Optical Properties of a ZnO-MgZnO Quantum-Well

  • Ahn, Do-Yeol (Institute of Quantum Information Processing and Systems, University of Seoul) ;
  • Park, Seoung-Hwan (Department of Photonics and Information Engineering, Catholic University of Daegu)
  • Published : 2006.09.30

Abstract

The optical gain and the luminescence of a ZnO quantum well with MgZnO barriers is studied theoretically. We calculated the non-Markovian optical gain and the luminescence for the strained-layer wurtzite quantum well taking into account of the excitonic effects. It is predicted that both optical gain and luminescence are enhanced for the ZnO quantum well when compared with those of InGaN-AlGaN quantum well structure due to the significant reduction of the piezoelectric effects in the ZnO-MgZnO systems.

Keywords

References

  1. T. Makino, C. H. Chia, N. T. Tuan, H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, 'Room-temperature luminescence of excitons in ZnO/(Mg,Zn)) multiple quantum wells on lattice-matched substrates,' Appl. Phys. Lett. Vol. 77,pp.975-977, 2000 https://doi.org/10.1063/1.1289066
  2. Makino, T.Yasuda, Y. Segawa, A. Ohtomo, K. Tamura, M. Kawasaki, and H. Koinuma, 'Strain effects on exciton resonance energies of ZnO epitaxial layers,' Appl. Phys. Lett., vol. 79, pp. 1282-1284, 2001 https://doi.org/10.1063/1.1398328
  3. Th. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waeg, ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region,' Appl. Phys. Lett., vol. 84, pp. 5359-5361, 2004 https://doi.org/10.1063/1.1767273
  4. A. Osinsky, J. W. Dong, M. Z. Kauser, B. Hertog, A. M. Dabiran, P. P. Chow, S. J. Pearton, O. Lopatiuk and L. Chernyak, 'MgZnO/AlGaN heterostructure light-emitting diodes,' Appl. Phys. Lett., vol. 85, pp. 4272-4274, 2004 https://doi.org/10.1063/1.1815377
  5. B. P. Zhang, N. T. Binh, K. Wakatsuki, C. Y. Liu, Y. Segawa, and N. Usami, 'Growth of ZnO/MgZnO quantum wells on sapphire substrates and obervation of two ?dimensional confinement effect,' Appl. Phys. Lett., vol. 86, pp. 032105:1-032105:3, 2005 https://doi.org/10.1063/1.1850594
  6. M. Leroux, N. Grandjean, M. Laugt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, 'Quantum confined Stark effect due to built-in internal polarization fields in (Al, Ga)N/GaN quantum wells,' Phys. Rev. B, vol. 58, pp. R13371-R13374, 1998 https://doi.org/10.1103/PhysRevB.58.R13371
  7. S.-H. Park and S. L. Chuang, 'Piezoelectric effects on electrical and optical properties of wurtzite GaN/AlGaN quantum well lasers,' Appl. Phys. Lett., vol. 72, pp. 3103- 3105, 1998 https://doi.org/10.1063/1.121560
  8. S.-H. Park, S. L. Chuang, and D. Ahn, 'Piezoelectric effects on many-body optical gain of zinc-blende and wurtzite GaN/AlGaN quantum-well lasers,'Appl. Phys. Lett., vol. 75, pp. 1354-1356, 1999 https://doi.org/10.1063/1.124691
  9. D. Ahn, 'Theory of non-Markovian optical gain in quantum-well lasers, ' Prog. Quant. Electr., vol. 21, pp. 249-287, 1997 https://doi.org/10.1016/S0079-6727(97)00003-7
  10. D. Ahn, 'Theory of non-Markovian gain in straind-layer quantum-well lasers with many-body effects,' IEEE J. Quantum Electron., vol. 34, pp. 344-352, 1998 https://doi.org/10.1109/3.658731
  11. S. L. Chuang and C. S. Chang, 'k.p method for strained wurtzite semiconductors,' Phys. Rev. B, vol. 54, pp. 2491-2504, 1996 https://doi.org/10.1103/PhysRevB.54.2491
  12. D. Ahn and S.-H. Park, 'Optical gain of strainedlayer hexagonal and cubic GaN quantum-well lasers, ' Appl. Phys. Lett., vol. 69, pp, 3303-3305, 1996 https://doi.org/10.1063/1.117287
  13. D. Ahn and S.?H. Park, 'On the theory of optical gain of strained-layer hexagonal and cubic GaN quantum-well lasers, ' Jpn. J. Appl. Phys. Vol. 35, pp. 6079-6083, 1996 https://doi.org/10.1143/JJAP.35.6079
  14. H. Haug and S. Schmitt-Rink, 'Electron theory of the optical properties of laser-excited semiconductors, 'Prog. Quant. Electr., vol.9,pp.3-100, 1984 https://doi.org/10.1016/0079-6727(84)90026-0
  15. S. L. Chuang, J. O'Gorman, and A. F. J. Levi, 'Amplified spontaneous emission and carrier pinning in laser diode, 'IEEE J. Quantum Electron., vol. 29, pp. 631-1639, 1993 https://doi.org/10.1109/3.234415
  16. W. Chow, M. Kira, and S. W. Koch, 'Microscopic theory of optical nonlinearities and spontaneous emission life time in group-III nitride quantum wells, 'Phys. Rev. B, vol. 60, pp. 1947-1952, 1999 https://doi.org/10.1103/PhysRevB.60.1947
  17. D. Ahn, 'Optical gain of a quantum-well laser with non-Markovian relaxation and many-body effects,' IEEE J. Quantum Electron., vol. 32, pp. 960-965, 1996 https://doi.org/10.1109/3.502372
  18. D. Ahn., S.-H. Park, E. H. Park, and T. K. Yoo, 'Non-Markovian Gain and Luminescence of an InGaN-AlInGaN Quantum-Well with Many-body Effects,' IEEE J. Quantum Electron., accepted for publication https://doi.org/10.1109/JQE.2005.855025
  19. T. Dietl, H. Ohno, and F. Matsukara, 'Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors,' Phys. Rev. B, Vol. 63, pp. 195205:1-21, 2001 https://doi.org/10.1103/PhysRevB.63.195205
  20. W. R. L. Mabrecht, A. V. Rodina, S. Limijumnong, B. Segall, and B. K. Meyer, 'Valence-band ordering and magneto-optic exciton fine structure in ZnO, 'Phys.Rev.B.vol.65,pp.075207:1-12,2002 https://doi.org/10.1103/PhysRevB.65.075207
  21. S.-H. Park and D. Ahn, 'Intraband relaxation time in wurtzite GaN/InAlN quantum well,' Jpn. J. Appl. Phys., vol. 38, pp. L815-L818, 1999 https://doi.org/10.1143/JJAP.38.L815
  22. S.-H. Park, S. L. Chuang, J. Minch, and D. Ahn, 'Intraband relaxation time effects on non_Markovian gain with many-body effects and comparison with experiment,' Semicond. Sci. Technol., vol. 15, pp. 1-6, 2000 https://doi.org/10.1088/0268-1242/15/2/321