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Abstract

This article deals with the problem of testing the equality of the scale parameters
of several inverted exponential distributions. We propose Bayesian hypothesis testing
procedures for the equality of the scale parameters under the noninformative prior.
The noninformative prior is usually improper which yields a calibration problem that
makes the Bayes factor to be defined up to a multiplicative constant. So we propose the
default Bayesian hypothesis testing procedures based on the fractional Bayes factor and
the intrinsic Bayes factors under the reference priors. Simulation study and an example
are provided.

Keywords: Fractional Bayes factor, intrinsic Bayes factor, reference prior, scale param-
eter.

1. Introduction

The exponential distribution is the most exploited distribution for life time data analysis.
However, its suitability is restricted to a constant hazard rate, which is difficult to justify
in many practical problem. This led to the development of alternative models for life time
data. A number of distributions such as Weibull and gamma have been extensively used
for analyzing life time data, particularly, in those situations where the hazard rate is mono-
tonically increasing or decreasing. But non-monotonicity of the hazard rate has also been
observed in many situations. For example, in the course of the study of mortality associated
with some of the diseases, the hazard rate initially increases with time and reaches a peak
after some finite period of time and then declines slowly. Thus, the need to analyze such
data whose hazard rate is non-monotonic was realized and suitable models were proposed.
Killer and Kamath (1982), Lin et al. (1989) and Dey (2007) advocated the use of inverted
exponential distribution as an appropriate model for this situation. Recently Singh et al.
(2013) proposed Bayes estimators of the parameter and reliability function of inverted ex-
ponential distribution under the general entropy loss function for complete, type I and type
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IT censored samples. Abouammoh and Alshingiti (2009) introduced a generalized version of
inverted exponential distribution, and discussed the statistical and reliability properties of
this distribution. However the problem of comparison of more than two scale parameters in
these distributions has not been considered yet.

The comparison of parameters based on more than two populations has a long history
in statistics. In ANOVA, the equality of means more than three normal populations is of
interest. The exact F-test plays an important role in the homoscedastic condition. But in
the heteroscedastic situation, an approximation test has been developed by many authors.
Bertolino et al. (2000) developed a Bayesian model selection approach between homoscedas-
tic and heteroscedastic settings.

In reliability study, assume that an experiment is performed to know whether the change
of a condition affects the scale parameter of the inverted exponential distribution or not.
More than two levels of condition is considered to this experiment. Then we want to know
that the change of condition changes the scale parameter of this distribution. At this mo-
ment, a model selection problem between homoscedastic and heteroscedastic model arises. A
classical test only concerns about null hypothesis of homoscedasticity, and does not matter
to heteroscedasticity. But a Bayesian model selection can choose a model using posterior
probability between homoscedastic and heteroscedastic model.

In Bayesian model selection or testing problem, the Bayes factor under proper priors or
informative priors have been very successful. The use of proper prior distributions gives the
Bayes factor explicitly. If there is much prior information about the parameter, it will be
adequate to consider proper prior. But the assumption of prior distribution and its hyper-
parameters are still too subjective. So, one needs to study the sensitivity of his results about
prior distribution or hyper-parameters.

The objective prior such as Jeffreys’ or reference prior is a prior which satisfies certain
objective criterion. For example, the reference prior developed by Berger and Bernardo
(1989, 1992) is a prior which gives the least information to the posterior distribution. These
kinds of objective priors are typically improper and often called as the noninformative priors.
When these objective priors are engaged in Bayesian model selection problem, the arbitrary
constants in Bayes factor cause a critical problem. To deal with this problem, Spiegelhalter
and Smith (1982), O’Hagan (1995) and Berger and Pericchi (1996) have made efforts to
compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the imaginary training sample in the context of linear
model comparisons to choose the arbitrary constants. But the choice of imaginary training
sample depends on the models under comparison, and so there is no guarantee that the
Bayes factor of Spiegelhalter and Smith (1982) is coherent for multiple model comparisons.
Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a data-splitting idea,
which would eliminate the arbitrariness of improper prior. O’'Hagan (1995) proposed the
fractional Bayes factor. To solve the arbitrariness problem in Bayes factor, he used to a
portion of the likelihood with a so-called the fraction b. These approaches have shown to
be quite useful in many statistical areas (Kang et al., 2008, 2011; Lee and Kang, 2008).
An excellent exposition of the objective Bayesian method to model selection is Berger and
Pericchi (2001).

