DOI QR코드

DOI QR Code

H-type Structural Boost Three-Level DC-DC Converter with Wide Voltage-Gain Range for Fuel Cell Applications

  • Bi, Huakun (School of Electrical and Information Engineering, Tianjin University) ;
  • Wang, Ping (School of Electrical and Information Engineering, Tianjin University) ;
  • Che, Yanbo (School of Electrical and Information Engineering, Tianjin University)
  • Received : 2018.04.20
  • Accepted : 2018.07.15
  • Published : 2018.09.20

Abstract

To match the dynamic lower voltage of a fuel cell stack and the required constant higher voltage (400V) of a DC bus, an H-type structural Boost three-level DC-DC converter with a wide voltage-gain range (HS-BTL) is presented in this paper. When compared with the traditional flying-capacitor Boost three-level DC-DC converter, the proposed converter can obtain a higher voltage-gain and does not require a complicate control for the flying-capacitor voltage balance. Moreover, the proposed converter, which can draw a continuous and low-rippled current from an input source, has the advantages of a wide voltage-gain range and low voltage stress for power semiconductors. The operating principle, parameters design and a comparison with other converters are presented and analyzed. Experimental results are also given to verify the aforementioned characteristics and theoretical analysis. The proposed converter is suitable for application of fuel cell systems.

