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KAPLANSKY-TYPE THEOREMS

IN GRADED INTEGRAL DOMAINS

Gyu Whan Chang, Hwankoo Kim, and Dong Yeol Oh

Abstract. It is well known that an integral domain D is a UFD if and
only if every nonzero prime ideal of D contains a nonzero principal prime.
This is the so-called Kaplansky’s theorem. In this paper, we give this type
of characterizations of a graded PvMD (resp., G-GCD domain, GCD
domain, Bézout domain, valuation domain, Krull domain, π-domain).

0. Introduction

This is a continuation of our works on Kaplansky-type theorems [13, 20].
It is well known that an integral domain D is a UFD if and only if every
nonzero prime ideal of D contains a nonzero principal prime [19, Theorem 5].
This is the so-called Kaplansky’s theorem. A generalization of this type of
theorems was first studied by Anderson and Zafrullah in [5], where they gave
several characterizations of this type for GCD domains, valuation domains, and
Prüfer domains. Also, characterizations for PvMDs and Krull domains were
given in [15] and [6], respectively.

Later, in [20], the second-named author gave a Kaplansky-type charac-
terization of G-GCD domains and PvMDs and gave an ideal-wise version of
Kaplansky-type theorems. This ideal-wise version is then used to give char-
acterizations of UFDs, π-domains, and Krull domains. Let D be an integral
domain with quotient field K, X be an indeterminate over D, and D[X ] be
the polynomial ring over D. A nonzero prime ideal Q of D[X ] is called an
upper to zero in D[X ] if Q ∩D = (0). Clearly, Q is an upper to zero in D[X ]
if and only if Q = fK[X ] ∩ D[X ] for some nonzero polynomial f ∈ D[X ].
For f ∈ D[X ], let c(f) be the ideal of D generated by the coefficients of f .
In [13], the first two authors of this paper studied an integral domain D such
that every upper to zero in D[X ] contains a prime (resp., primary) element,
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a prime (resp., primary) element f with c(f) = D, and an invertible (resp., a
t-invertible) primary ideal.

Throughout this paper, R will denote a (nontrivial) graded (integral) do-
main

⊕

α∈Γ Rα, where Γ is a nontrivial torsion-free grading monoid. Following
[2, Definition 4.1], R is a graded UFD if each nonzero nonunit homogeneous
element of R is a product of (necessarily homogeneous) principal primes. In
[2, Proposition 4.2], it was shown that R is a graded UFD if and only if each
nonzero homogeneous prime ideal of R contains a nonzero homogeneous prin-
cipal prime ideal. The purpose of this paper is to give several characterizations
like this for graded GCD domains, graded valuation domains, graded PvMDs,
etc. which can be considered as generalizations of the results in [13, 20]. Pre-
cisely, in Section 1, we show that (i) a graded domain R is a (graded) GCD
domain if and only if every nonzero homogeneous prime ideal of R contains a
homogeneous extractor; (ii) R is a graded valuation domain if and only if every
nonzero homogeneous prime ideal of R contains a homogeneous comparable
element; (iii) R is a graded G-GCD domain if and only if every nonzero homo-
geneous prime ideal contains a d-locally extractor; (iv) R is a graded PvMD
if and only if every nonzero homogeneous prime ideal contains a t-locally ex-
tractor, if and only if each nonzero homogeneous prime ideal of R contains
an h-t-locally comparable element, if and only if each nonzero homogeneous
prime ideal of R contains an h-t-valuation element; (v) R is a graded Krull
domain if and only if every nonzero homogeneous prime ideal of R contains a
homogeneous Krull element; (vi) R is a graded UFD (resp., graded π-domain,
graded Krull domain) if and only if every homogeneous prime t-ideal contains
a homogeneous principal (resp., invertible, t-invertible) prime ideal.

In Section 2, we study a graded integral domain R with a unit of nonzero
degree whose homogeneous quotient field is a UFD (e.g., the Laurent polyno-
mial ring D[X,X−1] over an integral domain D). We first introduce the notion
of “upper to zero in R”, and then we prove that (i) R is a graded GCD domain
if and only if every upper to zero in R contains a prime element; (ii) R is a
graded PvMD if and only if R is integrally closed and each upper to zero in R
is a maximal t-ideal; and (iii) the set of nonzero homogeneous elements in R is
an almost splitting set in R if and only if each upper to zero in R contains a
primary element.

Let D be an integral domain with quotient field K, and let F (D) be the set
of nonzero fractional ideals of D. For I ∈ F (D), let I−1 = {x ∈ K | xI ⊆ D},
Iv = (I−1)−1, It =

⋃{Jv | J ∈ F (D), J ⊆ I, and J is finitely generated}, and
Iw = {x ∈ K | xJ ⊆ I for some finitely generated J ∈ F (D) with Jv = D}.
An I ∈ F (D) is called a t-ideal (resp., v-ideal) if It = I (resp., Iv = I), while a
v-ideal I is of finite type if there is a finitely generated ideal J so that I = Jv.
A proper integral t-ideal is a maximal t-ideal if it is maximal among proper
integral t-ideals. Let t-Max(D) be the set of maximal t-ideals of D. Then t-
Max(D) 6= ∅ when D is not a field and each proper integral t-ideal is contained
in a maximal t-ideal. An I ∈ F (D) is said to be t-invertible if (II−1)t = D
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and I is said to be strictly v-finite if there is a finitely generated subideal J of
I such that Iv = Jv. Let T(D) be the group of t-invertible fractional ideals of
D, and let Prin(D) be its subgroup of principal fractional ideals. The (t-)class
group of D is the Abelian group Cl(D) = T(D)/Prin(D).