In this paper, we propose the objective Bayesian hypothesis testing procedures for the
equality of the scale parameters in several inverted exponential distributions based on the
Bayes factors. The outline of the remaining sections is as follows. In Section 2, we introduce
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the Bayesian hypothesis testing based on the Bayes factors. In Section 3, under the reference
prior, we provide the Bayesian hypothesis testing procedures based on the fractional Bayes
factor and the intrinsic Bayes factors. In Section 4, simulation study and an example are
given.

2. Intrinsic and fractional Bayes factors

Consider X;,7 =1, .-,k are independently distributed random variables according to the
inverted exponential with the scale parameter A\;. Then the probability density functions of
the inverted exponential distribution of X; is given by

TiAg

Flaih) = oz e { -

a2 } ,x; > 0,2 > 0. (2.1)
The present paper focuses on testing the equality of more than two scale parameters of the
inverted exponential distributions.

Suppose that hypotheses Hi, Ha, --, H, are under consideration, with the data x =
(21,29, -+ ,x,) having probability density function f;(x|6;) under hypothesis H;. The pa-
rameter vector 6; is unknown. Let 7;(6;) be the prior distributions of hypothesis H;, and let
p; be the prior probability of hypothesis H;,i = 1,2, - ,q. Then the posterior probability

of the hypothesis H; being true is
—1
2 p.
PHx) = (S 2.8, | (2.2)
= Pi

where Bj; is the Bayes factor of hypothesis H; to hypothesis H; defined by

S fix10;)m;(0;)d0;  my(x)
[ Aix0)mi(0:)de;  mi(x)” (2.3)

The Bj; can be interpreted as the comparative support of the data for H; versus H;. The
computation of Bj; needs specification of the prior distribution ;(6;) and m;(6;). As men-
tioned in previous section, the noninformative priors 7}V such as the uniform prior, Jeffreys’
prior or the reference prior are typically improper. Hence the use of noninformative prior
7V in (2.3) causes the Bj; to contain unspecified constants. The idea of Berger and Pericchi
(1996) to overcome this problem is to use a part of data as a training sample. O’Hagan
(1995) proposed the use of fraction of likelihood function to cancel arbitrary constants in
(2.3). For details, see Berger and Pericchi (1996) for intrinsic Bayes factor and O’Hagan
(1995) for fractional Bayes factor.

Now, we will introduce the brief definition of intrinsic Bayes factor and fractional Bayes
factor. Let x(I) denote the part of the data to be used as a training sample and let x(—1)

be the remainder of the data, such that

B;

N
i

N

where m;" (+) is a marginal distribution under the noninformative priors 7
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In view (2.4), the posteriors 72 (0;|x(1)) are well defined. Now, consider the Bayes factor
Bj;(l) with the remainder of the data x(—1) using ¥ (0;|x(1)) as the priors:

J £ (=010, x(1))m7 (0;]%(1))db);

Bis) = R B @reyan, ~ D P D) (25)
where m]-V(x)
BN Bﬁ( ) mJN(x)
wnd m (x(1)
Bﬁ(XU)) = m

J

are the Bayes factors that would be obtained for the full data x and training samples x(I),
respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to compute
Bi]}] (x(1)). Then, an average over all the possible minimal training samples contained in the
sample is computed. Thus the arithmetic intrinsic Bayes factor (AIBF) of H; to H; is

B = BN x —ZB (2.6)

where L is the number of all possible minimal training samples. Also the median intrinsic
Bayes factor (MIBF) by Berger and Pericchi (1998) of H; to H; is

B} = BN x ME[B](x(1))], (2.7)

where M FE indicates the median for all the training sample Bayes factors.

Therefore we can also calculate the posterior probability of H; using (2.2), where Bj; is
replaced by Bﬁl and BJ]»\i“ from (2.6) and (2.7), respectively.

The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind
the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors
into proper priors, it uses a fraction, b, of each likelihood function, L(6;) = f;(x|6;), with the
remaining 1 — b fraction of the likelihood used for model discrimination. Then the fractional
Bayes factor (FBF) of hypothesis H; versus hypothesis H; is

B = BY. J L (x10:) 7] (0;)db; :Bzg.mg(x), (2.8)

T J LA (x(0;)m Y (6)d0;

3
.o
x

O’Hagan (1995) proposed three ways for the choice of the fraction b. One common choice of
b is b = m/n, where m is the size of the minimal training sample, assuming that this number
is uniquely defined. (See O’Hagan (1995, 1997) and the discussion by Berger and Mortera
in O’'Hagan (1995)).



