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INTEGRAL CLOSURE OF

A GRADED NOETHERIAN DOMAIN

Chang Hwan Park and Mi Hee Park

Abstract. We show that, if R is a graded Noetherian ring and I is a
proper ideal of R generated by n homogeneous elements, then any prime
ideal of R minimal over I has h-height ≤ n, and that if R is a graded

Noetherian domain with h-dimR ≤ 2, then the integral closure R′ of R
is also a graded Noetherian domain with h-dimR′ ≤ 2. We also present
a short improved proof of the result that, if R is a graded Noetherian

domain, then the integral closure of R is a graded Krull domain.

1. Introduction

Let Γ be a torsion-free cancellative commutative monoid with quotient group
G and let R =

⊕
γ∈Γ Rγ be a Γ-graded commutative ring. A goal of this paper

is to generalize many of the well known results for Noetherian rings to graded
Noetherian rings.

A Γ-graded commutative ring R =
⊕

γ∈Γ Rγ is said to be graded Noetherian

if R satisfies the ascending chain condition (a.c.c.) on homogeneous ideals, or
equivalently, if each homogeneous ideal of R is finitely generated.

Goto and Yamagishi [7, Theorem 1.1] show that, if Γ is a finitely generated
abelian group, then R =

⊕
γ∈Γ Rγ is graded Noetherian if and only if it is

Noetherian. One of the most natural and important examples of a Γ-graded
ring is the monoid ring R[Γ] =

⊕
γ∈Γ RXγ . It is shown in [18, Theorem 2.4]

that a Γ-monoid ring R[Γ] is graded Noetherian if and only if R is Noetherian
and each ideal of Γ is finitely generated. In view of a result of Budach [3]
(see [18, Theorem 2.2]), it follows that R[Γ] is Noetherian if and only if R is
Noetherian and Γ is finitely generated.

Thus if k is a field and G is an abelian group which is not finitely generated,
then the G-group ring k[G] is an example of a graded Noetherian ring which is
not Noetherian.
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After giving some needed definitions and preliminary results in Section 2,
we show in Section 3 that, if R is a graded Noetherian ring and I is a proper
ideal of R generated by n homogeneous elements, then any prime ideal of R
minimal over I has h-height ≤ n (Theorem 3.6).

In Section 4 we prove that, if R is a Γ-graded Noetherian domain with
h-dimR = 1, then any homogeneous overring of R is G-graded Noetherian with
h-dimension ≤ 1. In fact, a more general statement is proved: Let R ⊆ A be
graded integral domains with homogeneous quotient fields K ⊆ L, respectively.
If R is graded Noetherian with h-dimR = 1 and L is finite over K, then A is
graded Noetherian with h-dimA ≤ 1 (Theorem 4.2).

In Section 5, as an application of Theorem 3.6 and Theorem 4.2, we give an
alternate proof of [16, Theorem 2.10] or [15, Theorem 9.1]: If R is a Γ-graded
Noetherian domain, then the integral closure of R is a G-graded Krull domain
(Theorem 5.3).

In Section 6 we show that, ifR is a graded Noetherian domain with h-dimR ≤
2, then the integral closure R′ of R is also a graded Noetherian domain with
h-dimR′ ≤ 2 (Theorem 6.8).

In the last section, we recall some well known results whose graded versions
fail to hold.

If the grading by Γ is trivial, i.e., every element of the graded ring R has
degree zero, then Theorem 3.6, Theorem 4.2, Theorem 5.3, and Theorem 6.8
are exactly the same as the generalized principal ideal theorem of Krull [11,
Theorem 152], the Krull-Akizuki theorem [12, Theorem 11.7], the Mori-Nagata
theorem [13, Theorem 33.10], and the Nagata theorem [13, Theorem 33.12],
respectively.

As mentioned earlier, there exist examples of graded Noetherian rings which
are not Noetherian. Thus the graded statements given in this paper could be
considered to be real generalizations of the corresponding non-graded state-
ments.

For more information on graded rings, the readers are referred to [1, 5, 6, 7,
9, 15, 16, 17, 18].

2. Preliminaries

This section contains several definitions and a few known results that will
be used in what follows.

Throughout the paper, we let Γ be a torsion-free cancellative commutative
monoid with quotient group G and let R =

⊕
γ∈Γ Rγ be a Γ-graded commuta-

tive ring with identity, unless otherwise stated.

Definition 2.1. Let R be a graded ring.

