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Abstract

The Bayes factors with improper noninformative priors are defined only 
up to arbitrary constants. So, it is known that Bayes factors are not well 
defined due to this arbitrariness in Bayesian hypothesis testing and model 
selections. The intrinsic Bayes factor by Berger and Pericchi (1996) and 
the fractional Bayes factor by O'Hagan (1995) have been used to 
overcome this problems. This paper suggests intrinsic priors for testing 
the equality of two lognormal means, whose Bayes factors are 
asymptotically equivalent to the corresponding fractional Bayes factors. 
Using proposed intrinsic priors, we demonstrate our results with real 
example and a simulated dataset.
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1. Introduction

It has been well known that Bayes factors with proper priors have been very 

successful in testing or model selection problems. However, in Bayesian analysis, 

limited informations and time restrictions often force to the use of noninformative 

priors such as Jeffrey's priors or reference priors. These noninformative priors are 

usually improper density and the Bayes factors under improper priors are not well 

defined because these priors are defined only up to arbitrary constants.

Suppose that x=(x1,x2,…,xn )  are random samples from population with a 

probability density f ( x | θ i ),  where θ i  is a vector of unknown parameters, 
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i=1,2.  Let Θ i  be the parameter space for θ i  and π
N
i (θ i )  be the improper 

prior density, i=1,2. The Bayes factor B
N
21
 of model M 2  to model M 1  is 

defined by

B
N
21=

m
N
2 ( x )

mN1 ( x )
=

⌠
⌡Θ2
f ( x∣θ2 )π

N
2 (θ2 )dθ2

⌠
⌡Θ1
f ( x∣θ1)π

N
1 (θ1 )dθ1

,                (1.1)

where mN1 ( x )  and m
N
2 ( x )  are the marginal densities under model M 1  and model 

M 2,  respectively. Since π
N
1 (θ 1 )  and π

N
2 (θ 2 )  are improper, the Bayes factor in 

(1.1) contains arbitrary constants, say c 1  and c 2. So, the resulting Bayes factor 

is not well defined.

Several authors including Geisser and Eddy (1979), Spiegalhalter and Smith 

(1982), and San Martini and Spezzaferri (1984) have made efforts to overcome this 

problems. O'Hagan (1995) introduced the fractional Bayes factor (FBF) and Berger 

and Pericchi (1996) suggested the intrinsic Bayes factor (IBF) as model selection 

criterion. Two methods have been often served as default Bayes factors.

The IBF is the method for removing the arbitrariness by a subset of data called 

a training sample. There are several papers using IBF (cf Kim (2000); Kim and 

Sun (2000); Kim, Kang and Kim (2000)). But, IBF approach has some difficulties 

due to its considerable computational expense for large sample sizes and 

unstability in small sample. Another useful criterion, FBF, is the method for 

removing the arbitrariness by a portion of the likelihood, which is computed by 

exponentiating the likelihood to a power b, where 0≤b≤1. It is well defined as 

in the IBF method. Moreover, it does not require a heavy computation and thus 

much more effective in the sense of computation. Kim and Kim (2000) proposed a 

Bayesian testing for the comparison of two exponential means using proper 

intrinsic priors, whose Bayes factors are asymptotically equivalent to the 

corresponding FBF's. Bae, Kim and Kim (2000) derived proper intrinsic priors to 

test the equality of two independent normal means with unknown variance.

In this paper, we consider the testing problem for comparing two lognormal 

means. Particularly, we derive proper intrinsic priors, whose Bayes factors are 

asymptotically equivalent to the corresponding FBF's. The outline of this paper is 

as follows. In section 2, we review the concepts of the fractional Bayes factor and 

the intrinsic prior. In section 3, we derive the intrinsic priors and calculate the 

Bayes factors for the purpose of comparing two independent lognormal means. 

Some numerical results with real dataset and simulation results are given in 

section 4.

2. Preliminaries
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It has known that the Bayes factor B
N
21
 in (1.1) involves arbitrary constants. 

Recently two methods for removing this arbitrariness have been proposed, which 

are to use a subset of data, a training sample, and a portion of the likelihood, a 

fraction b. 

The intrinsic Bayes factor introduced by Berger and Pericchi (1996) is to use 

the part of the data as the minimal training sample. A training sample, x ( l )  is 

called a minimal training sample if it has the minimal sample size to guarantee 

0 < mNi (x ( l )) < ∞  for all model Mi,  i=1,2. O'Hagan (1995) proposed the 

fractional Bayes factor for removing the arbitrariness in (1.1) by using a fractional 

part of the entire likelihood with the fraction b  instead of training sample, and 

suggested the choice of the fraction.