Bayesian testing for the equality of the inverted exponential distributions 965

3. Bayesian hypothesis testing procedures

Let X;5,i = 1,---,k,j = 1,---,n;, denote observations from the inverted exponential
distribution with the scale parameter A;. Then likelihood function is given by
k 1 2 1
fF&AL M) = | | o= exp (3.1)
’ g YRR | g e
where x = (X1, ,Xk), Xi = (Tj1, -+, Tin,) and \; > 0,0 =1,--- | k.
We are interested in testing the hypotheses Hy : Ay = Ay = -+ = A\ versus Hy : A\ #

Ao #£ - -+ £ A based on the fractional Bayes factor and the intrinsic Bayes factors.

3.1. Bayesian hypothesis testing procedure based on the fractional Bayes factor

From (3.1) the likelihood function under the hypothesis Hy : Ay = Ao = -+ = Ay = A is
Li(A\x) = HHIC exp ZZ—)\ LN (3.2)
i=1j=1 i=1j=1 g

where n = ny + - - - + ng. And under the hypothesis Hi, the reference prior for A is
T (A) oc AT (3.3)

Then from the likelihood (3.2) and the reference prior (3.3) , the element m?(x) of the FBF
under H; is given by

mi) = [ ZiapeY i
—bn
k n;
= T[bn] H H $;j2b Z Z x— . (3.4)
i=1j=1 i=1j=1"%
For the hypothesis Ha, the reference prior for (Ay,---, A\g) is

k
Trév()‘lf'" 7>\k)O<HAi_1~ (35)

i=1

The likelihood function under the hypothesis Hs is

LZ(AM Ak|X H nL H 2 €Xp _Z )\xj : (36)
j=1 i

Thus from the likelihood (3.6) and the reference prior (3.5), the element m$(x) of FBF under
H, is given as follows.

(9] o0
my(x) = / /O L5ty s A )™ (A, -, A)dAy - - d g

k n; k
11| LTron

i=1j=1

—bn,j
Uz

11> xl; (3.7)

Jj=1
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Therefore the element BY of FBF is given by

H’? [[n,] Hf:1 [Z;h 1 %1} o .

By = 23=L (3.8)
T'ln -
] [Zz 1 E] 1% }
And the ratio of marginal densities with fraction b is
—bn
miG) _ Tn] S0 o] 5
mb(x) T 1 11k n; —bni '
2(x) Ty Tlbnd ITie |:ZJ 1 xul}
Thus the FBF of Hy versus H; is given by
—bn —n;
k n; -1 K
. ['[bn] H F[m] {Zz 1 Zj 1755 ] Hi:l [Zj:l Lij }
o = - (3.10)

Tn] [T, Tlbni] {Z AP Dy ] an:l [Z? ) xwl} —om; -

Note that the FBF of Hy versus H; has a closed form.

3.2. Bayesian hypothesis testing procedure based on the intrinsic Bayes factor

The element B of the intrinsic Bayes factor is computed in the fractional Bayes factor. So
under minimal training sample, we only calculate the marginal densities for the hypotheses
H, and Hs, respectively. The marginal density of (X;,,---, X, ), is finite for all 1 < [; <
ng,t =1,---  k under each hypothesis. Thus we conclude that any training sample of size k
is a minimal training sample.

The marginal density m¥ (z;,,--- ,2;,) under H; is given by

md (e, o) = / Fn o g N ()
0

k k —k
o]

And the marginal density md' (x;,,--- ,2;,) under H, is given by

mév(xllv"';xlk) = /0\ /(; f(xllv"'axlklAlv"'aAk)ﬂéV()\la"'7)\k)dA1"'d)\k:

1L [

Therefore the AIBF of Hy versus H; is given by

k ng —1 i " n
par M M T[S0 1 0 o ]
2 F[n] [Zk 1 an 1 .I._.1:| e _ TQ(‘TZU' e ?xlk) ’
i=1 Zuj=1"ij
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where
A —k X —1
Ty (xyy, - ya,,) = Tk Zwljl and To(xy, -, o, ) = Hxljl
i=1 i=1