Let Γ be a nontrivial torsion-free grading monoid, i.e., a nonzero commu-
tative cancellative monoid (written additively) such that its quotient group
〈Γ〉 = {a− b | a, b ∈ Γ} is a torsion-free Abelian group, and let R =

⊕

α∈Γ Rα

be an integral domain graded by Γ. Since R is an integral domain, we may
assume that Rα 6= {0} for every α ∈ Γ. A nonzero x ∈ Rα for α ∈ Γ is called a
homogeneous element of deg(x) = α, and hence each f ∈ R can be written as
f = xα1

+ · · · + xαn
, where αi ∈ Γ, xαi

is homogeneous, and α1 < · · · < αn.
Let H be the set of nonzero homogeneous elements in R. Then H is a satu-
rated multiplicative subset of R, and RH is called the homogeneous quotient

field of R. For f ∈ RH , let C(f) be the fractional ideal of R generated by the
homogeneous components of f . An ideal A of R is said to be homogeneous

if A =
⊕

α∈Γ(A ∩ Rα); so A is homogeneous if and only if A is generated by
homogeneous elements. A homogeneous ideal of R is a maximal homogeneous

ideal if it is maximal among proper homogeneous ideals. It is easy to show that
every maximal homogeneous ideal is a prime ideal and every homogeneous ideal
is contained in a maximal homogeneous ideal. Clearly, if A is homogeneous,
then Av and At are also homogeneous.

1. General graded integral domains

The following theorem of Kaplansky is well known: An integral domain D
is a UFD if and only if every nonzero prime ideal of D contains a nonzero
principal prime. While Kaplansky’s theorem appears to apply only to UFD’s,
the method of proof yields a more general result [5, Theorem 1] that is used
to characterize GCD domains, valuation domains, and Prüfer domains. The
following is a graded domain analogue of [5, Theorem 1].

Theorem 1.1. Let R =
⊕

α∈Γ Rα be a graded domain. Let (p) be a property of

nonzero homogeneous elements of R. Suppose that the set S of nonzero homo-

geneous elements of R with property (p) is a nonempty saturated multiplicative

subset. Then every nonzero homogeneous element of R has property (p) if

and only if every nonzero homogeneous prime ideal of R contains a nonzero

homogeneous element with property (p).

Proof. The sufficiency is trivial. We prove the necessity. If some nonzero
homogeneous element a of R does not have property (p), then (a)∩S = ∅ since
S is saturated. Enlarging (a) to an ideal P maximal with respect to being
disjoint from S gives us the prime ideal P which contains no nonzero element
with property (p). Let P ∗ be the ideal of R generated by the homogeneous
elements of P . Then P ∗ is a homogeneous prime ideal of R [21, p. 124].
Hence P ∗ is a nonzero homogeneous prime ideal of R such that P ∗ ∩ S = ∅, a
contradiction. �
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We first give a Kaplansky-type theorem for graded GCD domains. As in
[2], a graded domain R is called a graded GCD domain if every pair of nonzero
homogeneous elements of R has a GCD, equivalently, if xR∩yR is principal for
every x, y ∈ H . It is known that R is a graded GCD domain if and only if R is
a GCD domain [2, Theorem 3.4]. We call a nonzero homogeneous element e of
R a homogeneous extractor if (e) ∩ (x) is principal for all x ∈ H . Of course, R
is a (graded) GCD domain if and only if every nonzero homogeneous element
of R is a homogeneous extractor.

Theorem 1.2. A graded domain R =
⊕

α∈ΓRα is a (graded) GCD domain if

and only if every nonzero homogeneous prime ideal of R contains a homoge-

neous extractor.

Proof. Let S be the set of all homogeneous extractors. By Theorem 1.1 it
suffices to show that S is a saturated multiplicative subset of R. Let a and
b be homogeneous extractors and let x ∈ H . Then (a) ∩ (x) is principal,
say (a) ∩ (x) = (ar) for some r ∈ R. Clearly, r is homogeneous because
ax ∈ (ar)∩H . Then (ab)∩ (x) = (ab)∩ ((a)∩ (x)) = (ab)∩ (ar) = (a)((b)∩ (r))
is principal because (b) ∩ (r) is principal. Moreover, S is saturated. For if c is
not a homogeneous extractor, then (c) ∩ (y) is not principal for some y ∈ H .
Thus (cd) ∩ (yd) = ((c) ∩ (y))(d) is not principal for all d ∈ H . �

We next give a Kaplansky-type theorem for graded valuation domains. Re-
call from [17, Definition 1.1] that a graded domain R is a graded valuation ring
if for each homogeneous element x ∈ RH , either x or 1/x is in R. Equivalently if
a, b ∈ H , then either (a) ⊆ (b) or (b) ⊆ (a). We define a nonzero homogeneous
element a of R to be a homogeneous comparable element if for each b ∈ H ,
either (a) ⊆ (b) or (b) ⊆ (a). Of course, R is a graded valuation domain if and
only if every nonzero homogeneous element of R is a homogeneous comparable
element.

Theorem 1.3. A graded domain R =
⊕

α∈Γ Rα is a graded valuation do-

main if and only if every nonzero homogeneous prime ideal of R contains a

homogeneous comparable element.

Proof. Let S be the set of homogeneous comparable elements ofR. By Theorem
1.1 it suffices to show that S is a saturated multiplicative subset of R. Let
a, b ∈ S and let t ∈ H . If (b) ⊆ (t), then (ab) ⊆ (b) ⊆ (t). If (t) ( (b), then
t/b ∈ H . So if (a) ⊆ (t/b), then (ab) ⊆ (t), while if (t/b) ⊆ (a), then (t) ⊆ (ab).
Thus ab ∈ S. If c is a nonzero homogeneous element of R with c 6∈ S, then there
is an x ∈ H with (c) * (x) and (x) * (c). Then for any d ∈ H , (cd) * (xd)
and (xd) * (cd). Thus S is a saturated multiplicative subset of R. �

In [1], Anderson and Anderson defined an integral domain D to be a G-

GCD domain (generalized GCD domain) if the intersection of two invertible
(equivalently, principal) ideals of D is invertible. It is also shown that D is
a G-GCD domain if and only if every v-ideal of finite type of D is invertible
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[1, Theorem 1]. They defined a graded domain R =
⊕

α∈Γ Rα to be a graded

G-GCD domain if the intersection of two homogeneous invertible ideals of R is
invertible. As in [3], we call a graded domain R a graded PvMD if the monoid
of homogeneous v-ideals of finite type forms a group under v-multiplication
I ∗ J = (IJ)v. In [3, Proposition 6.6], it is shown that a graded domain R is
a G-GCD domain (resp., PvMD) if and only if R is a graded G-GCD domain
(resp., graded PvMD). It is mentioned that a graded domain R is a PvMD if
and only if every nonzero ideal of R generated by two homogeneous elements
is t-invertible [9]. The following result is the graded version of [1, Theorem 1]
(resp., [20, Theorem 2.2]).

