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AbstractAbstractAbstractAbstract

The techniques for selecting and evaluating prior distributions are
studied over recent years which the primary emphasis is on
noninformative priors. But, noninformative priors are typically improper so
that such priors are defined only up to arbitrary constants which affect
the values of Bayes factors. In this paper, we consider the Bayesian
hypotheses testing for the Weibull shape parameter based on fractional
Bayes factor which is to remove the arbitrariness of improper priors. Also
we present a numerical example to further illustrate our results.
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1. Introduction1. Introduction1. Introduction1. Introduction

Hypotheses testing for the shape and scale parameters of the weibull model has

been researched from a frequentist viewpoint. In particular, testing of the shape

parameter often means that the hazard function is monotone increasing or

monotone decreasing or constant. Although there exist numerous researches that

present the a frequentist viewpoint, we focus attention on the Bayesian testing

technique for the Weibull shape parameter. The methodology for selecting and

evaluating prior distributions was studied in recent years which the primary

emphasis is on noninformative priors. But, noninformative priors are typically

1) Professor, Department of Information Statistics, Andong National University, Andong,
760-749, Korea.

2) Professor, Department of Statistics, Kyungpook National University, Daegu, 702-701,
Korea.

3) (Corresponding Author) Associate Professor, Department of Informational Statistics,
Kyungsung University, Busan, 608-736, Korea.
E-Mail : jscho@ks.ac.kr



Young Joon Cha Kil Ho Cho Jang Sik Cho⋅ ⋅928

improper so that such priors are defined only up to arbitrary constants which

affect the values of Bayes factors.

San Martini and Spezzaferri(1984) have suggested the predictive model selection

criterion to compensate for that arbitrariness. Berger and Pericchi(1996a, 1996b)

introduced a new model selection and hypotheses testing criterion, called the

intrinsic Bayes factors which are to eliminate the arbitrariness of improper priors.

Also Berger and Pericchi(1998) proposed accurate and stable Bayesian model

selection for the median intrinsic Bayes factor. Lingham and Sivaganesan(1997)

suggested testing hypotheses about the power law process under failure truncation

using the intrinsic Bayes factors. Kang, Kim and Cho(1999) and Cho, Kim and

Kang(1999) discussed the Bayesian testing based on intrinsic Bayes factor

approach. O'Hagan(1995) introduced the fractional Bayes factor(FBF) which is

used to a portion of the likelihood to remove the arbitrariness. Cho and Cho(2006)

proposed Bayesian testing procedures for the exponential models based on FBF.

In this paper, we suggest the Bayesian testing methodology for the shape

parameter in the Weibull model using the FBF which is to remove the

arbitrariness of improper priors. Also we take a numerical example to further

illustrate our results.

2. FBF Criterion2. FBF Criterion2. FBF Criterion2. FBF Criterion

Let H1,⋯,HN be hypotheses under consideration. And let XXXX=(X 1,⋯,X n) be a
random sample from a population which is probability density function f i( xxxx∣θ i)
under hypotheses H i, i=1,⋯,N. And let π i(θ i) and pi be the prior distribution
and the prior probabilities of the hypothesis Hi, respectively. Then the

posterior probability that the hypothesis Hi is true is given as

P(H i∣xxxx)=(∑
q

j=1

p j
p i
B ji)

-1

, (1)

whereB ji, the Bayes factor of Hj to Hi, is defined by

B ji=
m j( xxxx)
m i( xxxx)

, (2)

where m i( xxxx)=
⌠
⌡Θ i
f( xxxx∣θ i)π i(θ i)dθ i. The posterior probabilities in (1) are then

used to select the most plausible hypothesis.

If one use some noninformative priors πNi (θi), then π
N
i (θi) is usually written

as πNi (θi) ∝ hi(θi), where hi is a function whose integral over the parameter

space diverges. Formally, we can write πNi (θi) =c i h i(θ i), although the

normalizing constant ci does not exist, but treating it as an unspecified

constant. then (2) becomes
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BNji=
m j( xxxx)

m i( xxxx)
=

⌠
⌡Θ j
f( xxxx∣θ j)πNj (θ j)dθ j

⌠
⌡Θ i
f( xxxx∣θ i)πNi (θ i)dθ i

. (3)

Hence, the corresponding Bayes factor BNji, is indeterminate. To solve this

problem, O'Hagan(1995) proposed the FBF for Bayesian testing. The FBF of

model Hj to model Hi is

BFji=
qj(b,xxxx)
qi(b,xxxx)

, (4)

where qi(b,xxxx)=
mi(xxxx)

mbi (xxxx)
=

⌠
⌡Θi
fi( xxxx∣θi)πNi (θi)dθi

⌠
⌡Θi
fbi ( xxxx∣θi)πNi (θi)dθi and fi(xxxx∣θi) is the likelihood

function and b specifies a fraction of likelihood which is to be used as a prior

density. One frequently suggested choice is b = m/n, where m is the size of

the minimal training sample.

3. Bayesian Testing Based on FBF3. Bayesian Testing Based on FBF3. Bayesian Testing Based on FBF3. Bayesian Testing Based on FBF

Let the random variable X have the weibull model with scale and shape

parameters α and β, respectively. Then probability density function is given

as

f(x :α,β) =
β
α (
x
α )

β-1⋅exp (-( xα )
β

), (5)

where x≥0 , α > 0 , and β> 0.
In this section, we are interested in the Bayesian testing of the shape

parameters in two weibull model based on FBF. That is, we want to test the

hypotheses whether the hazard function of weibull model over time is constant or

not, that is, H 1:β = 1 and H 2:β≠1 .