Also the MIBF of Hs versus H; is given by

MI __
B21 -

Hle I[n] H?:l [Z?&xijl}_j . ME [M] ) (3.12)

ol [se, so o] Talit o)

4. Numerical studies

In order to assess the Bayesian hypothesis testing procedures, we evaluate the posterior
probability for several configurations of (A1, -+, Ag) and (n1,- - ,ng). In particular, for fixed
(A1, -+, ), we take 1,000 independent random samples of X; with sample sizes n; from
the inverted exponential distributions with A\;;7 = 1,--- |k, respectively. We want to test
the hypotheses Hy; : Ay = Ao = -+ = A versus Hy : Ay # Ay # -+ # A,. The posterior
probabilities of H; being true are computed assuming equal prior probabilities.

Tables 4.1, 4.2 and 4.3 show the results of the averages and the standard deviations in
parentheses of posterior probabilities. In Tables 4.1, 4.2 and 4.3, PF(-), PA1(:) and PMI(.)
are the posterior probabilities of the hypothesis H; being true based on FBF, AIBF and
MIBF, respectively. From Tables 4.1, 4.2 and 4.3, the FBF, the AIBF and the MIBF accept
the hypothesis H; when the values of Ao are close to values of A1, whereas reject the hy-
pothesis H; when the values of Ay are far from values of A;. Also the AIBF and the MIBF
give a similar behavior for all sample sizes. However the FBF favors the hypothesis Hy than
the AIBF and the MIBF.

Table 4.1 The averages and the standard deviations (in parentheses) of posterior probabilities when k = 2

AL A2 (n1,n2) PF(Hy|x) PAT(Hy|x) PMT(H, |x)
5,5 0.250 (0.210) 0.272 (0.238) 0.274 (0.231)

10 0.2 5,10 0.160 (0.204) 0.172 (0.224) 0.169 (0.218)
: : 10,10 0.083 (0.137) 0.096 (0.157) 0.093 (0.151)
10,20 0.036 (0.107) 0.041 (0.119) 0.039 (0.114)

5,5 0.530 (0.182) 0.586 (0.205) 0.576 (0.200)

10 0.5 5,10 0.531 (0.225) 0.575 (0.242) 0.562 (0.238)
. : 10,10 0.506 (0.242) 0.565 (0.259) 0.550 (0.254)
10,20 0.453 (0.277) 0.497 (0.293) 0.481 (0.288)

5,5 0.612 (0.131) 0.676 (0.146) 0.661 (0.144)

1.0 0.8 5,10 0.647 (0A148) 0.699 (OA156) 0.683 (0.155)
: : 10,10 0.661 (0.153) 0.727 (0.157) 0.710 (0.158)
10,20 0.690 (0.172) 0.740 (0.173) 0.723 (0.173)

5,5 0.623 (0.119) 0.686 (0.133) 0.670 (0.133)

10 10 5,10 0.653 (0.138) 0.704 (0.147) 0.689 (0.147)
) ) 10,10 0.687 (0.136) 0.751 (0.139) 0.735 (0.140)
10,20 0.723 (0.138) 0.773 (0.137) 0.757 (0.138)

5,5 0.590 (0.150) 0.652 (0.167) 0.638 (0.163)

1.0 1.5 5,10 0.623 (0.170) 0.673 (0.181) 0.659 (0.179)
. : 10,10 0.606 (0A194) 0.671 (0203) 0.655 (0.201)
10,20 0.622 (0.218) 0.672 (0.224) 0.656 (0.222)

5,5 0.523 (0.189) 0.578 (0.213) 0.567 (0.207)

1.0 2.0 5,10 0.526 (0.216) 0.572 (0.231) 0.559 (0.225)
: : 10,10 0.498 (0.244) 0.555 (0.262) 0.541 (0.257)
10,20 0.464 (0.252) 0.512 (0.265) 0.496 (0.261)

5,5 0.253 (0.215) 0.276 (0.244) 0.277 (0.238)

1.0 5.0 5,10 0.198 (0.190) 0.218 (0.209) 0.219 (0.202)
: 10,10 0.087 (0.150) 0.100 (0.173) 0.097 (0.167)

10,20 0.047 (0.096) 0.054 (0.109) 0.052 (0.105)
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Table 4.2 The averages and the standard deviations (in parentheses) of posterior probabilities when k = 3

