A REMARK ON HALF-FACTORIAL DOMAINS

  • Published : 1997.06.01

Abstract

An atomic integral domain R is a half-factorial domain (HFD) if whenever $\chi_1$$\chi_{m}=y_1$$y_n$ with each $\chi_{i},y_j \in R$ irreducible, then m = n. In this paper, we show that if R[X] is an HFD, then $Cl_{t}(R)$ $\cong$ $Cl_{t}$(R[X]), and if $G_1$ and $G_2$ are torsion abelian groups, then there exists a Dedekind HFD R such that Cl(R) = $G_1\bigoplus\; G_2$.

Keywords