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In this paper, we present an integrated rail-to-rail fully 
differential operational transconductance amplifier (OTA) 
working at low-supply voltages (1.5 V) with reduced 
power consumption and showing high DC gain. An 
embedded adaptive biasing circuit makes it possible to 
obtain low stand-by power dissipation (lower than 0.17 
mW in the rail-to-rail version), while the high DC gain 
(over 78 dB) is ensured by positive feedback. The circuit, 
fabricated in a standard CMOS integrated technology 
(AMS 0.35 µm), presents a 37 V/µs slew-rate for a 
capacitive load of 15 pF. Experimental results and high 
values of two quality factors, or figures of merit, show the 
validity of the proposed OTA, when compared with other 
OTA configurations. 
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I. Introduction 

In analog integrated circuits, the recent trend toward 
miniaturized circuits has given a decisive boost towards low-
voltage low-power design, widely used in portable system 
applications [1]-[4]. The most efficient way to reduce power 
consumption is to decrease both the supply voltage and the 
stand-by current. Reducing the supply voltage makes it difficult 
to implement efficient analog circuits, so novel circuit 
architectures have to be developed. The values of the current 
sources inside the amplifiers are the main cause of quiescent 
power dissipation. Adaptive biasing techniques boost the bias 
current of the input differential pair when large signals are 
applied, thus, increasing circuit dynamic characteristics without 
affecting stand-by dissipation [5]-[14].  

In this paper, we present a novel rail-to-rail fully differential 
OTA, showing low-voltage low-power characteristics, where 
DC gain has been enhanced by a suitable technique which 
increases the output impedance of the operational 
transconductance amplifier (OTA) input stage through positive 
feedback [15], [16]. The proposed OTA has been developed 
using standard CMOS technology (AMS 0.35 µm) in NMOS, 
PMOS, and rail-to-rail versions and has shown very good 
characteristics in terms of two figures of merit (FOM), 
introduced in [12]. The paper is organized as follows. In section 
II, the OTA design technique is described in all its steps. 
Section III shows the amplifier structure and reports some 
considerations on stability. In section IV the main simulated 
and measured results are reported, in section V we present our 
conclusions. 

Integrated Rail-to-Rail Low-Voltage Low-Power 
Enhanced DC-Gain Fully Differential    

Operational Transconductance Amplifier 

 Giuseppe Ferri, Vincenzo Stornelli, and Angelo Celeste  



786   Giuseppe Ferri et al. ETRI Journal, Volume 29, Number 6, December 2007 

II. Design Techniques 

In the development of the proposed fully differential OTA (in 
NMOS, PMOS, and rail-to-rail versions, according to the type 
of input transistors), we have considered the following design 
steps: choice and design of the symmetrical OTA topology, 
application of the adaptive biasing technique, implementation 
of a fully differential adaptive biased OTA, and DC 
enhancement through negative load impedance compensation.  

1. Symmetrical OTA 

Figure 1 shows the basic topology of an NMOS symmetrical 
OTA [17]. Its voltage gain is given as 
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where CL is the load capacitance, while the the slew rate (SR) is 
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where IB is the biasing current. In the weak inversion (WI) 
region, we have the maximum values of GBW and SR for a 
fixed current, as given in [8], as 

4 600 mVTSR  nV GBW GBW ,π= ⋅ ≅ ⋅        (5) 

where n is the slope factor in WI, whose value is between 1 
and 2, and VT=KT/q is the thermal voltage, K is the Boltzmann 
constant, T is the absolute temperature in K degrees, and q is 
the electron charge. From (3) and (4), we can also deduce that 
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From (6), in order to enhance SR without changing GBW, the 
biasing current must be increased with consequent power 
consumption enhancement. In this sense, the use of the adaptive 
biasing technique helps to reduce stand-by power dissipation 
without degrading the circuit dynamic performances. 

2. Adaptive Biasing  

The adaptive biasing technique adds current at the input 

 

Fig. 1. NMOS symmetrical OTA. 
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stage only if a differential input is applied. Many adaptive 
biasing circuits have been proposed [5]-[14]. One of the first 
and most diffused of them was presented in [8]. It is based on 
the current subtractor shown in Fig. 2. In this work, it has been 
applied to a symmetrical OTA (see Fig. 3). The current given 
by the subtractor is equal to  

2 1BI A I I ,+ −                 (7) 

where, considering Fig. 2, the gain current A is given as 
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The output current Iout and the bias current IB are related 
according to the following equation (see Fig. 3): 
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which is valid in the weak inversion region, and, in the case of 
unitary gain B between output mirrors, for A typically in the 
range between 0 and 0.9, the output maximum current is  
IB/(1–A). If A=0.9, the output current and, consequently, SR 
increase by a factor of 10. 
 