A1 A2 A3 (n1,m2,n3) P (H,|x) PAT(H,|x) PMT(H, |x)
55,5 0.308 (0.248) 0.375 (0.290) 0.411 (0.293)

1o 05 0.2 5,5,10 0.212 (0.247) 0.251 (0.283) 0.271 (0.291)
: : : 10,10,10 0.139 (0.200) 0.188 (0.247) 0.204 (0.256)

10,10,20 0.060 (0.145) 0.079 (0.177) 0.086 (0.185)

5,5,5 0.439 (0.260) 0.522 (0.291) 0.554 (0.286)

1o o7 0.3 5,5,10 0.381 (0.285) 0.441 (0.317) 0.464 (0.318)
: : : 10,10,10 0.323 (0.279) 0.409 (0.314) 0.432 (0.315)

10,10,20 0.190 (0.251) 0.238 (0.289) 0.251 (0.296)

5,5,5 0.682 (0.184) 0.775 (0.184) 0.790 (0.173)

Lo 0.0 o 5,5,10 0.712 (0.196) 0.786 (0.194) 0.799 (0.186)
: : : 10,10,10 0.755 (0.197) 0.838 (0.177) 0.849 (0.169)

10,10,20 0.762 (0.224) 0.828 (0.208) 0.837 (0.202)

5,5,5 0.712 (0.171) 0.804 (0.172) 0.817 (0.163)

1o 1o 1o 5,5,10 0.743 (0.184) 0.816 (0.178) 0.828 (0.170)
: : : 10,10,10 0.795 (0.172) 0.870 (0.149) 0.879 (0.141)

10,10,20 0.837 (0.150) 0.894 (0.126) 0.901 (0.119)

5,5,5 0.612 (0.226) 0.704 (0.239) 0.724 (0.228)

1o 15 2.0 5,5,10 0.644 (0.233) 0.723 (0.235) 0.742 (0.225)
: : : 10,10,10 0.636 (0.260) 0.730 (0.254) 0.745 (0.246)

10,10,20 0.612 (0.280) 0.693 (0.276) 0.708 (0.270)

5,5,5 0.507 (0.253) 0.595 (0.279) 0.622 (0.272)

1o 2.0 3.0 5,5,10 0.484 (0.275) 0.561 (0.295) 0.590 (0.290)
: : : 10,10,10 0.409 (0.294) 0.504 (0.321) 0.527 (0.321)

10,10,20 0.345 (0.295) 0.419 (0.324) 0.437 (0.324)

5,5,5 0.329 (0.255) 0.397 (0.295) 0.429 (0.296)

Lo 3.0 50 5,5,10 0.275 (0.248) 0.332 (0.282) 0.364 (0.286)
: : : 10,10,10 0.131 (0.195) 0.177 (0.242) 0.193 (0.253)

10,10,20 0.084 (0.154) 0.114 (0.190) 0.127 (0.200)

Table 4.3 The averages and the standard deviations (in parentheses) of posterior probabilities when k =5

A1 A2 A3 g A5 (n1,n2,n3,n4,n5) PF(H,|x) PAT(Hy|x) PMI(H,|x)
5,5,5,5,5 0.081 (0.150) 0.135 (0.216) 0.201 (0.260)

s Lo 05 0.3 o1 5,5,5,10,10 0.015 (0.064) 0.025 (0.094) 0.039 (0.122)
: : : : : 10,10,10,10,10 0.003 (0.022) 0.007 (0.041) 0.012 (0.057)

10,10,10,20,20 0.000 (0.002) 0.000 (0.003) 0.000 (0.005)

5.5,5,5,5 0.553 (0.300) 0.686 (0.314) 0.757 (0.285)

5,5,5,10,10 0.525 (0.344) 0.633 (0.348) 0.699 (0.326)

12 1.0 0.6 05 0.4 10,10,10,10,10 0.453 (0.361) 0.588 (0.372) 0.652 (0.357)
10,10,10,20,20 0.359 (0.368) 0.463 (0.394) 0.518 (0.395)

5.5,5,5,5 0.726 (0.250) 0.843 (0.214) 0.887 (0.177)

5,5,5,10,10 0.767 (0.257) 0.858 (0.221) 0.895 (0.188)

