• Title/Summary/Keyword: IF domain

Search Result 890, Processing Time 0.025 seconds

SEMIGROUP RINGS AS H-DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.19 no.3
    • /
    • pp.255-261
    • /
    • 2011
  • Let D be an integral domain, S be a torsion-free grading monoid such that the quotient group of S is of type (0, 0, 0, ${\ldots}$), and D[S] be the semigroup ring of S over D. We show that D[S] is an H-domain if and only if D is an H-domain and each maximal t-ideal of S is a $v$-ideal. We also show that if $\mathbb{R}$ is the eld of real numbers and if ${\Gamma}$ is the additive group of rational numbers, then $\mathbb{R}[{\Gamma}]$ is not an H-domain.

Linear Time Domain Analysis of Radiation Problems (시간영역법에 의한 강제동요시 동유체력 해석)

  • I.Y.,Gong;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.9-18
    • /
    • 1987
  • The hydrodynamic radiation forces acting on a ship travelling in waves have been conventionally treated by strip theories or by direct three dimensional approaches, most of which have been formulated in frequency domain. If the forward speed of a ship varies with time, or if its path is not a straight line, conventional frequency domain analysis can no more be used, and for these cases time domain analysis may be used. In this paper, formulations are made in time domain with applications to some problems the results of which are known in frequency domain. And the results of both domains are compared to show the characteristics and validity of time domain solutions. The radiation forces acting on a three dimensional body within the framework of a linear theory. If the linearity of entire system is assumed, radiation forces due to arbitrary ship motions can be expressed by the convolution integral of the arbitrary motion velocity and the so called impulse response function. Numerical calculations are done for some bodies of simple shapes and Series-60[$C_B=0.7$] ship model. For all cases, integral equation techniques with transient Green's function are used, and velocity or acceleration potentials are obtained as the solution of the integral equations. In liner systems, time domain solutions are related with frequency domain solutions by Fourier transform. Therefore time domain solutions are Fourier transformed by suitable relations and the results are compared with various frequency domain solutions, which show good agreements.

  • PDF

KAPLANSKY-TYPE THEOREMS IN GRADED INTEGRAL DOMAINS

  • CHANG, GYU WHAN;KIM, HWANKOO;OH, DONG YEOL
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1253-1268
    • /
    • 2015
  • It is well known that an integral domain D is a UFD if and only if every nonzero prime ideal of D contains a nonzero principal prime. This is the so-called Kaplansky's theorem. In this paper, we give this type of characterizations of a graded PvMD (resp., G-GCD domain, GCD domain, $B{\acute{e}}zout$ domain, valuation domain, Krull domain, ${\pi}$-domain).

POWER SERIES RINGS OVER PRÜFER v-MULTIPLICATION DOMAINS

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.447-459
    • /
    • 2016
  • Let D be an integral domain, {$X_{\alpha}$} be a nonempty set of indeterminates over D, and $D{\mathbb{[}}\{X_{\alpha}\}{\mathbb{]}_1}$ be the first type power series ring over D. We show that if D is a t-SFT $Pr{\ddot{u}}fer$ v-multiplication domain, then $D{\mathbb{[}}\{X_{\alpha}\}{\mathbb{]}}_{1_{D-\{0\}}}$ is a Krull domain, and $D{\mathbb{[}}\{X_{\alpha}\}{\mathbb{]}}_1$ is a $Pr{\ddot{u}}fer$ v-multiplication domain if and only if D is a Krull domain.

