Browse > Article
http://dx.doi.org/10.3807/KJOP.2018.29.1.032

Effect of Amplified Spontaneous Emission on the Gain Recovery of a Semiconductor Optical Amplifier  

Lee, Hojoon (Department of Information Communication Engineering, Hoseo University)
Publication Information
Korean Journal of Optics and Photonics / v.29, no.1, 2018 , pp. 32-39 More about this Journal
Abstract
The impact of the amplified spontaneous emission (ASE) on the gain recovery time of a bulk semiconductor optical amplifier (SOA) is investigated. The gain-recovery time is obtained by determining the time evolution of the gain, carrier density, and ASE in an SOA, after the propagation of a short pump pulse and continuous-wave (CW) probe of gain dynamics. In the simulation, a wide-band-semiconductor model, which can be characterized by the material gain coefficient over a wide wavelength range, is used, because the gain bandwidth of a practical SOA is very wide. The pump pulse and counterpropagating CW probe field are considered in the simulation, with the ASE noise spectrum equally divided.
Keywords
Amplified spontaneous emission (ASE); Semiconductor optical amplifiers (SOA); Gain recovery time;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Ginovart, J. C. Simon, and I. Valiente, "Gain recovery dynamics in semiconductor optical amplifier," Opt. Commun. 199, 111-115 (2001).   DOI
2 R. J. Manning and D. A. O. Davies, "Three-wavelength device for all-optical signal processing," Opt. Lett. 19, 889-891 (1994).   DOI
3 R. J. Manning, D. A. O. Davies, and J. K. Lucek, "Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies," Electron. Lett. 30, 1233-1235 (1994).   DOI
4 J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photon. Technol. Lett. 14, 12-14 (2002).   DOI
5 M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett. 12, 1453-1455 (2000).   DOI
6 H. Wei, H. Dexiu, S. Junqiang, and L. Deming, "Numerical simulation of recovery enhancement by a CW pump light in semiconductor optical amplifiers," Opt. Commun. 214, 335-341 (2002).   DOI
7 X. Li, M. J. Adams, D. Alexandropoulos, and I. F. Lealman, "Gain recovery in semiconductor optical amplifiers," Opt. Commun. 281, 3466-3470 (2008).   DOI
8 M. J. Connelly, "Wideband semiconductor optical amplifier steadystate numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).   DOI
9 C. Deguet, D. Delprat, G. Crouzel, N. J. Traynor, P. Maigne, T. Pearsal, C. Lerminiaux, N. Andreakis, C. Caneau, F. Favire, R. Bhat, and C. E. Zah, "Homogeneous buried ridge stripe semiconductor optical amplifier with near polarization independence," in Proc. Eur. Conf. Optical Communications (1999).
10 S. Adachi, GaAs and Related Materials (Singapore: World Scientific, 1994).
11 S. Adachi, Physical Properties of III-IV Semiconductor Compounds (New York: Wiley, 1992).
12 S. L. Chuang, Physics of Optoelectronic Devices (New York: Wiley Interscience, 1995).
13 G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
14 D. A. Marcuse, "Computer model of an injection laser amplifier," IEEE J. Quantum Electron. 19, 63-73 (1983).   DOI
15 G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, 1993).
16 S. Toshiaki, Semiconductor Laser Fundamentals (Marcel Dekker, Inc., New York, 2004).
17 A. Sharaiha, M. Amaya, and J. Le Bihan, "Improvement of semiconductor optical amplifier dynamic behaviour by assist light injection," in Proc. London Communications Symposium (LCS2005) (London, UK, September 8-9, 2005).
18 K. Stubkjaer, "Semiconductor optical amplifier-based alloptical gates for high-speed optical processing," IEEE J. Sel. Topics Quantum Electron. 6, 1428-1435 (2000).   DOI