(1) Let h-Spec(R) denote the set of homogeneous prime ideals of R and let
h-Max(R) denote the set of ideals of R which are maximal in the set
of all proper homogeneous ideals of R. Then h-Max(R) ⊆ h-Spec(R).
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(2) The h-height of a homogeneous prime ideal P (denoted by h-htP ) is
defined to be the supremum of the lengths of chains of homogeneous
prime ideals descending from P .

(3) The h-dimension ofR (denoted by h-dimR) is defined to be sup{h-htP |
P ∈ h-Spec(R)}.

(4) R is called a graded Noetherian ring if R satisfies the ascending chain
condition (a.c.c.) on homogeneous ideals.

Definition 2.2. Let R be a graded integral domain.

(1) Let S be the set of nonzero homogeneous elements of R, then S is a
multiplicatively closed set. The quotient ring RS is a G-graded ring,
where RS =

⊕
γ∈G(RS)γ with each (RS)γ = {a

b | a ∈ Rα, b ∈ Rβ \
{0}, and α − β = γ}, and it is called the homogeneous quotient field
of R. Note that each nonzero homogeneous element of RS is a unit.

(2) An overring A, with R ⊆ A ⊆ RS , is called a homogeneous overring
if A =

⊕
γ∈G(A ∩ (RS)γ). Thus A is a G-graded integral domain with

Aγ = A ∩ (RS)γ for each γ ∈ G.
(3) The h-global transform of R is defined to be the set Rhg = {x ∈ RS |

M1 · · ·Mkx ⊆ R, where Mi ∈ h-Max(R), not necessarily distinct, k ≥
1}. Note that Rhg is a homogeneous overring of R.

(4) Let {Rλ}λ∈Λ be a family of homogeneous overrings of R such that
R =

∩
Rλ. The intersection R =

∩
Rλ is said to be homogeneously

locally finite if each nonzero homogeneous element of R is a unit in all
Rλ but a finite number of the Rλ.

(5) R is called a graded DVR if R has the unique nonzero homogeneous
prime ideal and it is principal (generated by a homogeneous element).

(6) R is called a graded Krull domain if it is completely integrally closed
and satisfies the a.c.c. on homogeneous v-ideals (For the definition of
v-ideal, see Section 5).

Theorem 2.3. Let R be a graded ring.

(1) [18, Lemma 2.3] R is a graded Noetherian ring if and only if each
homogeneous prime ideal of R is finitely generated.

(2) [1, Theorem 5.15] Assume, moreover, that R is an integral domain.
Then R is a graded Krull domain if and only if R =

∩
Vλ, where the

intersection is homogeneously locally finite and each Vλ is a homoge-
neous overring of R which is a graded DVR.

Theorem 2.4. Let R be a graded Noetherian domain.

(1) [16, Lemma 2.2 and Lemma 2.3] The complete integral closure R∗ and
the integral closure R′ of R are the same and it is a homogeneous
overring of R.

(2) [16, Theorem 1.4] Let A be a homogeneous overring of R contained in
Rhg. Then A is a graded Noetherian domain.
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3. The principal ideal theorem

In this section we prove a graded version of the principal ideal theorem of
Krull. The proof we give is adapted from [11].

We say that a nonzero graded R-module M is h-irreducible if M has no
nontrivial homogeneous submodules. Note that any h-irreducible graded R-
module is isomorphic to R/m as graded R-modules, where m is a maximal
homogeneous ideal of R.

For a nonzero graded R-module M , a chain M = M0 ⊃ M1 ⊃ · · · ⊃ Mr =
(0) of homogeneous submodules of M is called an h-composition series of M
if each Mi/Mi+1 is h-irreducible; the integer r is called the length of the h-
composition series.

Theorem 3.1 (cf. Jordan-Hölder [19, Chapter III, §11, Theorem 19]). If a
nonzero graded module M has an h-composition series of length r, then any h-
composition series of M has length r and any chain of homogeneous submodules
of M can be refined to an h-composition series.

Proof. We prove the theorem by induction on r. If r = 1, then the assertion
is obvious. Let r > 1. Assume that the theorem is true for graded modules
having an h-composition series of length less than r.

Let M = M0 ⊃ M1 ⊃ · · · ⊃ Mr = (0) be an h-composition series of length r.
Then by the induction hypothesis M can have no h-composition series of length
less than r. It suffices to show that any chain of homogeneous submodules of
M has length at most r.