1.2 1.0 0.8 0.7 0.6 10,10,10,10,10 0.765 (0.276) 0.869 (0.223) 0.901 (0.191)
10,10,10,20,20 0.760 (0.300) 0.847 (0.253) 0.880 (0.223)

5,5,5,5,5 0.812 (0.188) 0.910 (0.143) 0.038 (0.111)

1o 1o Lo Lo Lo 5,5,5,10,10 0.870 (0.176) 0.934 (0.136) 0.953 (0.108)
: : : : : 10,10,10,10,10 0.914 (0.140) 0.965 (0.090) 0.976 (0.071)

10,10,10,20,20 0.943 (0.124) 0.974 (0.087) 0.982 (0.073)

5,5,5,5,5 0.600 (0.267) 0.811 (0.243) 0.860 (0.208)

0.8 Lo Lo L6 s 5,5,5,10,10 0.716 (0.268) 0.824 (0.235) 0.870 (0.198)
: : : : : 10,10,10,10,10 0.693 (0.307) 0.813 (0.271) 0.852 (0.246)

10,10,10,20,20 0.693 (0.311) 0.806 (0.270) 0.848 (0.241)

5.5,5,5,5 0.522 (0.320) 0.654 (0.331) 0.727 (0.305)

0.8 Lo Lo - 05 5,5,5,10,10 0.506 (0.329) 0.628 (0.336) 0.700 (0.317)
: : : : : 10,10,10,10,10 0.399 (0.349) 0.535 (0.374) 0.601 (0.366)

10,10,10,20,20 0.303 (0.324) 0.421 (0.369) 0.484 (0.377)

5,5,5,5,5 0.207 (0.252) 0.305 (0.319) 0.394 (0.343)

5,5,5,10,10 0.162 (0.228) 0.252 (0.294) 0.337 (0.326)

0.8 1.0 3.0 3:5 5.0 10,10,10,10,10 0.034 (0.109) 0.065 (0.169) 0.091 (0.201)
10,10,10,20,20 0.016 (0.069) 0.032 (0.106) 0.048 (0.135)

Example 4.1 This example is taken from Singh et al. (2013). The data represents the
survival time (in days) of guinea pigs injected with different doses of tubercle bacilli. The
regimen number is the common logarithm of the number of bacillary units in 0.5 ml of
challenge solution; that is, regimen 6.6 corresponds to 4.0 x 10® bacillary units per 0.5 ml
(In(4.0 x 10%)=6.6). Corresponding to regimen 6.6, 72 observations are listed below. To test
for equality of scale parameters, we randomly divided this data into three groups. The data
sets are given by
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Group 1:15, 24, 32, 38, 44, 52, 53, 54, 55, 57, 60, 60, 61, 70, 76, 81, 83, 99, 127, 146, 175,
233, 341, 376
Group 2: 22, 33, 38, 43, 59, 62, 67, 68, 70, 73, 76, 84, 91, 95, 96, 109, 131, 143, 146, 175
211, 258, 297, 341
Group 3: 12, 24, 32, 34, 48, 54, 56, 58, 58, 60, 60, 63, 65, 65, 72, 75, 85, 87, 98, 110, 121
129, 258, 263.

We want to test the hypotheses Hq : Ay = Ay = A3 versus Hs : A\ # Ay # A3. The values
of the Bayes factors and the posterior probabilities of H; are given in Table 4.4. From the
results of Table 4.4, the posterior probabilities based on various Bayes factors give the same
answer, and select the hypothesis H;. The FBF has the smallest posterior probability than
any other posterior probabilities based on the AIBF and the MIBF.

Table 4.4 Bayes factor and posterior probabilities of Hy : A1 = A2 = A3
B} PE(H1x,y) By PAL(Hy|x,y) B! PMI(H|x,y)
0.067 0.933 0.047 0.955 0.050 0.953

5. Concluding remarks

In this paper, we developed the objective Bayesian hypothesis testing procedures based
on the fractional Bayes factor and the intrinsic Bayes factors for the equality of the scale
parameters of several inverted exponential distributions under the reference priors. From
our numerical results, the developed hypothesis testing procedures give fairly reasonable
answers for all parameter configurations. However the FBF favors the hypothesis Hs than
the AIBF and the MIBF. From our simulation and example, we recommend the use of the
FBF than the AIBF and MIBF for practical application in view of its simplicity and ease
of implementation.
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