Definition 1. The fractional Bayes factor (FBF) of model M 2  to model M 1  is

BF21 = B
N
21×CF 12(b ) ,                         (2.1)

where the correction factor CF 12(b )  is defined as

CF 12(b )=

⌠
⌡Θ1
Lb1 (θ1 )π

N
1 (θ1 )dθ1

⌠
⌡Θ2
L
b
2 (θ2 )π

N
2 (θ2 )dθ2

.

Here, Li (θ i )  is the likelihood function under model Mi,  i=1,2  and b  is the 

fraction of the likelihood, 0≤b≤1. A commonly suggested choice is b=m/n,  

where m  is the size of the minimal training sample and n  is the sample size. 

We will use this choice in our problem.

It is of interest to find proper priors, often called intrinsic priors, so that the 

Bayes factors using proper priors will be asymptotically equivalent to the 

corresponding FBF's. This issue was suggested by Berger and Pericchi (1996). To 

derive the intrinsic priors, we need the following conditions.

Condition. As the sample size grows to infinity, the following folds:

  1. Under model M 1,  θ 1̂→ θ1,  θ 2̂→ φ2 (θ 1 ) ,

  2. Under model M 2,  θ 2̂→ θ2,  θ 1̂→ φ1 (θ 2 ) ,

where θ 1̂  and θ 2̂  are the maximum likelihood estimators (MLE's) under model 

M 1  and model M 2. Then, a set of intrinsic priors denoted by (π
I
1 (θ1 ), π

I
2(θ 2 ) )  

is a solution of the following equations:
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{
π I2 (φ 2 (θ 1 )) π

N
1 (θ 1 )

π
N
2 (φ 2 (θ 1 )) π

I
1 (θ 1 )

=B*1 (θ 1 ) ,

π
I
2 (θ 2 ) π

N
1 (φ 1 (θ 2 ))

πN2 (θ 2 ) π
I
1 (φ 1 (θ 2 ))

=B
*
2 (θ 2 ) ,

                    (2.2)

where for i=1,2,  B*i (θ i )= lim
N→∞
CF 12 (b )  under model Mi.

The noninformative priors πN1 (θ 1 )  and π
N
2 (θ 2 )  are called starting priors. The 

solutions of the above equations are not necessarily unique, nor proper. We will 

find proper priors for given starting priors. Once we derive proper intrinsic priors, 

the fractional Bayes factor BF21  can be replaced by the ordinary Bayes factor B
I
21
 

computed based on intrinsic priors.

3. Testing two lognormal means

The lognormal distribution has become increasingly widespread in life testing, 

reliability and other related fields of application. An random variable X  such as 

failure or down time, is said to have a lognormal distribution if Y=logX  is 

normally distributed. By means of a simple logarithmic transformation of variable, 

it can easily be shown that the lognoraml probability density function is given by

f (x∣μ,η)=
1
2πη x

exp {- 1
2η
( logx-μ )2 }, 0< x<∞. -∞ < μ < ∞, 0 < η < ∞,  

where μ=E ( logX )  and η=Var ( logX ). The lognormal distribution will be 

denoted as the LN (μ,η ).

Suppose that we have independent random samples Xij∼LN (μ i ,η ), i=1,2,

j=1,2,…,ni,  where η  is common and unknown. We are interested in testing 

the equality of two lognormal means, that is, 

M 1 : exp(μ1+
η
2
)=exp(μ2+

η
2
)  v.s.  M 2 : exp(μ1+

η
2
)≠exp(μ2+

η
2
).

But, because the scale parameters η  of two populations are common, it equals 

to test the equality of two parameters μ1  and μ2,  that is,

M 1 : μ1=μ2(=μ)  v.s.  M 2 : μ1≠μ2.

Let for θ1=(μ, η )  and θ2=(μ1,μ2,η ),  Θ1= {(μ,η ) |-∞<μ<∞,0< η<∞}  

and Θ2= {(μ1,μ2,η ) |-∞<μ1,μ2 <∞,0< η<∞}. LetYij= logXij  and T i= ∏
n i

j=1
Xij  

for j=1,2,…,ni, i=1,2. Let N=n 1+n 2  with n 1/N →p  as N →∞.

