• 제목/요약/키워드: Improper prior

검색결과 65건 처리시간 0.017초

Intrinsic Priors for Testing Two Lognormal Means with the Fractional Bayes Factor

  • 문경애
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.39-47
    • /
    • 2003
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So, it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor by Berger and Pericchi (1996) and the fractional Bayes factor by O'Hagan (1995) have been used to overcome this problems. This paper suggests intrinsic priors for testing the equality of two lognormal means, whose Bayes factors are asymptotically equivalent to the corresponding fractional Bayes factors. Using proposed intrinsic priors, we demonstrate our results with a simulated dataset.

  • PDF

Default Bayesian testing for the equality of the scale parameters of several inverted exponential distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권4호
    • /
    • pp.961-970
    • /
    • 2014
  • This article deals with the problem of testing the equality of the scale parameters of several inverted exponential distributions. We propose Bayesian hypothesis testing procedures for the equality of the scale parameters under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Intrinsic Priors for Testing Two Lognormal Populations with the Fractional Bayes Factor

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.661-671
    • /
    • 2003
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So, it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor by Berger and Pericchi (1996) and the fractional Bayes factor by O'Hagan (1995) have been used to overcome this problems. This paper suggests intrinsic priors for testing the equality of two lognormal means, whose Bayes factors are asymptotically equivalent to the corresponding fractional Bayes factors. Using proposed intrinsic priors, we demonstrate our results with real example and a simulated dataset.

  • PDF

Default Bayesian hypothesis testing for the scale parameters in nonregular Pareto distributions

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1299-1308
    • /
    • 2012
  • This article deals with the problem of testing the equality of the scale parameters in nonregular Pareto distributions.We propose Bayesian hypothesis testing procedures for the equality of the scale parameters under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be de ned up to a multiplicative constant. So we propose the default Bayesia hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and a real data example are provided.

Default Bayesian testing on the common mean of several normal distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권3호
    • /
    • pp.605-616
    • /
    • 2012
  • This article deals with the problem of testing on the common mean of several normal populations. We propose Bayesian hypothesis testing procedures for the common normal mean under the noninformative prior. The noninformative prior is usually improper and yields a calibration problem that makes the Bayes factor to be defined u to a multiplicative constant. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Objective Bayesian testing for the location parameters in the half-normal distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권6호
    • /
    • pp.1265-1273
    • /
    • 2011
  • This article deals with the problem of testing the equality of the location parameters in the half-normal distributions. We propose Bayesian hypothesis testing procedures for the equality of the location parameters under the noninformative prior. The non-informative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to arbitrary constants. This problem can be deal with the use of the fractional Bayes factor or intrinsic Bayes factor. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Default Bayesian testing for the equality of shape parameters in the inverse Weibull distributions

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1569-1579
    • /
    • 2014
  • This article deals with the problem of testing for the equality of the shape parameters in two inverse Weibull distributions. We propose Bayesian hypothesis testing procedures for the equality of the shape parameters under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Bayesian Inference for Switching Mean Models with ARMA Errors

  • Son, Young Sook;Kim, Seong W.;Cho, Sinsup
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.981-996
    • /
    • 2003
  • Bayesian inference is considered for switching mean models with the ARMA errors. We use noninformative improper priors or uniform priors. The fractional Bayes factor of O'Hagan (1995) is used as the Bayesian tool for detecting the existence of a single change or multiple changes and the usual Bayes factor is used for identifying the orders of the ARMA error. Once the model is fully identified, the Gibbs sampler with the Metropolis-Hastings subchains is constructed to estimate parameters. Finally, we perform a simulation study to support theoretical results.

The Fractional Bayes Factor Approach to the Bayesian Testing of the Weibull Shape Parameter

  • Cha, Young-Joon;Cho, Kil-Ho;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권3호
    • /
    • pp.927-932
    • /
    • 2006
  • The techniques for selecting and evaluating prior distributions are studied over recent years which the primary emphasis is on noninformative priors. But, noninformative priors are typically improper so that such priors are defined only up to arbitrary constants which affect the values of Bayes factors. In this paper, we consider the Bayesian hypotheses testing for the Weibull shape parameter based on fractional Bayes factor which is to remove the arbitrariness of improper priors. Also we present a numerical example to further illustrate our results.

  • PDF

베이지안 실험계획법의 이해와 응용 (Understanding Bayesian Experimental Design with Its Applications)

  • 이군희
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.1029-1038
    • /
    • 2014
  • 본 연구에서는 베이지안 실험계획법에 대하여 논의하고 간단한 모의실험을 통하여 최적화된 베이지안 실험계획법이 어떠한 특징을 가지고 있는지 설명하였다. 실험을 설계하는 경우 연구자는 관심있는 주제가 모수추정인지 아니면 예측인지를 결정하고 사전확률과 우도함수를 기반으로 이에 맞는 사후확률을 찾아 효용함수와 결합하여 최적의 실험설계를 찾는 것이 베이지안 실험계획법의 기본 원리이다. 만일 사전적 정보가 존재하지 않는다면 무정보적 부적합 사전확률을 이용하여 실험을 설계할 수 있으며, 이는 비 베이지안적 접근방법과 일치하게 된다. 만일 모수나 예측값에 대한 사전적 정보가 존재하는 경우에는 베이지안 실험계획법이 유일한 해결 방법이다. 하지만 모형의 복잡도가 증가하게 되면, 최적해를 찾는 과정이 매우 복잡해져서 극복해야 하는 많은 문제점들이 존재하므로 향후 많은 연구가 필요한 분야이다.