Theorem 1.4. The following are equivalent for a graded domain R=
⊕

α∈Γ Rα.

(1) R is a graded G-GCD domain (resp., graded PvMD).
(2) For a, b ∈ H, (a) ∩ (b) is invertible (resp., t-invertible).
(3) For a, b ∈ H, (a) : (b) is invertible (resp., t-invertible).
(4) hInv(R) (resp., hInvt(R)), the group of homogeneous invertible (resp.,

t-invertible) ideals of R, is a lattice-ordered group under the partial

order A ≤ B ⇔ B ⊆ A.
(5) Every homogeneous v-ideal of finite type of R is invertible (resp., t-

invertible).

Proof. This can be proved along the lines of the proof of [1, Theorem 1] with
the fact that the sum, product, and intersection of homogeneous ideals are
homogeneous. �

We say that a nonzero homogeneous element x of a graded domain R is
a homogeneous d-locally extractor (resp., homogeneous t-locally extractor) if
xR∩yR is invertible (resp., t-invertible) for any nonzero homogeneous element
y ∈ R. Then by Theorem 1.4, a graded domain R is a graded G-GCD domain
(resp., graded PvMD) if and only if every nonzero homogeneous element of R
is a homogeneous d-locally extractor (resp., homogeneous t-locally extractor).
We next give a graded version of Kaplansky-type theorems for graded G-GCD
domains and graded PvMDs.

Theorem 1.5. A graded domain R =
⊕

α∈Γ Rα is a graded G-GCD do-

main (resp., a graded PvMD) if and only if every nonzero homogeneous prime

ideal contains a homogeneous d-locally extractor (resp., homogeneous t-locally
extractor).

Proof. Let ∗ = d or ∗ = t. Let S be the set of all homogeneous ∗-locally
extractors of R. Then by Theorem 1.1, it suffices to show that S is a saturated
multiplicative subset of R. Let a, b ∈ S and x ∈ H . Then I := (a) ∩ (x) is ∗-
invertible. Note that (a)∩(x) = aJ , where J = a−1I is a ∗-invertible ideal of R.
Let M be a maximal ∗-ideal of R. Then JRM = cRM for some c ∈ J ∩H , and
hence ((b)∩J)M = bRM∩JRM = ((b)∩(c))M is principal because b ∈ S. Also, if
J = (a1, . . . , an)v, then JRM = (a1, . . . , an)vRM = ((a1, . . . , an)RM )v = aiRM
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for some i, and hence bRM ∩ JRM = ((b) ∩ (ai))RM ⊆ (
∑

(b) ∩ (ai))RM ⊆
((b)∩J))RM . Hence, (b)∩J = (

∑

(b)∩(ai))v, and since (b)∩(ai) is ∗-invertible,
(b) ∩ J is of finite type. Thus, (b) ∩ J is ∗-invertible. Then (ab) ∩ (x) =
(ab) ∩ ((a) ∩ (x)) = (ab) ∩ aJ = (a)((b) ∩ J) is ∗-invertible. Thus ab ∈ S.
Moreover S is saturated. Indeed, let cd ∈ S with c, d ∈ H and assume to the
contrary that c 6∈ S. Then (c) ∩ (y) is not ∗-invertible for some y ∈ H . Thus
(cd) ∩ (yd) = ((c) ∩ (y))(d) is not ∗-invertible, a contradiction. �

Let R be a graded domain and d ∈ H . Then we say that d is h-t-locally
comparable if d is a comparable element in RM for each maximal homogeneous
t-ideal M of R.

Lemma 1.6. Let R =
⊕

α∈Γ Rα be a graded domain. If A is a strictly v-finite
homogeneous ideal of R such that A contains an h-t-locally comparable element

d, then A is t-invertible.

Proof. Suppose that M is a maximal homogeneous t-ideal of R containing A
and let B be a finitely generated homogeneous ideal contained in A such that
Av = Bv. Without loss of generality, we assume that d ∈ B. Since B is finitely
generated, we note that (AvRM )v = (BvRM )v = (BRM )v by [22, Lemma 4].
Since d ∈ B and B is finitely generated, BRM = bRM for some b ∈ B by
[15, Theorem 2.4]. Hence bRM ⊆ ARM ⊆ (AvRM )v = (BRM )v = bRM . So
ARM = bRM is principal for each maximal homogeneous t-ideal M containing
A.

For any multiplicative subset S of R, A−1RS = B−1RS = (BRS)
−1 ⊇

(ARS)
−1 ⊇ A−1RS and thus A−1RS = (ARS)

−1. We claim that (AA−1)t = R.
Otherwise, there exists a maximal homogeneous t-ideal M such that AA−1 ⊆
M because AA−1 is homogeneous. So AA−1RM = (ARM )(ARM )−1 = RM

since ARM is principal. Hence RM ⊆ MRM , a contradiction. �

It is known that R =
⊕

α∈ΓRα is a PvMD if and only if RM is a valuation
domain for each maximal homogeneous t-ideal M of R [12, Lemma 2.7].