From now on, we will find a set of intrinsic priors (π I1 (θ 1 ) , π
I
2 (θ 2 ) ) ,  which 
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are proper over θ i∈Θ i,  i=1,2. We start with the reference priors for model 

M 1  and model M 2  given by as follows:

πN1 (μ,η) = π
N
2 (μ1,μ2,η) =

1
η
,  0 < η < ∞.

Then the Bayes factor under the reference priors π
N
1
 and π

N
2
 is given by

BN21=
π N
n 1n 2

Γ ( (N-2) /2)
Γ ( (N-1) /2)

S N-1

S
N-2
12

,               (3.1)

where S
2
= ∑

2

i=1
∑
n i

j=1
(Y ij- Y )

2
,  Y=

1
N ∑

2

i=1
∑
n i

j=1
Y ij,  S

2
12= ∑

2

i=1
∑
n i

j=1
(Y ij- Yi )

2
,   

Yi=
1
n i
∑
n i

j=1
Y ij, i=1,2.

 

Remark. Note that if we take one observation from each population as a training 

sample, the marginal density m
N
1 (x ( l ))  is finite, but m

N
2 (x ( l ))  is not finite. So 

in our situation, the size of the minimal training sample is m=3.

The correction factor at b=3/N  in (2.1) is given by

CF 12(
3
N
)=

1
π

n 1n 2
N

S
2
12/N

S 2/N
,               (3.2)

where S 2  and S
2
12
 are in (3.1).

To find proper priors, we first find the asymptotic behavior of MLE's of 

θ 1̂= ( Y,S
2
/N )  and θ 2̂= ( Y 1, Y 2,S

2
12/N )  under model M 1  and M 2.

Under model M 1 : μ1=μ2=μ,  one can easily see that

    E
M 1
θ 1(Y )=μ,  E

M 1
θ 1 (
S 2

N
)= (1-

1
N
)η

and E
M 1
θ 1( Y 1 )=E

M 1

θ 1( Y 2 )= μ,  E
M 1
θ 1
(
S212
N
)= (1-

2
N
)η .  

Under model M 2 : μ 1≠μ2,

    E
M 2
θ2(Y )=

n 1
N
μ1+

n 2
N
μ2,  E

M 2
θ 2 (
S 2

N
)= (1-

2
N
)η+

η
N
+
n 1n 2

N
2 (μ1-μ2 )

2

and E
M 2
θ 2( Y 1 )= μ1,  E

M 2

θ 2( Y 2 )= μ2,  E
M 2
θ 2 (
S212
N
)= (1-

2
N
)η .

Proposition 1. As N →∞,  under model M 1 : μ 1=μ2=μ ,

                  θ 1̂=(Y, S
2/N ) → θ1=(μ,η )  

and 
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θ 2̂= (Y 1,Y 2, S
2
12/N ) → (μ,μ,η )≡φ2 (θ1 ).

Under model M 2 : μ 1≠μ2,

   θ 1̂= (Y, S
2
/N ) → (p μ1+qμ2,η+pq (μ1-μ2)

2
)≡φ1 (θ2 ).

where q=1-p,  and 

             θ 2̂= (Y 1,Y 2, S
2
12/N ) → θ2=(μ1,μ2,η ).

Now, we compute B*1 (θ 1 )  and B
*
2 (θ 2 )  in the intrinsic equations (2.2).

Proposition 2. The quantities B*1 (θ 1 )  and B
*
2 (θ 2 )  are

B*1 (θ1 )=
pq
π
⋅
1
η
 and B*2 (θ2 )=

pq
π
⋅

η

η+pq (μ1-μ2)
2 .   (3.3)

Proof. The results immediately follow from the strong law of large numbers.

Proposition 3. As (μ1,μ2,η )→ (μ,μ,η ),

B
*
2 (θ 2 )→ B

*
1 (θ 1 ) .

Proof. It is straightforward.

Now, from the results of Proposition 1 and 2 and the intrinsic equations given 

in (2.2), a set of the intrinsic priors is given by

{
π
I
1(μ,η )= g (μ,η ),

π
I
2(μ 1,μ2,η )=

pq
π η

×g (p μ1+qμ2,η+pq (μ 1-μ2 )
2
),
       (3.4)

where g (μ,η )  is any proper density for (μ, η ) ∈Θ1.

Theorem 1. The intrinsic prior π I2(μ1,μ2,η )  in (3.4) is proper on Θ2.