 

Fig. 2. Current subtractor. 
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Fig. 3. Symmetrical OTA with adaptive biasing. 
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3. Fully Differential Solution 

A fully differential version of the proposed OTA has been 
developed through the elimination of the diode connection in 
the M7 transistor. A common mode feedback (CMFB) error 
amplifier has been added (R1, R2, M9-M12, Ibias, Vref). Figure 4 
shows the fully differential adaptive biased OTA with CMFB. 
In the circuit, IB represents an adaptive biased current. 

4. DC Gain Enhancement Techniques 

To increase the DC gain, the negative conductance technique 
has been utilized [15]. It is illustrated in the circuit diagram given 
in Fig. 5. Placing a negative resistance Rn in parallel with the 
output resistance of the amplifier, the voltage gain is given as 
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The voltage gain is ideally infinite if the following relation is 
satisfied: 
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This technique is better than others, such as cascode, because 
it is possible to obtain a DC gain enhancement also for  
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Fig. 4. Fully differential OTA with CMFB. IB represents an
adaptive biased current. 
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Fig. 5. Gain enhancement through NIC (left: considered 
architecture; right: small-signal equivalent circuit). 
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low-voltage applications. It can be applied to symmetrical OTA 
according to the topology shown in Fig. 6, where the gates of 
M23 and M24 are connected to the drains of M3 and M4. In this 
manner, at A and B nodes, a parallel resistance (1/gm23,24) has 
been added. Transistors M1, M2 and M23, M24 constitute a 
positive feedback loop, where the direct path is characterized 
by Ad voltage gain and the feedback loop, formed by M23, M1, 
and M3 (M24, M2, and M4), has a gain equal to β. The overall 
gain is given by 

,
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where Gloop is the loop gain equal to dA β . The gain Ad is 
given as 
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To calculate the loop gain Gloop, the input voltage has to be 
grounded, and a signal has to be forced in an arbitrary node 
inside the same loop. The Gloop is the ratio between the signal 
processed by the loop and the forced signal. Figure 7 shows the 
feedback branch structure. From the small-signal analysis we 
can write 
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Stability is ensured if Gloop is lower than 1. From (14), this is 
easily obtained if gm3 is close to gm23.  In this case, since the 
overall gain A can be expressed as 
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a condition on gm3 and gm23 values can be deduced. In 
particular, to avoid gain A becoming infinite or changing its 
sign, the value of gm3 has been set to be lower than 94% of the 
gm23 value. 
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Fig. 6. Negative compensated OTA. 
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Fig. 7. Feedback branch structure (left: considered architecture;
right: small-signal equivalent circuit). 
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III. The Proposed Amplifier 

In this section, we report the complete architecture of the 
proposed amplifier. In particular, we have implemented the 
NMOS, PMOS, and rail-to-rail versions, according to the type 
of the input transistors. 
 

1. NMOS OTA Architecture 

Figure 8 shows the topology of the designed NMOS 
adaptive-biased DC-enhanced fully differential symmetrical 
OTA. The transistor of the original symmetrical OTA 
comprises M1 to M8, while adaptive biasing is formed by M13 
to M16 and M17 to M20 current subtractors and by M3 to M9, 
M3 to M10, M4 to M11, and M4 to M12 current mirrors. 
Transistors M23 and M24 allow the performance of DC 
enhancement, while R1, R2, M21, M22, M25, M26, Ip1, and Vref 
form the CMFB circuit. 

2. NMOS OTA Stability 

The designed amplifier is a two-stage OTA. In this case, we 
have not applied a classical Miller compensation because the 
right half plane zero has not been nullified; rather, it has been 
designed at a frequency close to that related to the non-
dominant pole to benefit from the lead effect. The choice of 
CM=3 pF and RM= 40 kΩ allows us to have a zero with a 
negative real part, and this partially compensates the non-
dominant pole effects on the module and phase response. The 
dominant pole is at frequency  
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where Ri is the output resistance of the differential stage and Ru 
is that at the amplifier output: 
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Fig. 8. Fully differential amplifier with adaptive biasing and enhanced DC-gain topology (NMOS version). 
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Fig. 9. Rail-to-rail configuration of the designed amplifier. 
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First, the non-dominant pole is given by  
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where Ci and Cu are the first- and second-stage output 
capacitances. Zero occurs at the following frequency:  
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Table 1 shows the operative values of output conductances 
and transconductances of the main transistors, from which 
Ri=3.03 MΩ and Ru=188 kΩ. Consequently, we have fp1 =940 
Hz and fp2 =1.05 MHz. Choosing Rm=40 kΩ, we obtain fz=1.77 
MHz. The phase margin is 74°, but stability (PM>45°)  
 

Table 1. Main transistor transconductances and output conductances
(simulated results). 

Transistor Transconductances (S) Output conductances (S) 

M1 1.49×10-4 1.89×10-6 

M3 3.9×10-5 1.02×10-6 

M23 4.27×10-5 1.12×10-6 

M5 9.9×10-5 2.6×10-6 

M6 1.52×10-4 1.72×10-6 

 

 

Fig. 10. a) PCB used for the measurements and b) micrograph of
the chip area occupied by the amplifier. 
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is always ensured by also considering temperature and 
technological parameter variations, as indicated by Monte 
Carlo analysis and confirmed by experimental results. 