Let's consider sample of size n from two weibull populations with

parameters θ=(α,β). Then observed sample consists of the failure times

x1,⋯,xn. To test the hypothesis of the shape parameter based on FBF, we
need to compute (4). By Kang, Kim and Cho(1999), the reference priors for

H1 : β=1, v.s. H2 : β≠1 are respectively given by

πN1 (θ1) =
1
α
⋅I(0<α<∞) (6)

and

πN2 (θ 2) =
1
αβ
⋅I(0<α<∞)⋅I(0<β<∞) (7)

where I(A) means the indicator function of A for any set A. Now we derive

the marginals with respect to above the reference priors. Since likelihood
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function under H1 : β=1 is f1(xxxx :θ1) = ( 1α )
n⋅exp(-∑

n

i=1
( xiα )), m1(xxxx) under

H1 : β=1 is given by

m1( xxxx)=
⌠
⌡

∞

0
( 1α )

n

exp (-∑
n

i=1
( x iα ))⋅

1
α
dα=Γ(n)⋅(∑

n

i=1
)
-n

(8)

Also mb1(xxxx) under H1 : β=1 is given by

mb1(xxxx)=
⌠
⌡

∞

0
( 1α )

bn

exp(-b∑
n

i=1
( x iα ))⋅

1
α
dα=Γ(bn)⋅b-bn(∑

n

i=1
)
-bn

(9)

Hence, q1(b,xxxx) under H1 : β=1 by (8) and (9) is given by

q1(b,xxxx)=

⌠
⌡Θ1
f1( xxxx∣θ1)πNi (θ1)dθ1

⌠
⌡Θ1
fb1( xxxx∣θ1)πNi (θ1)dθ1

=

Γ(n)⋅(∑
n

i=1
x i)

n(b-1)

Γ(bn)b -bn (10)

On the other side, since the likelihood function under H2 : β≠1 is

f 2( xxxx :θ 2)= ( βα )
n⋅∏n

i=1
( x iα )

β-1

⋅exp(-∑
n

i=1
( x iα )

β

) (11)

m2( xxxx) under H2 : β≠1 is given by

m 2( xxxx)=
⌠
⌡

∞

0

⌠
⌡

∞

0
( βα )

n⋅∏n
i=1
( x iα )

β-1

⋅exp(-∑
n

i=1
( x iα )

β

)⋅ 1
αβ
dαdβ

=Γ(n)⋅( ∏
n

i=1
x i)

-1

⋅S 1( xxxx), (12)

where S 1( xxxx)=
⌠
⌡

∞

0
β n-2( ∏

n

i=1
x i)

β

(∑
n

i=1
x βi )

-n

dβ. Also mb2(xxxx) under H2 : β≠1 is given

by

mb2( xxxx)=
⌠
⌡

∞

0

⌠
⌡

∞

0
( βα )

bn⋅∏n
i=1
( x iα )

b(β-1)

⋅exp(-b∑
n

i=1
( x iα )

β

)⋅ 1
αβ
dαdβ

=Γ(bn)⋅b -bn(∏
n

i=1
x i)

-b

⋅S 2( xxxx), (13)

where S 2( xxxx)=
⌠
⌡

∞

0
β bn-2( ∏

n

i=1
x i)

bβ

(∑
n

i=1
x βi )

-bn

dβ. Hence, the q2(b,xxxx) under H2 : β≠1

by (12) and (13) is given by

q2(b, xxxx)=
m2( xxxx)

mb2( xxxx)
=

Γ(n)( ∏
n

i=1
x i)

b-1

⋅S 1( xxxx)
Γ(bn)b -bn⋅S 2( xxxx) . (14)

From (8) and (10), the FBF of H2 to H1 is given by

BF21=
q 2(b, xxxx)

q 1(b, xxxx)
=(∏

n

i=1
x i)

b-1

(∑
n

i=1
x i)

n(1-b)⋅ S 1( xxxx)
S 2( xxxx)

(15)
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Using these FBF, we can calculate the posterior probability for hypothesis

H i, i=1,2. Thus, we can select the hypothesis with highest posterior

probability in hypotheses Hi based on FBF.

4. Illustrative Example and Conclusion4. Illustrative Example and Conclusion4. Illustrative Example and Conclusion4. Illustrative Example and Conclusion

In this section, an example is presented to illustrate for the test H1 : β=1
v.s. H2 : β≠1. We take the prior probability of Hi being true, p i=0.5, i=1,2.

ExampleExampleExampleExample : The following data are time to breakdown of a type of electrical
insulating fluid subject to a constant voltage stress(Nelson(1970)).

30 KV30 KV30 KV30 KV 7.74, 17.05, 20.46, 21.02, 22.66, 43.40, 47.30, 139.07, 144.12, 175.88, 194.90

32 KV32 KV32 KV32 KV
0.27, 0.40, 0.69, 0.79, 2.75, 3.91, 9.88, 13.95, 15.93, 27.80, 53.24, 82.85, 89.29,

100.58, 215.10

We compute the FBF's and posterior probabilities of the test H1 : β=1, v.s.

H2 : β≠1 for voltage breakdown data in table 1. From table 1, there are

strong evidence for H1 in terms of the posterior probability for 30KV since

P(H2∣xxxx) is 0.1384. But there are strong evidence for H2 in terms of the
posterior probability for 32KV since P(H2∣xxxx) is 0.9285.

<Table 1> FBF and the posterior probability for H1 : β=1 v.s. H2 : β≠1

Hypothesis
30 KV 32 KV

BF21 P(H2∣xxxx) BF21 P(H2∣xxxx)
H1 v.s. H2 0.1607 0.1384 12.9925 0.9285

In conclusion, FBF is completely automatic Bayes factors in that they are based

only on the data and noninformative priors. FBF methodology can be easily

applied to nonnested as well as to irregular problems. Also they can be applied in

general when the samples come from any model.
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