Let M = N0 ⊃ N1 ⊃ · · · ⊃ Ns = (0) be a chain of distinct homogeneous
submodules of M . If N1 = M1, then since M1 has an h-composition series
M1 ⊃ · · · ⊃ Mr = (0) of length r− 1, by the induction hypothesis s− 1 ≤ r− 1
and hence s ≤ r. If N1 ⊂ M1, then M1 ⊃ N1 ⊃ N2 ⊃ · · · ⊃ Ns = (0) is a
chain of homogeneous submodules of M1 of length s. Again by the induction
hypothesis, s ≤ r − 1 and so s ≤ r.

Assume that N1 ̸⊆ M1. Then M1 + N1 = M . Note that M/M1 = (M1 +
N1)/M1

∼= N1/(M1 ∩N1) as graded modules. Since M/M1 is h-irreducible, so
is N1/(M1 ∩N1).

Since M1 has an h-composition series of length r − 1 and M1 ⊃ M1 ∩ N1,
by the induction hypothesis M1 ∩N1 has an h-composition series of length at
most r − 2. Then since there are no homogeneous submodules between N1

and M1 ∩N1, N1 has an h-composition series of length at most r − 1. By the
induction hypothesis, s− 1 ≤ r − 1 and hence s ≤ r. □

The length of an h-composition series of M is called the h-length of M and
denoted by hlM .

Lemma 3.2. Let R be a graded integral domain with h-dimR = 0. Then every
finitely generated graded R-module has finite h-length.
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Proof. Note that, since R has no nontrivial homogeneous ideals, R as a graded
R-module is h-irreducible. Let A be a nonzero finitely generated graded R-
module. Write A = Rx1+· · ·+Rxn, where each xi is a homogeneous element of
A. We will use induction on n. If n = 1, then A = Rx1

∼= R/(0 :R x1) as graded
R-modules. Since R is h-irreducible, (0 :R x1) = (0) and A is h-irreducible,
i.e., hlA = 1. Let n > 1 and set B := Rx2 + · · ·+Rxn. Then by the induction
hypothesis, B has finite h-length. Consider the chain A ⊇ B ⊇ (0). Since
A/B ∼= Rx̄1, it is (0) or h-irreducible. Therefore, hlA = hl (A/B) + hlB ≤
1 + hlB < ∞. □

Lemma 3.3. Let R be a graded Noetherian ring with h-dimR = 0. Then every
finitely generated graded R-module has finite h-length.

Proof. Since h-dimR = 0, Min(R) = h-Spec(R) = h-Max(R). By [16, Corol-
lary 1.2], there are only a finite number of minimal prime ideals, say P1, . . . , Pn.

Then we have P1 · · ·Pn ⊆ P1 ∩ · · · ∩ Pn =
√
(0). Since

√
(0) is a homogeneous

ideal, it is finitely generated and hence
√
(0)

k
= (0) for some k, which implies

that (P1 · · ·Pn)
k = (0).

Let A be a nonzero finitely generated graded R-module, and consider the
chain of homogeneous submodules

A ⊇ P1A ⊇ P 2
1A ⊇ · · · ⊇ P k

1 A ⊇ P k
1 P2A ⊇ P k

1 P
2
2A

⊇ · · · ⊇ P k
1 P

k
2 A ⊇ P k

1 P
k
2 P3A ⊇ · · · ⊇ P k

1 P
k
2 · · ·P k

nA = (0).

Let B and PiB be any two consecutive modules in this chain. Then since each
Pj is a finitely generated homogeneous ideal of R and A is a finitely generated
graded R-module, B/PiB is a finitely generated graded module over R/Pi.
Since R/Pi is a graded integral domain with h-dimR/Pi = 0, B/PiB has finite
h-length by Lemma 3.2. Therefore, hl (B/PiB) < ∞, and the sum hlA of these
terms is also finite. □

Lemma 3.4. Let u, y be nonzero homogeneous elements in a graded integral
domain. Then

(1) The modules (u, y)/(u) and (u2, uy)/(u2) are isomorphic as graded mod-
ules.

(2) Assume further that tu2 ∈ (y) implies tu ∈ (y). Then the modules
(u)/(u2) and (u2, y)/(u2, uy) are isomorphic as graded modules.