Proof. Let s=p μ1+qμ2  and t=μ1-μ2. Then

             
⌠
⌡

∞

0

⌠
⌡

∞

-∞

⌠
⌡

∞

-∞
π I2(μ1,μ2,η )dμ1dμ2dη

=
pq
π
⌠
⌡

∞

0

⌠
⌡

∞

-∞

⌠
⌡

∞

-∞

1
η
⋅g ( s,η+pq t 2 )dsd tdη.

Let k 1=η  and k 2= pq t. Then the above equation becomes

                1
π
⌠
⌡

∞

0

⌠
⌡

∞

-∞

⌠
⌡

∞

-∞

1
k 1
⋅g ( s,k 1+k

2
2 )dsdk 2dk 1.
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And letting u=
k 2
k 1
 and ν= k 1 ,  then

                2
π
⌠
⌡

∞

-∞

⌠
⌡

∞

0

⌠
⌡

∞

-∞
ν⋅g ( s,ν

2
(1+u

2
))d sdνdu.

Finally, letting w=ν
2
(1+u

2
), then

                1
π
⌠
⌡

∞

-∞

⌠
⌡

∞

0

⌠
⌡

∞

-∞
g ( s,w )

1

1+u 2
d sdwdu

and since g  is a probability density function on Θ1, therefore 

                1
π
⌠
⌡

∞

-∞

1

1+u 2
du= 1.

This completes the proof.

Corollary 1. When g (μ,η )  is given by g (μ,η )= g 1 (μ∣η )g 2 (η )  with 

μ∣η∼N (ω,κη )  and η∼IG (α,β ), the set of intrinsic priors is given by

{
π I1(μ,η )=

β
α

2πκΓ (α)
(
1
η
)
α+

3
2 exp[- 1η (

(μ-ω)
2

2κ
+β)],

π I2(μ1,μ2,η )=
pq
π η

×g (p μ1+qμ2,η+pq (μ1-μ2 )
2 ),

      (3.5)

where 

g (p μ1+qμ2,η+pq (μ1-μ2 )
2
)=

pq
π η

βα

2πκΓ (α) (
1

η+pq (μ1-μ2 )
2 )

α+3/2

                    ×exp [- 1

η+pq (μ1-μ2 )
2 ( (p μ1+qμ2-ω)

2

2κ
+β)].

Corollary 2. Using the intrinsic priors in Corollary 1, the Bayes factor of model 

M 2  to model M 1  is given by

BI21=
mI2 ( x )

mI1 ( x )
,                           (3.6)

where 

mI1 ( x )= ( 12π )
N/2

1
1+κN

β
α

Γ (α )
1
T 1T 2

Γ (α+N/2)

( N (ω- y)
2

2(1+κN )
+β+

s 2

2 )
α+N/2 ,

and
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m
I
2 ( x )= ( 12π )

N/2 2
π

βα

Γ (α )
1
T 1T 2

×⌠⌡

∞

0

⌠
⌡

∞

-∞(
1
ν )

N+2α+1

( 1

1+u 2 )
α+ 1 1

1+κN (1+u 2 )

×exp (-
s
2
12

2 ν 2
-

β

ν2 (1+u 2 )
- R(u,ν))dudν,

respectively with

R(u,ν)=
1

2ν2 (1+κ N (1+u 2 )) [n 1( y 1-
q
p
uν-ω)2+n 2( y 2+

p
q
uν-ω)2

+n 1n 2κ(1+u
2 )( y 1- y 2-

uν
pq
) 2].

 

Proof. It is straightforward.

4. Numerical results

In this section, we will give some examples to compare the fractional Bayes 

factors and the Bayes factors using the intrinsic priors via the real dataset and 

the simulation.

Example 1. The data given here arose in test on the endurance of deep groove 

ball bearings (Lawless (1982)). These data were assumed to come from Weibull 

distribution. But a probability plot of the data showed them to also be consonant 

with a lognormal model. The data are the number of million revolutions before 

failure for each the 23 ball bearings in life test. Suppose that the data are divided 

into the following two groups to test the hypothesis model M 1 : μ 1=μ2  and 

M 2 : μ 1≠μ2.

group 1
33.00, 45.60, 51.84, 51.96, 55.56, 67.80, 68.64, 68.64, 93.12, 

105.84, 128.04

group 2
17.88, 28.92, 41.52, 42.12, 48.40, 54.12, 68.88, 84.12, 98.64, 

105.12, 127.92, 173.40

By the logarithmic transformations of the given data, the data follow the normal 

distribution and T-test is used for comparing the equality of two means.