Theorem 1.7. A graded domain R =
⊕

α∈Γ Rα is a PvMD if and only if

each nonzero homogeneous prime ideal of R contains an h-t-locally comparable

element.

Proof. If R is a PvMD, then each nonzero homogeneous element of R is h-
t-locally comparable, and so the condition holds. Conversely, suppose that
each nonzero homogeneous prime ideal of R meets S, the set of all h-t-locally
comparable elements of R. Note that S is a saturated multiplicative subset
of R; hence each nonzero homogeneous ideal of R meets S. Now let A be a
homogeneous v-ideal of finite type of R. Then A = Bv = Bt for some finitely
generated homogeneous idealB ofR. Since A is strictly v-finite, it is t-invertible
by Lemma 1.6. Thus by Theorem 1.4, R is a PvMD. �

We say that a nonzero homogeneous element d of R =
⊕

α∈Γ Rα is an h-t-
valuation element if RM is a valuation domain for each maximal homogeneous
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t-ideal M of R containing d. Clearly every h-t-valuation element is h-t-locally
comparable, and since each nonzero homogeneous element of a graded PvMD
is an h-t-valuation element, Theorem 1.7 has the following:

Corollary 1.8. A graded domain R =
⊕

α∈Γ Rα is a PvMD if and only if

each nonzero homogeneous prime ideal of R contains an h-t-valuation element.

Let S be a multiplicative system of homogeneous ideals of R =
⊕

α∈Γ Rα,
that is, a family of nonzero homogeneous integral ideals of R closed under
multiplication. We denote by Sat(S ) the saturation of S , that is the set of
homogeneous ideals of R containing some (homogeneous) ideal in S . We say
that S is saturated if S = Sat(S ). Then Sat(S ) is a saturated multiplicative
system of homogeneous ideals of R.

Let ∗ be a finite character star operation on R, i.e., for each fractional ideal
A of R, A∗ =

⋃{F∗ | 0 6= F is a finitely generated subideal of A}. The v-
operation is a star operation, while the t- and w-operations are finite character
star operations. The reader can refer to [14, Sections 32 and 34] for some
basic properties of star operations. Let us denote by ∗-Sat(S ) the set of
all homogeneous ∗-ideals in Sat(S ). Note that ∗-Sat(S ) is closed under ∗-
multiplication (for, if I, J ∈ Sat(S ), then (IJ)∗ ∈ ∗-Sat(S )) and is ∗-saturated
(that is, each homogeneous ∗-ideal containing an ideal in ∗-Sat(S ) is in ∗-
Sat(S )). We say that S is ∗-finite if each ideal I ∈ ∗-Sat(S ) contains a finitely
generated homogeneous ideal J such that J∗ ∈ Sat(S ). It is immediate that
S is ∗-finite if and only if Sat(S ) is ∗-finite, and that, if each homogeneous
∗-ideal in S is ∗-finite, then S is ∗-finite.

The proof of following lemma is easy, and so we omit it.

Lemma 1.9. Let ∗ be a finite character star operation on a graded domain

R =
⊕

α∈Γ Rα. Let {Iα} be a directed family of homogeneous ∗-ideals. If

I =
⋃

Iα is a fractional homogeneous ideal of R, then I is a homogeneous

∗-ideal.
The proof of Kaplansky’s Theorem depends on the following Theorem of

Krull: Let S be a multiplicative subset in a ring D and let I be an ideal in D
maximal with respect to the exclusion of S. Then I is prime. The following is
the homogeneous ideal-wise version of Krull’s Theorem.

Theorem 1.10. Let R =
⊕

α∈Γ Rα be a graded domain, ∗ be a finite character

star operation on R, and S be a ∗-finite ∗-saturated multiplicative system of

homogeneous ideals of R. Assume that there is a homogeneous integral ∗-ideal
I such that J * I for any J ∈ S . Then I may be extended to a homogeneous

∗-ideal P maximal with respect to J * P for any J ∈ S .

Proof. Let C = {A | A ⊆ R is a homogeneous ∗-ideal and A + J for any J ∈
S }. Since I ∈ C , C is a nonempty partially ordered set with respect to set
inclusion. By Lemma 1.9, every nonempty totally ordered subset of C has an
upper bound in C since ∗ is a finite character star operation on R and S is
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∗-finite and ∗-saturated. Hence by Zorn’s Lemma, there is a maximal element
P ∈ C . Now it is shown in [20, Theorem 3.2] that P is a prime ideal of R. �

Now we are ready to state the ideal-wise version of a Kaplansky-type theorem
for graded domains.

Theorem 1.11. Let ∗ be a finite character star operation on R =
⊕

α∈Γ Rα.

Let (p) be a property of proper ∗-ideals of R. Suppose the set S of homoge-

neous ∗-ideals with property (p) is a ∗-finite ∗-saturated multiplicative system

of homogeneous ideals of R. Then every proper homogeneous ∗-ideal of R sat-

isfies property (p) if and only if every nonzero homogeneous prime ∗-ideal of
R contains a homogeneous ∗-ideal with property (p).

Proof. Suppose that a proper homogeneous ∗-ideal I of R does not satisfy
property (p). Then J * I for any J ∈ S . Applying Theorem 1.10, I may be
extended to a homogeneous prime ∗-ideal P such that J * P for any J ∈ S .
By hypothesis, P contains a homogeneous ∗-ideal with property (p). Since S

is ∗-saturated, P ∈ S , a contradiction. The other implication is trivial. �

For a graded domain R =
⊕

α∈Γ Rα, let N(H) = {0 6= f ∈ R | C(f)v =
R}. Then N(H) is a saturated multiplicative subset of R [9, Lemma 1.1(2)].
Following [9], we say that R =

⊕

α∈Γ Rα satisfies property (#) if, for any
nonzero ideal I of R, (

∑

g∈I C(g))t = R implies that there exists an f ∈ I

such that C(f)v = R. Note that the Laurent polynomial ring D[X,X−1] =
⊕

n∈Z
DXn over an integral domain D satisfies property (#) [9, p. 172].