3. Rail-to-Rail Configuration 

We have designed the PMOS version of the amplifier 
(through the implementation of the complementary circuit of 
the NMOS OTA) and the rail-to-rail configuration placing the 
NMOS and PMOS solutions in parallel (see Fig. 9). This latter 
circuit has complete common-mode control, a higher SR, and a 
better output dynamic range, even if stand-by power 
dissipation is increased. The OTA transconductance and GBW 
values, influenced by the adaptive biasing current, are about  
50 mS and 820 Hz, respectively. 

IV. Experimental Results 

The three designed OTA topologies were first simulated 
using standard CMOS technology (AMS 0.35 µm). The rail- 
 

 

Fig. 11. Simulated (continuous line) vs. measured differential 
output response to a common mode input for the rail-to-
rail solution. 
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Fig. 12. SR behaviour with and without the adaptive biasing for 
the rail-to-rail solution.
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to-rail version was fabricated using the same technology. Figure 
10 shows the PCB used for measurements and the amplifier chip 
microphotograph (silicon area of the amplifier: about 0.15 mm2). 
The circuits were supplied at ±0.75 V while an external load 
capacitance was chosen at 15 pF even if the circuit was able to 
drive capacitive loads up to 100 pF. In Fig. 11, the measured 
output response when a common mode signal is applied is 
reported and compared with the simulation results. Figure 12 
reports the simulated transient response to a square wave input, 
showing the SR performance with and without the adaptive 
biasing circuitry for the rail-to-rail version. The adaptive biasing 
operation allows an increase in the SR value by a factor of about 
30. In Fig. 13, the same measured response (using a Yokogawa 
DL 1520 8-bit, 200 MS/s, 150 MHz oscilloscope) is shown, 
considering the presence of adaptive biasing. In Fig. 14, the OTA 
response, in its integrator configuration (Fig. 14(a)), to an 8 kHz 
frequency input square-wave signal is shown (Fig. 14(b)). Both 
results are in excellent agreement with post layout simulations. 
Table 2 shows the main simulated and measured results for the 
rail-to-rail version only. In Table 3, two significant quality factors, 
named FOM and introduced in [12], for both small (FOMS) and 
large (FOML) signals, are reported. These two parameters are 
defined as follows: 

·
=  [(V/ s pF)/mW]

Power
LOAD

L
SR C

FOM μ ⋅       (21) 

·
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Power
LOAD

S
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All the obtained results are compared with other topologies 
presented in the literature, both simulated and measured, 
confirming the validity of the proposed solution. 

V. Conclusion 

We designed an adaptive-biased fully differential low- 
 

 

Fig. 13. Measured step response for the rail-to-rail solution. 
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Table 2. Main simulated and experimental results, for single-ended 
(s) and differential (d) outputs. 

Parameter NMOS 
simulated

PMOS 
simulated 

Rail-to-rail
simulated 

Rail-to-rail
measured

Static power
dissipation 85 µW 84 µW 166 µW 169 µW 

DC-gain 79 dB 82 dB 81 dB 78 dB 

GBW 4.7 MHz 6.8 MHz 9.2 MHz 8.9 MHz

Input offset 65 µV 69 µV 71 µV < 200 µV

Phase-margin 74° 81° 89° - 

SR  17 (V/µs) 25 (V/µs) 40 (V/µs) 37 (V/µs)

CMRR 142 dB 136 dB 132 dB 126 dB 

PSRR+  107 dB 114 dB 147 dB -  

PSRR– 114 dB 109 dB 150 dB - 

Settling time
 (0.25%) 390 ns 410 ns 310 ns 390 ns 

Table 3. Comparison of FOM parameters. 

 FOML in (21)  FOMS in (22)  

This work, NMOS 
(simulated) 829 3,000 

This work, PMOS 
(simulated) 1,214 4,464 

This work, rail-to-rail 
(simulated) 831 3,614 

This work, rail-to-rail 
(measured) 789 3,284 

[5] 800 2,400 

[6] 3,636 263 

[7] 50 135 

[12] 271 500 

[13] 652 4,000 

[18] 272 400 

[19] 1,350 447 

 

voltage low-power OTA topology with enhanced DC-gain. By 
experiment and simulation, the proposed circuit, fabricated in 
its rail-to-rail version, was confirmed to show good 
performance results. Therefore, it can be utilized, for example, 
in biomedical and sensor interfaces, where power dissipation is 
a fundamental requirement to maintain the life of batteries. 
Moreover, due to high SR and low settling time values, this 
solution is also suitable for those applications that require high 
speed and precision. 



792   Giuseppe Ferri et al. ETRI Journal, Volume 29, Number 6, December 2007 

 

Fig. 14. (a) Differential integrator configuration and (b) measured
integrator response for the rail-to-rail solution
(C1=C2=100 pF; R1=R2=100 kΩ). 
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