• Title/Summary/Keyword: Information Gain

Search Result 4,159, Processing Time 0.033 seconds

Integrated Rail-to-Rail Low-Voltage Low-Power Enhanced DC-Gain Fully Differential Operational Transconductance Amplifier

  • Ferri, Giuseppe;Stornelli, Vincenzo;Celeste, Angelo
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.785-793
    • /
    • 2007
  • In this paper, we present an integrated rail-to-rail fully differential operational transconductance amplifier (OTA) working at low-supply voltages (1.5 V) with reduced power consumption and showing high DC gain. An embedded adaptive biasing circuit makes it possible to obtain low stand-by power dissipation (lower than 0.17 mW in the rail-to-rail version), while the high DC gain (over 78 dB) is ensured by positive feedback. The circuit, fabricated in a standard CMOS integrated technology (AMS 0.35 ${\mu}m$), presents a 37 V/${\mu}s$ slew-rate for a capacitive load of 15 pF. Experimental results and high values of two quality factors, or figures of merit, show the validity of the proposed OTA, when compared with other OTA configurations.

  • PDF

Optical Properties of a ZnO-MgZnO Quantum-Well

  • Ahn, Do-Yeol;Park, Seoung-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.125-130
    • /
    • 2006
  • The optical gain and the luminescence of a ZnO quantum well with MgZnO barriers is studied theoretically. We calculated the non-Markovian optical gain and the luminescence for the strained-layer wurtzite quantum well taking into account of the excitonic effects. It is predicted that both optical gain and luminescence are enhanced for the ZnO quantum well when compared with those of InGaN-AlGaN quantum well structure due to the significant reduction of the piezoelectric effects in the ZnO-MgZnO systems.

Log-Average-SNR Ratio and Cooperative Spectrum Sensing

  • Yue, Dian-Wu;Lau, Francis C.M.;Wang, Qian
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.311-319
    • /
    • 2016
  • In this paper, we analyze the spectrum-sensing performance of a cooperative cognitive radio (CR) network consisting of a number of CR nodes and a fusion center (FC). We introduce the "log-average-SNR ratio" that relates the average SNR of the CR-node-FC link and that of the primary-user-CR-node link. Assuming that the FC utilizes the K-out-of-N rule as its decision rule, we derive exact expressions for the sensing gain and the coding gain - parameters used to characterize the CR network performance at the high SNR region. Based on these results, we determine ways to optimize the performance of the CR network.

Effect of Amplified Spontaneous Emission on the Gain Recovery of a Semiconductor Optical Amplifier

  • Lee, Hojoon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • The impact of the amplified spontaneous emission (ASE) on the gain recovery time of a bulk semiconductor optical amplifier (SOA) is investigated. The gain-recovery time is obtained by determining the time evolution of the gain, carrier density, and ASE in an SOA, after the propagation of a short pump pulse and continuous-wave (CW) probe of gain dynamics. In the simulation, a wide-band-semiconductor model, which can be characterized by the material gain coefficient over a wide wavelength range, is used, because the gain bandwidth of a practical SOA is very wide. The pump pulse and counterpropagating CW probe field are considered in the simulation, with the ASE noise spectrum equally divided.

Broadband Impedance Matching Circuit Design for PLC Coupler Using Tchebycheff Equalizer

  • Kim, Gi-Rae;Tangyao, Xie
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.113-118
    • /
    • 2009
  • This paper is about design broadband impedance matching circuit for Coupler to improve power transfer efficiency in the power line communication (PLC) system. The Tchebycheff gain function algorithm is represented to design broadband matching circuit. A practical PLC Coupler impedance matching circuit is designed, and the characteristics for S11 and S21 of PLC coupler are enhanced comparing with unmatched one. This is done by maximizing the power transfer gain from modem to the load.