Keywords

References

  1. Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “Novel high step-up dc-dc converter for distributed generation systems,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1473-1482, Apr. 2013. https://doi.org/10.1109/TIE.2011.2107721
  2. M. Jang and V. G. Agelidis, "A boost-inverter-based, battery-supported, fuel-cell sourced three-phase stand-alone power supply," IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6472-6480, Dec. 2014. https://doi.org/10.1109/TPEL.2014.2303994
  3. J. Xiao,X. Zhang, S. Wen, and D. Wang, "DC-DC converter based on real-time PWM control for a fuel cell system," Advanced Mechatronic Systems, pp. 561-566, Feb. 2014.
  4. P. Thounthong, P. Sethakul, and B. Davat, "Modified 4-phase interleaved fuel cell converter for high-power high-voltage applications," Industrial Technology, pp. 1-6, 2009.
  5. Y. A. Zuniga-Ventura, D. Langarica-Cordoba, J. Leyva-Ramos, L. H. Diaz-Saldierna, and V. M. Ramirez-Rivera, "Adaptive Backstepping Control for a Fuel Cell/Boost Converter System," IEEE J. Emerg. Sel. Topics Power Electron., Vol. 6, No. 2, pp. 686-695, June 2018. https://doi.org/10.1109/JESTPE.2018.2796569
  6. W. Li and X. He, “Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications,” IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1239-1250, Apr. 2011. https://doi.org/10.1109/TIE.2010.2049715
  7. R. J. Wai and R. Y. Duan, “High step-up converter with coupled inductor,” IEEE Trans. Power Electron., Vol. 20, No. 5, pp. 1025-1035, Sep. 2005.
  8. Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc-dc converters,” IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 65-73, Jan. 2003. https://doi.org/10.1109/TPEL.2002.807188
  9. A. Ioinovici, Power Electronics and Energy Conversion Systems. Hoboken, NJ, USA: Wiley, 2013.
  10. J. M. Kwon and B. H. Kwon, “High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems,” IEEE Trans. Power Electron., Vol. 24, No. 1, pp. 108-115, Jan. 2009. https://doi.org/10.1109/TPEL.2008.2006268
  11. L. Zhu, "A novel soft-commutating isolated boost full-bridge ZVS-PWM DC-DC converter for bidirectional high power applications," IEEE Trans. Power Electron., Vol. 21, No. 2, pp. 422-429, Mar. 2006. https://doi.org/10.1109/TPEL.2005.869730
  12. R. J. Wai, W. H. Wang, and C. Y. Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 240-250, Jan. 2008. https://doi.org/10.1109/TIE.2007.896049
  13. R. J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 55, No. 3, pp. 953-964, Apr. 2008. https://doi.org/10.1109/TCSI.2008.919744
  14. M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, "Step-Up DC-DC converters: A comprehensive review of voltage boosting techniques, topologies, and applications," IEEE Trans. Power Electron. Vol. 32, No. 12, pp. 9143-9178, Dec. 2017. https://doi.org/10.1109/TPEL.2017.2652318
  15. L. S. Yang, T. J. Liang, H. C. Lee, and J. F. Chen, “Novel high step-up DC-DC converter with coupled-inductor and voltage-doubler circuits,” IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 4196-4206, Sep. 2011. https://doi.org/10.1109/TIE.2010.2098360
  16. S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up DC-DC converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2007-2017, Jun. 2010. https://doi.org/10.1109/TIE.2009.2026364
  17. Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “A novel high step-up DC-DC converter for a microgrid system,” IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1127-1136, Apr. 2011. https://doi.org/10.1109/TPEL.2010.2096826
  18. W. Li, X. Xiang, C. Li, W. Li, and X. He, “Interleaved high Step-Up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system,” IEEE Trans. Ind. Electron., Vol. 28, No. 1, pp. 300-313, Jan. 2013.
  19. X. Ruan, B. Li, and Q. Chen, "Three-level converters-a new approach for high voltage and high power DC-to-DC conversion," Power Electronics Specialists Conference, Vol. 2, pp. 663-668, Oct. 2002.
  20. A. Ponniran, K. Orikawa, and J. Itoh, "Minimum flying capacitor for N-level capacitor DC/DC boost converter," International Conference on Power Electronics and Ecce Asia, Jun. 2015.
  21. Y. Tang, D. Fu, T. Wang, and Z. Xu, “Hybrid switchedinductor converters for high step-up conversion,” IEEE Trans. Ind. Electron., Vol. 62, No. 3, pp. 1480-1490, Oct. 2015. https://doi.org/10.1109/TIE.2014.2364797
  22. M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, “Voltage multiplier cells applied to non-isolated converters,” IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 871 -887, Mar. 2008. https://doi.org/10.1109/TPEL.2007.915762
  23. M. Nguyen, T. Duong, and Y. C. Lim, "Switched-capacitor-based dual-switch high-boost DC-DC converter," IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 871-887, Mar. 2017. https://doi.org/10.1109/TPEL.2007.915762
  24. G. Wu, X. Ruan, and Z. Ye, “Nonisolated high step-up dc-dc converters adopting switched-capacitor cell,” IEEE Trans. Ind. Electron., Vol. 62, No. 1, pp. 383-393, Jan. 2015. https://doi.org/10.1109/TIE.2014.2327000
  25. T. J. Liang, S. M. Chen, L. S. Yang, J. F. Chen, and A. Ioinovici, “Ultra-large gain step-up switched-capacitor dc-dc converter with coupled inductor for alternative sources of energy,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 59, No. 4, pp. 864-874, Apr. 2012. https://doi.org/10.1109/TCSI.2011.2169886
  26. D. Cao and F. Z. Peng, "A family of Z-source and quasi-Z-source dc-dc converters," in Proc. IEEE Appl. Power Electron. Conf., pp. 1093-1101, 2009.
  27. T. Takiguchi and H. Koizumi, "Quasi-Z-source dc-dc converter with voltage-lift technique," in Proc. 39th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), pp. 1191-1196, 2013.
  28. H. Shen, B. Zhang, D. Qiu, and L. Zhou, “A common grounded Z-source DC-DC converter with high voltage gain,” IEEE Trans. Ind. Electron., Vol. 63, No. 5, pp. 2925-2935, May 2016. https://doi.org/10.1109/TIE.2016.2516505
  29. Y. Shindo, M. Yamanaka, and H. Koizumi, "Z-source DC-DC converter with cascade switched capacitor," in Proc. 37th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), pp. 1665-1670, 2011.
  30. Y. Zhang, J. Shi, L. Zhou, J. Li, M. Sumner, P. Wang, and C. Xia, "Wide input-voltage range boost three-level DC-DC converter with quasi-Z source for fuel cell vehicles," IEEE Trans. Power Electron., Vol. 32, No. 9, pp. 6728-6738, Sep. 2017. https://doi.org/10.1109/TPEL.2016.2625327