It is shown in [18] that a domain D is a UFD (resp, π-domain, Krull domain)
if and only if every t-ideal of D is a t-product of principal (resp., invertible,
t-invertible) prime ideals. The following two results are the graded domain
analogues of these results.

Theorem 1.12. The following are equivalent for a graded domain R.

(1) R is a graded Krull domain.

(2) Every proper homogeneous principal ideal is a t-product of (t-invertible)
prime ideals.

(3) Every proper homogeneous t-ideal is a t-product of (t-invertible) prime

ideals.

(4) Every proper homogeneous t-invertible t-ideal is a t-product of (t-inver-
tible) prime ideals.

Proof. (1) ⇒ (3). Let R be a graded Krull domain. By [9, Theorem 2.3],
RN(H) is a PID. Let I be a proper homogeneous t-ideal of R. Then IRN(H) =
Q1 · · ·Qn, where each Qi is a principal prime ideal of RN(H). Note that R
satisfies property (#) by [2, Propositions 5.5 and 5.6] and [9, Lemma 2.2]. Since
R is a (graded) PvMD, every ideal of RN(H) is extended from a homogeneous
ideal of R [9, Corollary 1.10]. Let Qi = PiRN(H), where Pi is a homogeneous
prime ideal of R. Then IRN(H) = Q1 · · ·Qn = (P1RN(H)) · · · (PnRN(H)) =
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(P1 · · ·Pn)RN(H). Note that t = w in a PvMD. Hence by [9, Lemma 1.7], we
have I = It = Iw = (P1 · · ·Pn)w = (P1 · · ·Pn)t.

(3) ⇒ (4) ⇒ (2). This is obvious.
(2) ⇒ (1). Let P be a nonzero homogeneous prime ideal of R. Choose a

nonzero homogeneous element a ∈ P . By assumption (a) = (P1 · · ·Pn)t for
some prime ideals P1, . . . , Pn of R. Then P contains a t-invertible prime ideal.
Thus every nonzero homogeneous prime ideal of R contains a t-invertible prime
ideal. Hence by [7, Theorem 2.4], R is a graded Krull domain. �

Following [6], a nonzero element x of an integral domain D is called a Krull

element if (x) is a t-product of prime t-ideals. Then it is shown that D is a
Krull domain if and only if every nonzero prime ideal of D contains a Krull
element [6, Theorem 7]. The following is the graded domain analogue of this
result.

Corollary 1.13. A graded domain R =
⊕

α∈Γ Rα is a graded Krull domain

if and only if every nonzero homogeneous prime ideal of R contains a homoge-

neous Krull element.

Proof. If R is a graded Krull domain, then by Theorem 1.12, every nonzero
homogeneous prime ideal of R contains a homogeneous Krull element. Con-
versely, suppose that every nonzero homogeneous prime ideal of R contains a
homogeneous Krull element. Let S be the set of all homogeneous Krull ele-
ments of R. As in the proof of [6, Theorem 7], we can see that R is a graded
Krull domain. �

Following [2, Definition 6.1], we say that R =
⊕

α∈Γ Rα is a graded π-
domain if each nonzero principal homogeneous ideal is a product of (necessarily
homogeneous invertible) prime ideals.

Theorem 1.14. The following are equivalent for a graded domain R.

(1) R is a graded π-domain.

(2) Every nonzero homogeneous prime ideal of R contains an invertible

prime ideal.

(3) Every proper homogeneous t-ideal of R is a finite product of (invertible)
prime ideals.

(4) Every proper homogeneous invertible ideal of R is a finite product of

prime ideals.

Proof. (1) ⇒ (2). The proof is similar to that of (1) ⇒ (3) in Theorem 1.12.
(2) ⇒ (3). Suppose that every nonzero homogeneous prime ideal contains an

invertible prime ideal. Then by [7, Theorem 2.4], R is a graded Krull domain,
and hence if I is a proper homogeneous t-ideal of R, then I = (P1 · · ·Pn)t for
some homogeneous t-invertible prime ideals P1, . . . , Pn by Theorem 1.12. By
the given assumption, each Pi contains some invertible prime ideal Qi. We may
assume that (Pi)t 6= R for any i by discarding the Pi’s with (Pi)t = R from
I = (P1 · · ·Pn)t since I 6= R. Then by [18, Theorem 2.2(4)], Pi = Qi. Thus
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Pi is invertible for every i = 1, . . . , n. Hence the ideal P1 · · ·Pn is invertible.
Therefore I = (P1 · · ·Pn)t = P1 · · ·Pn and every Pi is invertible.

(3) ⇒ (4) ⇒ (1). This is clear. �

In [18], it is shown that D is a UFD (resp., π-domain, Krull domain) if
and only if every prime t-ideal of D contains a principal (resp., invertible, t-
invertible) prime ideal. The following is the graded domain analogue of this
result.

Corollary 1.15. A graded domain R =
⊕

α∈Γ Rα is a graded UFD (resp.,
graded π-domain, graded Krull domain) if and only if every homogeneous prime

t-ideal of R contains a homogeneous principal (resp., invertible, t-invertible)
prime ideal.

Proof. Let S be the set of all (homogeneous) t-ideals of R expressible as a t-
product of homogeneous principal (resp., invertible, t-invertible) prime ideals.
Then by Theorem 1.11, it suffices to show that S is a t-finite t-saturated
multiplicative system of R. However, with a slight modification as in [15,
Theorem 1.3], we can see that S is a t-saturated multiplicative system. The
rest is clear. �

2. Graded integral domains with a unit of nonzero degree

Throughout this section R =
⊕

α∈Γ Rα denotes a (nontrivial) graded inte-
gral domain with a unit of nonzero degree and H is the set of nonzero homo-
geneous elements in R.