INTEGRAL CLOSURE OF A GRADED NOETHERIAN DOMAIN

  • Park, Chang-Hwan;Park, Mi-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.449-464
    • /
    • 2011
  • We show that, if R is a graded Noetherian ring and I is a proper ideal of R generated by n homogeneous elements, then any prime ideal of R minimal over I has h-height ${\leq}$ n, and that if R is a graded Noetherian domain with h-dim R ${\leq}$ 2, then the integral closure R' of R is also a graded Noetherian domain with h-dim R' ${\leq}$ 2. We also present a short improved proof of the result that, if R is a graded Noetherian domain, then the integral closure of R is a graded Krull domain.

w-MATLIS COTORSION MODULES AND w-MATLIS DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1187-1198
    • /
    • 2019
  • Let R be a domain with its field Q of quotients. An R-module M is said to be weak w-projective if $Ext^1_R(M,N)=0$ for all $N{\in}{\mathcal{P}}^{\dagger}_w$, where ${\mathcal{P}}^{\dagger}_w$ denotes the class of GV-torsionfree R-modules N with the property that $Ext^k_R(M,N)=0$ for all w-projective R-modules M and for all integers $k{\geq}1$. In this paper, we define a domain R to be w-Matlis if the weak w-projective dimension of the R-module Q is ${\leq}1$. To characterize w-Matlis domains, we introduce the concept of w-Matlis cotorsion modules and study some basic properties of w-Matlis modules. Using these concepts, we show that R is a w-Matlis domain if and only if $Ext^k_R(Q,D)=0$ for any ${\mathcal{P}}^{\dagger}_w$-divisible R-module D and any integer $k{\geq}1$, if and only if every ${\mathcal{P}}^{\dagger}_w$-divisible module is w-Matlis cotorsion, if and only if w.w-pdRQ/$R{\leq}1$.

A NOTE ON LPI DOMAINS

  • Hu, Kui;Wang, Fanggui;Chen, Hanlin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.719-725
    • /
    • 2013
  • A domain is called an LPI domain if every locally principal ideal is invertible. It is proved in this note that if D is a LPI domain, then D[X] is also an LPI domain. This fact gives a positive answer to an open question put forward by D. D. Anderson and M. Zafrullah.

On *w-Finiteness Conditions

  • Jung Wook Lim
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.571-575
    • /
    • 2023
  • Let D be an integral domain and let * be a star-operation on D. In this article, we give new characterizations of *w-Noetherian domains and *w-principal ideal domains. More precisely, we show that D is a *w-Noetherian domain (resp., *w-principal ideal domain) if and only if every *w-countable type ideal of D is of *w-finite type (resp., principal).

TIGHT CLOSURES AND INFINITE INTEGRAL EXTENSIONS

  • Moon, Myung-In;Cho, Young-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.65-72
    • /
    • 1992
  • All rings are commutative, Noetherian with identity and of prime characteristic p, unless otherwise specified. First, we describe the definition of tight closure of an ideal and the properties about the tight closure used frequently. The technique used here for the tight closure was introduced by M. Hochster and C. Huneke [4,5, or 6]. Using the concepts of the tight closure and its properties, we will prove that if R is a complete local domain and F-rational, then R is Cohen-Macaulay. Next, we study the properties of R$^{+}$, the integral closure of a domain in an algebraic closure of its field of fractions. In fact, if R is a complete local domain of characteristic p>0, then R$^{+}$ is Cohen-Macaulay [8]. But we do not know this fact is true or not if the characteristic of R is zero. For the special case we can show that if R is a non-Cohen-Macaulay normal domain containing the rationals Q, then R$^{+}$ is not Cohen-Macaulay. Finally we will prove that if R is an excellent local domain of characteristic p and F-ratiional, then R is Cohen-Macaulay.aulay.

  • PDF

A REMARK ON HALF-FACTORIAL DOMAINS

  • Oh, Heung-Joon
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.93-96
    • /
    • 1997
  • An atomic integral domain R is a half-factorial domain (HFD) if whenever $\chi_1$$\chi_{m}=y_1$$y_n$ with each $\chi_{i},y_j \in R$ irreducible, then m = n. In this paper, we show that if R[X] is an HFD, then $Cl_{t}(R)$ $\cong$ $Cl_{t}$(R[X]), and if $G_1$ and $G_2$ are torsion abelian groups, then there exists a Dedekind HFD R such that Cl(R) = $G_1\bigoplus\; G_2$.

  • PDF