Design of Broadband Impedance Matching Circuit for PLC Coupler using Butterworth Equalizer

  • Xie, Tangyao;Kim, Gi-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.258-262
    • /
    • 2010
  • This paper represents design broadband impedance matching circuit for Coupler to improve power transfer efficiency in the broadband power line communication(BPLC) systems. The Butterworth gain function equalizer is used to design broadband matching circuit. A practical PLC Coupler impedance matching circuit is designed, and the characteristics for S11 and S21 of PLC Coupler are enhanced comparing with unmatched one. This is done by maximizing the power transfer gain from modem to the load.

Nonuniform Gain Correction Based on the Filtered Gain Map in Radiography Image Detectors (방사선 영상 디텍터에서 필터링된 이득지도를 사용한 불균일 이득 잡음의 보정)

  • Kim, Dong Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.97-105
    • /
    • 2016
  • Radiography image detector produces digital images by collecting the charges from the incident x-ray photons and converting it to the voltage signals and then the digital signals. The fixed-pattern noise from the nonuinform amplifier gains in the employed multiple readout circuits. In order to correct the nonuniform gains, a gain-correction technique which is based on the gain map is conventionally used. Since the photon noise remains in the designed gain map, the noise contaminates the gain-corrected images. In this paper, experimental observations are conducted for filtering the remained noise in the gain map, and a filter optimization algorithm is proposed to efficiently remove the noise. For acquired x-ray images from detectors, the filtered gain maps are evaluated and it is shown that optimization algorithm can improve the filtering performance even for relatively strong fixed-pattern noises, which cannot be removed by a simple filter.

A Study on Cooperative Communication using Space-Time Codes

  • Pham, Van-Su;Mai, Linh;Lee, Jae-Young;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.87-90
    • /
    • 2007
  • In cooperative communication systems, the source terminal transmits signal to the destination terminal with the aid of partner terminals. Therefore, the source terminal obtains extra spatial diversity gain. As a result, its performance is enhanced in term of higher achievable transmission rate, the larger coverage range, and the lower bit-error-rate (BER). Space-time codes (STCs) have been applied to cooperative communication systems in distributed fashion, in which the signal is spatially time exploited to obtain gains analogous to those provided by STCs. In this work, we consider the application of orthogonal Space-time Block Codes (OSTBCs) to the cooperative communication systems to further achieve higher diversity gain. The advances of the proposed approach are verified via computer simulations.

  • PDF

H-type Structural Boost Three-Level DC-DC Converter with Wide Voltage-Gain Range for Fuel Cell Applications

  • Bi, Huakun;Wang, Ping;Che, Yanbo
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1303-1314
    • /
    • 2018
  • To match the dynamic lower voltage of a fuel cell stack and the required constant higher voltage (400V) of a DC bus, an H-type structural Boost three-level DC-DC converter with a wide voltage-gain range (HS-BTL) is presented in this paper. When compared with the traditional flying-capacitor Boost three-level DC-DC converter, the proposed converter can obtain a higher voltage-gain and does not require a complicate control for the flying-capacitor voltage balance. Moreover, the proposed converter, which can draw a continuous and low-rippled current from an input source, has the advantages of a wide voltage-gain range and low voltage stress for power semiconductors. The operating principle, parameters design and a comparison with other converters are presented and analyzed. Experimental results are also given to verify the aforementioned characteristics and theoretical analysis. The proposed converter is suitable for application of fuel cell systems.

Intelligent AGC Circuit Design (지능형 AGC 회로 설계)

  • Zhang Liang;Kim Jong-Won;Seo Jae-Yong;Cho Hyun-Chan;Jeong Goo-Chul
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.302-305
    • /
    • 2006
  • A problem that arises in most communication receivers concerns the wide variation in power level of the signals received at the antenna. These variations cause serious problems which can usually be solved in receiver design by using Automatic Gain Control (AGC). AGC is achieved by using an amplifier whose gain can be controlled by external current or voltage. However, the AGC circuit does not respond to rapid changes in the amplitude of input. If input changes instantaneously, then even if op-amps could follow the change, the envelope detector capacitor could not, since the capacitor's voltage could not change instantaneously. To alleviate this deficiency, we present Improved Automatic Gain Control Circuit (IAGCC) replacing AGC circuit to FLC.

  • PDF