Lemma 2.1. Let 0 6= f ∈ R.

(1) fRH ∩R = fR if and only if C(f)v = R.

(2) If f is a product of primary elements in R that are not homogeneous,

then fRH ∩R = fR.

Proof. (1) [9, Lemma 1.2(3)].
(2) Let g, h ∈ R be primary elements that are not homogeneous. If

√
gR 6=√

hR, then
√
gR and

√
hR are both maximal t-ideals [10, Lemma 2.1]. Hence,

(g, h)v = R, and so gR ∩ hR = ghR. If
√
gR =

√
hR, then

√
ghR =

√
gR, and

since
√
gR is a maximal t-ideal, ghR is a primary ideal. Hence, f = f1 · · · fn

can be written as a product of distinct primary elements and fRH = f1RH ∩
· · · ∩ fnRH . So, we may assume that f is primary, and so

√
fR is a maximal

t-ideal. If C(f)v ( R, then fR ( C(f)v ⊆ Q for some maximal homogeneous
t-ideal Q of R [7, Lemma 1.2], and hence

√
fR = Q. However, note that

fRH ( RH = QRH because f is not homogeneous, a contradiction. Therefore,
C(f)v = R, and thus by (1), fRH ∩R = fR. �

If RH is a UFD, as in the polynomial ring case, we will say that a nonzero
prime ideal Q of R is an upper to zero in R if Q = fRH ∩ R for some prime
element f ∈ RH . Hence, if R = D[X,X−1] is the Laurent polynomial ring over
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an integral domain D, then RH is a UFD, and Q is an upper to zero in R if and
only if Q ∩ D[X ] is an upper to zero in D[X ]. Thus, our definition of “upper
to zero in R” is a natural generalization of the original definition of “upper to
zero in D[X ]”. Note that the assumption that RH is a UFD is not too strong
in the sense that the property arises in ‘almost all’ graded domains.

Theorem 2.2. If RH is a UFD, then the following statements are equivalent.

(1) R is a graded GCD domain.

(2) R is a GCD domain.

(3) fRH ∩R is principal for each 0 6= f ∈ R.

(4) Every upper to zero in R contains a prime element.

Proof. (1) ⇒ (2) [2, Theorem 3.4].
(2)⇒ (3) Since R is a GCD domain, there is an α ∈ R such that C(f)v = αR.

Since C(f) is homogeneous, α ∈ H , and hence fRH ∩R = f

α
RH ∩R = f

α
R by

Lemma 2.1(1).
(3) ⇒ (4) Let Q be an upper to zero in R. Then Q = fRH ∩ R for some

f ∈ R, and by assumption fRH ∩R = gR for some g ∈ R. Clearly, g is a prime
element of R, and thus Q contains a prime element g.

(4) ⇒ (1) Let α, β ∈ H . If u ∈ H is a unit of nonzero degree, then there
is an integer n ≥ 1 such that degαun 6= degβ. So if we let f = αun + β,
then C(f) = (α, β). Let f = fk1

1 · · · fkm

m be a prime factorization of f in RH .
Then by hypothesis, each fiRH ∩ R contains a prime element gi in R. Note
that gi 6∈ H . Hence fiRH = giRH and fiRH ∩ R = giRH ∩ R = giR. By
Lemma 2.1(1), C(gi)v = R. Since fiRH = giRH , we have aifi = bigi for some

ai, bi ∈ H . Put a = ak1

1 · · · akm

m and b = bk1

1 · · · bkm

m . Then af = bgk1

1 · · · gkm

m .
Note that a, b ∈ H . Clearly, (α, β)v = C(f)v = b

a
R. Therefore, R is a graded

GCD domain. �

We say that R =
⊕

α∈Γ Rα is a graded Bézout domain if (a, b) is principal
for all homogeneous elements a, b ∈ R. Clearly, graded Bézout domains are
(graded) GCD domains. Let R = D[X,X−1] be the Laurent polynomial ring
over a Bézout domain D. Then R is a graded Bézout domain, and it is easy
to see that R is a Bézout domain if and only if D is a field. Thus, a graded
Bézout domain need not be a Bézout domain.

Corollary 2.3. If RH is a UFD, then R is a graded Bézout domain if and

only if every upper to zero in R contains a prime element f with C(f) = R.

Proof. (⇒) Let 0 6= g ∈ R be such that gRH ∩ R is a prime ideal. Then, by
Theorem 2.2, gRH ∩ R = fR for some f ∈ R, and it is obvious that f is a
prime element. Also, since R is a graded Bézout domain, C(f) = C(f)v = R
by Lemma 2.1.

(⇐) The proof is similar to that of (4) ⇒ (1) of Theorem 2.2. �

We next give a graded integral domain analogue of [16, Proposition 2.6] that
D is a PvMD if and only if D is an integrally closed domain and each upper
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to zero in D[X ] is a maximal t-ideal. We first recall a well-known result for an
integrally closed graded domain.

Lemma 2.4. If R is integrally closed, then

(1) ([9, Lemma 1.2(4)]) fRH ∩R = fC(f)−1 for 0 6= f ∈ R and

(2) ([3, Theorem 3.5]) C(fg)v = (C(f)C(g))v for 0 6= f, g ∈ R.

Note that if Q is an upper to zero in R, then htQ = 1 and Q ∩H = ∅, and
thus Q is t-invertible if and only if Q is a maximal t-ideal [7, Corollary 2.2].

Theorem 2.5. If RH is a UFD, then R is a PvMD if and only if R is integrally

closed and each upper to zero in R is a maximal t-ideal.

Proof. (⇒) Since R is a PvMD, clearly R is integrally closed. Let Q be an
upper to zero in R. Then Q = fRH ∩ R for some f ∈ R, and since R is
integrally closed, Q = fC(f)−1 by Lemma 2.4. Also, since R is a PvMD,
Q = fC(f)−1 is t-invertible.