First, we obtain F-statistic to examine that the variances of two groups are 

equal. The F-statistic and the corresponding p-value are 0.3618 and 0.1024, and 

we can see that the variances of two groups are equal as we expected.

The value of well known T-statistic with pooled variance estimator is 0.2303. 

The corresponding p-value is 0.4101, and the model M 1  is accepted.
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Now, we compute the fractional Bayes factor and the Bayes factor using the 

intrinsic priors in (3.6) with (α,β)=(0.01,0.01),(0.1,0.1),(1.0,1.0) and κ=1,5,10,50,100, 

assuming that ω=0. The results are reported in Table 1.

Table 1. Bayes factors for testing M 1 : μ1=μ2 v.s. M 2 : μ1≠μ2

B
I
21

BF21
κ

(α,β)

(0.01,0.01) (0.1,0.1) (1.0,1.0)

.18070

1 .23824 .23819 .23763

5 .19424 .19538 .20220

10 .17069 .17237 .18990

50 .15944 .15929 .16870

100 .15964 .15924 .16612

From Table 1, we can see that the Bayes factors with the intrinsic priors are 

nearly free to hyperparameters (α,β), but depend on κ  slightly. For fairly large 

value of κ, the Bayes factors give almost same values of the fractional Bayes 

factors. Since the Bayes factors for all cases are less than 1, we may conclude 

that the difference between two groups is fairly small.

Example 2. We performed the simulation study for testing M 1 : μ1=μ2=0  and 

M 2 : μ1≠μ2  to examine how well Bayes factors using the intrinsic priors 

approximate to the fractional Bayes factors. The random numbers are generated 

from lognormal distribution with μ i=0, i=1,2  and common parameter η=1. The 

simulation is replicated 100 times for some choices of (α,β)  and κ, assuming 

that ω=0. We compute the relative errors∣B
F
21-B

I
21∣/B

F
21
 and standard 

deviations of relative errors for (α,β)=(0.01,0.01),(0.1,0.1),(1.0,1.0) and κ=5,10,50. 

The values of κ  are chosen by the intuitive reason that in Example 1, Bayes 

factors using the intrinsic priors for these values of κ  gives almost same values 

of the fractional Bayes factors. The results are reported in Table 2. The numbers 

in parentheses are the standard deviations of the relative errors. 
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Table 2. Absolute relative errors between BF21  and B
I
21

(n 1,n 2)
  (α,β)

κ
(0.01,0.01) (0.1,0.1) (1.0,1.0)

(10,10)

5

.10835(.01847) .10791(.01841) .10406(.02230)

(10,20) .07541(.01751) .07526(.01767) .07387(.02010)

(20,20) .06520(.02796) .06534(.02799) .06715(.02869)

(20,30) .06091(.04268) .06117(.04297) .06481(.04486)

(30,30) .08410(.05642) .08453(.05677) .08913(.06012)

(10,10)

10

.10861(.01840) .10817(.01833) .10431(.02223)

(10,20) .07555(.01747) .07539(.01763) .07400(.02006)

(20,20) .06527(.02796) .06541(.02799) .06721(.02871)

(20,30) .06094(.04270) .06120(.04298) .06482(.04488)

(30,30) .08411(.05643) .08455(.05678) .08913(.06016)

(10,10)

50

.10882(.01834) .10838(.01827) .10451(.02217)

(10,20) .07566(.01744) .07550(.01760) .07410(.02004)

(20,20) .06532(.02796) .06547(.02799) .06726(.02873)

(20,30) .06097(.04271) .06123(.04300) .06484(.04490)

(30,30) .08412(.05644) .08456(.05679) .08913(.06018)

We can see that relative errors are quite small for each simulated dataset. It is 

well known that the Bayes factors using noninformative priors are defined only up 

to arbitrary constants. The intrinsic Bayes factor and the fractional Bayes factor 

are proposed for removing this arbitrariness. The IBF approach have some 

advantages to be quite satisfactory in nonnested, as well as nested, model 

comparison and any distribution. However, the IBF has difficulty to require a 

heavy computation because the number of training sample might be enormous for 

large sample size. But FBF's are easier to compute than IBF's and more effective 

in computational time-consuming. The FBF approach has disadvantage to be 

inadequate for very small sample size. So, the FBF is limited than IBF in 

application range. However, FBF is also well defined and seems to be reasonably 
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close to actual Bayes factors. The numerical results show that the FBF's are 

asymptotically equivalent to the corresponding Bayes factors using the intrinsic 

priors.
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