJ UMOSFET 구조의 p-pillar을 기존 UMOSFET의 shielding 영역 아래로 배치시키는 SC-SJ(Shielding Connected-Super Junction) UMOSFET 구조를 제안한다. 제안한 SC-SJ UMOSFET의 경우 p-pillar와 shielding 영역이 공존하여 산화막에서 전계에 의한 항복이 발생하지 않도록 하며, 이는 pillar의 도핑 농도 상승을 가능하게 한다. 결과적으로 온저항을 낮춤으로서 소자의 정적 특성을 개선한다. Sentaurus TCAD 시뮬레이션을 통해 기존 구조와 제안한 구조의 정적 특성을 비교, 분석하였다. 제안한 SC-SJ UMOSFET은 기존 구조에 비해 항복전압의 변화 없이 50% 감소된 온저항을 얻을 수 있다.

Keywords

References

  1. Huang Runhua et al., "Design and fabrication of a 3.3kV 4H-SiC MOSFET," Journal of Semiconductors, Vol.36, No.9, 2015. DOI: 10.1088/1674-4926/36/9/094002
  2. X. Li et al., "Shielded Gate SiC Trench Power MOSFET with Ultra-Low Switching Loss," Materials Science Forum, Vol.924, pp.765-769, 2018. DOI: 10.4028/www.scientific.net/MSF.924.765
  3. B. Hull et al., "Reliability and stability of SiC power MOSFETs and next-generation SiC MOSFETs," Proceeding of the IEEE Workshop Wide Bandgap Power Devices Appl. (WiPDA), pp.139-142, 2014. DOI: 10.1109/WiPDA.2014.6964641
  4. Bo Zhang et al,. "Concept and design of super junction devices," Journal of Semi-conductors, Vol.39, no.2, 2018. DOI: 10.1088/1674-4926/39/2/021001/meta
  5. Udrea, F. et al., "Superjunction power devices, history, development, and future prospects," IEEE Trans. Electron Devices, Vol.64, no.3, pp.720-734, 2017. DOI: 10.1109/TED.2017.2658344
  6. Shengdong Hu et al,. "A comparative study of a deep-trench superjunction SiC VDMOS device," Journal of Computational Electronics, Vol.18, no.2, pp.553-560, 2019. DOI: 10.1007/s10825-019-01318-2
  7. B. J. Baliga, "Fundamentals of Power Semiconductor Devices," NY, USA: Springer, pp.23-166, 2010.
  8. S. A. Suliman et al., "The impact of trench geometry and processing on the performance and reliability of low voltage power UMOSFETs," Proceeding of the IEEE International Reliability Physics Symposium. (IRPS), pp.308-314, 2011. DOI: 10.1109/RELPHY.2001.922920
  9. B. Powell et al., "3300V SiC DMOSFETs Fabricated in High-Volume 150 mm CMOS Fab," Materials Science Forum, Vol.924, pp731-734, 2018. DOI: 10.4028/www.scientific.net/MSF.924.731
  10. R. K. Williams et al., "The trench power MOSFET: Part I-History, technology, and prospects," IEEE Trans. Electron Devices, Vol.64, no.3, pp. 674-691, 2017. DOI: 10.1109/TED.2017.2653239
  11. B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," IEEE Electron Device Letters, Vol.10, no.10, pp.455-457, 1989. DOI: 10.1109/55.43098

Cited by

  1. 4.5 kV급 Super Junction IGBT의 Pillar 간격에 따른 전기적 특성 분석 vol.33, pp.3, 2019, https://doi.org/10.4313/jkem.2020.33.3.173