(⇐) Let I = (x1, . . . , xn) be a nonzero finitely generated ideal of R, where
each xi is a nonzero homogeneous element of R, and let u be a unit of nonzero
degree. Then there are positive integers k2, . . . , kn such that if we let f =
x1 + x2u

k2 + · · · + xnu
kn , then C(f) = I. Since RH is a UFD, we can write

f = fe1
1 · · · fem

m for some distinct prime elements fi ∈ RH and positive integers
ei. Hence,

fC(f)−1 = fRH ∩R

= (fe1
1 RH ∩R) ∩ · · · ∩ (fem

m RH ∩R)

= fe1
1 C(fe1

1 )−1 ∩ · · · ∩ fem
m C(fem

m )−1

= ((fe1
1 C(fe1

1 )−1) · · · (fem
m C(fem

m )−1))t

= f(C(fe1
1 )−1 · · ·C(fem

m )−1)t

= f((C(f1)
e1)−1 · · · (C(fm)em)−1)t,

where the last equality follows from Lemma 2.4 because R is integrally closed.
Note that fiRH ∩ R = fiC(fi)

−1 is an upper to zero in R; so C(fi)
−1 is t-

invertible by assumption. Hence, (C(f1)
e1 )−1 · · · (C(fm)em)−1 is t-invertible,

and so fC(f)−1 is t-invertible. Thus, I = C(f) is t-invertible. �

Let S be a saturated multiplicative subset of an integral domainD. As in [4],
we say that S is an almost splitting set if, for each 0 6= d ∈ D, there is a positive
integer n = n(d) such that dn = st for some s ∈ S and t ∈ {x ∈ D | x 6= 0 and
(x, s)v = D for all s ∈ S}. It is known that S is an almost splitting set if and
only if, for each d ∈ D, there is an integer n = n(d) ≥ 1 such that dnDS ∩ D
is principal [4, Proposition 2.7].

Lemma 2.6. If H is an almost splitting set in R, then Cl(R) is torsion.

Proof. Let N(H) = {f ∈ R | C(f)v = R}. Since R contains a unit of nonzero
degree, R satisfies property (#) [9, Example 1.6]. We note that Max(RN(H)) =
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{QN(H) | Q is a maximal t-ideal of R with Q ∩ H 6= ∅}, and Pic(RN(H)) =
Cl(RN(H)) = 0 [9, Proposition 1.4, Theorem 3.3]. Note also that RH is a GCD
domain; so Cl(RH) = 0. By [7, Lemma 1.1], N(H) = {x ∈ R | x 6= 0 and
(x, s)v = R for all s ∈ H}. Since H is an almost splitting set, Cl(R) is torsion
[11, Theorem 2.10]. �

Theorem 2.7. If RH is a UFD, then the following statements are equivalent.

(1) H is an almost splitting set in R.

(2) Each upper to zero in R is a maximal t-ideal and Cl(R) is torsion.

(3) Each upper to zero in R contains a primary element.

Proof. (1) ⇒ (2) By Lemma 2.6, Cl(R) is torsion. Next, let Q = fRH ∩R be
an upper to zero in R. Then Q ∩H = ∅ and htQ = 1. Hence Q is a maximal
t-ideal ([7, Corollary 2.2] and [11, Proposition 2.3]).

(2) ⇒ (3) Let Q = fRH ∩R be an upper to zero in R. Then Q is t-invertible
[7, Corollary 2.2], and since Cl(R) is torsion, there is an integer n ≥ 1 such

that (Qn)t = gR for some g ∈ R. Clearly,
√
gR =

√

(Qn)t = Q, and since Q is
a maximal t-ideal, gR is a primary ideal [10, Lemma 2.1]. Thus, Q contains a
primary element g.

(3) ⇒ (1) Let 0 6= f ∈ R. By [4, Proposition 2.7], it suffices to show that
there is an integer n = n(f) ≥ 1 such that fnRH ∩ R is principal. Clearly, we
may assume that f is not homogeneous.

Case 1. fRH is a prime ideal of RH . Then fRH ∩ R contains a primary
element, say g ∈ R, and so gRH = fnRH for some integer n ≥ 1. Thus,
fnRH ∩R = gRH ∩R = gR by Lemma 2.1.

Case 2. Let f = fe1
1 · · · fek

k be the prime factorization of f in RH . Then
fRH = fe1

1 RH ∩ · · · ∩ fek
k RH , and by Case 1, there are integers mi ≥ 1 and

primary elements gi such that fmi

i RH ∩ R = giRH . Let m = m1 · · ·mk,
e = e1 · · · ek and ni =

meei
mi

. Then

fmeRH ∩R = (fm1

1 )n1RH ∩ · · · ∩ (fmk

k )nkRH ∩R

= ((fm1

1 )n1RH ∩R) ∩ · · · ∩ ((fmk

k )nkRH ∩R)

= (gn1

1 RH ∩R) ∩ · · · ∩ (gnk

k RH ∩R)

= gn1

1 R ∩ · · · ∩ gnk

k R

= (gn1

1 · · · gnk

k )R,

where the first and fifth equalities follow from the fact that (g, h)v = D if and
only if gD ∩ hD = ghD for an integral domain D. �

Corollary 2.8. If RH is a UFD, then every upper to zero in R contains a

primary element f with C(f) = R if and only if every upper to zero in R is

a maximal t-ideal, each maximal homogeneous ideal is a t-ideal, and Cl(R) is

torsion.

Proof. (⇒) By Theorem 2.7, every upper to zero in R is a maximal t-ideal and
Cl(R) is torsion. If there is a maximal homogeneous ideal that is not a t-ideal,
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then, since R contains a unit of nonzero degree, we can find an f ∈ R such
that C(f)v = R but C(f) ( R. Let f = fe1

1 · · · fen
n be the prime factorization

of f in RH . Then fR = fRH ∩ R = (fe1
1 RH ∩ R) ∩ · · · ∩ (fen

n RH ∩ R) by
Lemma 2.1. Note that if Qi = fiRH ∩R, then Qi is an upper to zero in R and
fei
i RH ∩ R is a Qi-primary ideal. Hence, each Qi contains a primary element
gi with C(gi) = R. Clearly, geii ∈ fei

i RH ∩ R, and so if we set g = gei1 · · · genn ,
then g ∈ fR and C(g) = R. Thus, C(f) = R, a contradiction.