Proof. See the proof of [11, Theorem 143].
(1) Since u is a homogeneous element, the multiplication by u induces a

graded module isomorphism of (u, y)/(u) onto (u2, uy)/(u2).
(2) Multiplication by u induces a graded module isomorphism of R/(u) onto

(u)/(u2). Also, under the given assumption, multiplication by y induces a
graded module isomorphism of R/(u) onto (u2, y)/(u2, uy). □



454 CHANG HWAN PARK AND MI HEE PARK

Theorem 3.5 (cf. Principal Ideal Theorem [11, Theorem 142]). Let x be a
nonunit homogeneous element in a graded Noetherian ring R and let P be a
prime ideal minimal over (x). Then h-htP ≤ 1.

Proof. Suppose on the contrary that there is a chain P ⊃ P1 ⊃ P2 of distinct
homogeneous prime ideals. Replacing R by R/P2, and then considering RS\P ,
where S is the set of nonzero homogeneous elements of R, we may assume that
R is a graded Noetherian domain with the unique maximal homogeneous ideal
P .

Choose a nonzero homogeneous element y in P1. Let Ik denote the ideal
((y) :R xk), k = 1, 2, . . .. Then I1 ⊆ I2 ⊆ · · · is an ascending chain of homoge-
neous ideals. Since R is graded Noetherian, the chain must become stable, say
at In. Then t ∈ ((y) : x2n) implies t ∈ ((y) : xn). Set u = xn, then tu2 ∈ (y)
implies tu ∈ (y). The ring T = R/(u2) is a graded Noetherian ring with ex-
actly one homogeneous prime ideal, and hence h-dimT = 0. Therefore, by
Lemma 3.3, every finitely generated graded T -module has finite h-length. This
applies in particular to the module (u, y)/(u2), which is a graded R-module
annihilated by u2 and hence a graded T -module. It follows from Lemma 3.4
that hl

(
(u, y)/(u2)

)
= hl ((u, y)/(u)) + hl

(
(u)/(u2)

)
= hl

(
(u2, uy)/(u2)

)
+

hl
(
(u2, y)/(u2, uy)

)
= hl

(
(u2, y)/(u2)

)
. Thus the graded T -module (u, y)/(u2)

and its graded submodule (u2, y)/(u2) have the same h-length. This is possi-
ble only if (u, y) = (u2, y), i.e., u ∈ (u2, y). Write u = cu2 + dy, where c, d
are homogeneous elements in R. Then 1 − cu ∈ ((dy) :R u). Since P is the
unique maximal homogeneous ideal of R and 1−cu ̸∈ P , the homogeneous ideal
((dy) :R u) must be equal to R. Thus we have u ∈ (dy) ⊆ (y) ⊆ P1. But P is
minimal over (x) and hence also minimal over (u) = (xn). This contradiction
completes the proof. □

Theorem 3.6 (cf. Generalized Principal Ideal Theorem [11, Theorem 152]).
Let R be a graded Noetherian ring and let I ̸= R be an ideal generated by n
homogeneous elements a1, . . . , an in R. Let P be a prime ideal minimal over
I. Then h-htP ≤ n.

Proof. Replacing R by RS\P , we may assume that R is a graded Noetherian
ring with P as its unique maximal homogeneous ideal.

Suppose that there exists a chain P = P0 ⊃ P1 ⊃ · · · ⊃ Pn+1 of homogeneous
prime ideals of length n + 1. Replacing P1 by the ideal which is maximal in
the family {P ′} of the homogeneous prime ideals such that P1 ⊆ P ′ ⊊ P , we
can also assume that there is no homogeneous prime ideal properly between P1

and P .
Since P is minimal over I, we can not have I ⊆ P1 and so may assume that

a1 ̸∈ P1. It follows that P is the unique prime ideal minimal over P1 + (a1)

and hence that P =
√
P1 + (a1). Since P is finitely generated, there exists

an integer t ≥ 1 such that P t ⊆ P1 + (a1). Consequently, we can write ati =
bi+ cia1, where bi, ci are homogeneous elements of R and bi ∈ P1, i = 2, . . . , n.
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Let J = (b2, . . . , bn), then J is a homogeneous ideal contained in P1. Since
h-htP1 ≥ n, by the induction hypothesis, P1 is not minimal over J . Let Q be
a homogeneous prime ideal such that J ⊆ Q ⊊ P1. The ideal Q+(a1) contains
some power of each of the ai’s, whence P is a prime ideal minimal over Q+(a1).
We now pass to the graded Noetherian ring R/Q. Then the image P/Q of P
is minimal over the image of (a1), but there is a chain P/Q ⊋ P1/Q ⊋ (0) of
homogeneous prime ideals. This contradicts Theorem 3.5. □

4. The Krull-Akizuki theorem

Let M be a torsion-free graded module over a graded integral domain R.
Then any two subsets of homogeneous elements of M which are maximally
linearly independent over R have the same cardinality, which is defined to be
the h-rank of M .