(⇐) Let Q be an upper to zero in R. Then Q is t-invertible [7, Corollary
2.2], and since Cl(R) is torsion, there is a positive integer n = n(Q) such that
(Qn)t = fR for some f ∈ R. Note that

√
fR = Q is a maximal t-ideal; so f is

primary and C(f)t = R. Hence, f is a primary element with C(f) = R. �

An integral domain D is an almost GCD domain (AGCD domain) if, for
each a, b ∈ D, there exists an integer n = n(a, b) ≥ 1 such that anD ∩ bnD is
principal. Clearly, GCD domains are AGCD domains. Also, it is known that
D is an integrally closed AGCD domain if and only if D is a PvMD with Cl(D)
torsion [23, Corollary 3.8].

Corollary 2.9. Assume that RH is a UFD and R is integrally closed. Then

R is an AGCD domain if and only if H is an almost splitting set in R.

Proof. (⇒) Let 0 6= f ∈ R. If f ∈ H , then there is nothing to prove, and so
we assume that f 6∈ H . Then C(f) is t-invertible, and since Cl(R) is torsion,
there is an integer n ≥ 1 such that C(fn)v = (C(f)n)v = αR for some α ∈ R

by Lemma 2.4(2). Clearly, α ∈ H , and hence C( f
n

α
)v = R. Thus, fn = α · fn

α
,

where α ∈ H and fn

α
∈ N(H). Note that N(H) = {f ∈ R | C(f)v = R} =

{x ∈ R | x 6= 0 and (x, s)v = R for all s ∈ H} [7, Lemma 1.1]. Therefore, H is
an almost splitting set.

(⇐) Let α, β ∈ H , and let u ∈ H be a unit of nonzero degree. Then
degαuk 6= degβ for some integer k ≥ 1, and so if we let f = αun + β, then
C(f) = (α, β). Since H is almost splitting, there is an integer n ≥ 1 such that
fnRH ∩R is principal. Note that fnRH ∩R = fnC(fn)−1 by Lemma 2.4(1);
hence C(fn)−1 is principal. Since ((α, β)n)v = (C(f)n)v = C(fn)v by Lemma
2.4(2), ((α, β)n)v is principal, and hence (α, β) is t-invertible. Thus, R is a
PvMD, and thus R is an AGCD domain because Cl(R) is torsion by Theorem
2.7. �

Remark 2.10. Let D be an integral domain with quotient field K, and let
R = D[X,X−1] be the Laurent polynomial ring overD. Then R =

⊕

n∈Z
DXn

is a graded integral domain such that R contains a unit of nonzero degree and
RH = K[X,X−1] is a UFD. Note that Cl(D[X ]) = Cl(R), XD[X ] is a principal
prime ideal of D[X ], cD(X) = D, where cD(f) is the ideal of D generated by
the coefficients of f ∈ D[X ]. Also, note that every upper to zero Q in D[X ]
with Q 6= XD[X ] is contracted from an upper to zero in R = D[X,X−1].
Hence, every result of [13] on uppers to zero in D[X ] holds for every upper to



KAPLANSKY-TYPE THEOREMS 1267

zero in R = D[X,X−1]. Thus, the results of this section can be considered as
generalizations of those in [13] and [8, Lemma 2.3 and Theorem 2.4], and in
fact, their proofs are similar to those of their counterparts.
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domains of the form D +DS [Γ
∗], J. Algebra 323 (2010), no. 11, 3124–3133.

[13] G. W. Chang and H. Kim, Kaplansky-type theorems II, Kyungpook Math. J. 51 (2011),
no. 3, 339–344.

[14] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[15] R. Gilmer, J. Mott, and M. Zafrullah, t-invertibility and comparability, in Commutative

ring theory (Fs, 1992), 141–150, Lecture Notes in Pure and Appl. Math., 153, Dekker,

New York, 1994.
[16] E. G. Houston, S. B. Malik, and J. L. Mott, Characterizations of ∗-multiplication do-

mains, Canad. Math. Bull. 27 (1984), no. 1, 48–52.
[17] J. L. Johnson, The graded ring R[X1, . . . ,Xn], Rocky Mountain J. Math. 9 (1979), no.

3, 415–424.
[18] B. G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra 124

(1989), no. 2, 284–299.
[19] I. Kaplansky, Commutative Rings, Revised Ed., Univ. of Chicago, Chicago, 1974.
[20] H. Kim, Kaplansky-type theorems, Kyungpook Math. J. 40 (2000), no. 1, 9–16.
[21] D. G. Northcott, Lessons on Rings, Modules, and Multiplicities, Cambridge Univ. Press,

Cambridge, 1968.
[22] M. Zafrullah, On finite conductor domains, Manuscripta Math. 24 (1978), no. 2, 191–

204.



1268 G. W. CHANG, H. KIM, AND D. Y. OH

[23] , A general theory of almost factoriality, Manuscripta Math. 51 (1985), no. 1-3,
29–62.

Gyu Whan Chang

Department of Mathematics Education

Incheon National University

Incheon 406-772, Korea

E-mail address: whan@inu.ac.kr

Hwankoo Kim

School of Computer and Information Engineering

Hoseo University

Asan 336-795, Korea

E-mail address: hkkim@hoseo.edu

Dong Yeol Oh

Department of Mathematics Education

Chosun University

Gwangju 501-759, Korea

E-mail address: dongyeol70@gmail.com, dyoh@chosun.ac.kr