Lemma 4.1. Let R be a graded Noetherian domain with h-dimR = 1, K its
homogeneous quotient field, and M a torsion-free graded R-module of finite
h-rank r. Then for any nonzero homogeneous element a ∈ R, hl (M/aM) ≤
r · hl (R/aR).

Proof. First assume that M is finitely generated. Choose homogeneous ele-
ments x1, . . . , xr ∈ M which are linearly independent over R and set E =
Rx1 + · · · + Rxr. Then for any x ∈ M , there exists a nonzero homogeneous
element t ∈ R such that tx ∈ E. If we set C = M/E, then C is a finitely gen-
erated graded R-module and tC = 0 for some nonzero homogeneous element
t ∈ R. Since R/tR is a graded Noetherian ring with h-dim (R/tR) = 0 and C
is a finitely generated graded R/tR-module, hlC < ∞ by Lemma 3.3.

Let a be a nonzero homogeneous element of R. Then the exact sequence of
graded R-module homomorphisms

E/anE → M/anM → C/anC → 0

gives hl (M/anM) ≤ hl (E/anE) + hl (C/anC) ≤ hl (E/anE) + hl (C) for all
n > 0.

Now E and M are both torsion-free graded R-modules, aiE/ai+1E ∼= E/aE
as graded R-modules and similarly for M . Hence we have n · hl (M/aM) ≤
n · hl (E/aE) + hlC for all n > 0. Since both hl (M/aM) and hl (E/aE) are
finite (Lemma 3.3), the previous inequality implies hl (M/aM) ≤ hl (E/aE).

Since E = Rx1+· · ·+Rxr with x1, . . . , xr linearly independent homogeneous
elements over R, we have hl (E/aE) = r · hl (R/aR). This completes the proof
in the case that M is finitely generated.

If M is not finitely generated, take a finitely generated graded submodule
N̄ = Rȳ1 + · · ·+Rȳs of M̄ = M/aM , where each ȳi is a homogeneous element
of M̄ . Choose a homogeneous inverse image yi in M for each ȳi and set M1 =
Ry1 + · · · + Rys. Then since N̄ = (M1 + aM)/aM ∼= M1/(M1 ∩ aM) as
graded R-modules, we get hl (N̄) = hl (M1/(M1 ∩ aM)) ≤ hl (M1/aM1) ≤
r′ · hl (R/aR) ≤ r · hl (R/aR), where r′ is the h-rank of M1. The right-hand
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side is independent of N̄ , so that hl M̄ ≤ r · hl (R/aR) < ∞ and M̄ is in fact
finitely generated. □
Theorem 4.2 (cf. Krull-Akizuki Theorem [12, Theorem 11.7]). Let R ⊆ A be
graded integral domains with homogeneous quotient fields K ⊆ L, respectively.
Assume that R is graded Noetherian with h-dimR = 1 and L is finite over
K. Then A is graded Noetherian with h-dimA ≤ 1, and if J is a nonzero
homogeneous ideal of A, then A/J is a graded R-module of finite h-length.

Proof. SinceK is a graded integral domain with h-dimK = 0 and L is a finitely
generated graded K-module, L has finite h-length by Lemma 3.2. Let r be the
h-length of L as a graded K-module. Then A is a torsion-free graded R-module
of h-rank r. By Lemma 4.1, for any nonzero homogeneous element c of R, the
h-length of A/cA as a graded R-module, hlR (A/cA), is finite.

Now let J be a nonzero homogeneous ideal of A and a a nonzero homoge-
neous element of J . Since L is finite over K, the quotient field of A is algebraic
over the quotient field of R. Therefore, a satisfies an equation of the form
cmam+ cm−1a

m−1+ · · ·+ c1a+ c0 = 0, where the ci are homogeneous elements
of R, not all zero. Since A is an integral domain, we may assume that c0 ̸= 0.
Then c0 ∈ J ∩R \ {0} and so hlR (A/J) ≤ hlR (A/c0A) < ∞.

Moreover, since hlA (J/c0A) ≤ hlR (J/c0A) ≤ hlR (A/c0A) < ∞, J/c0A is
a finitely generated A-module and hence J is a finitely generated A-module.
Therefore, A is a graded Noetherian ring.

If P is a nonzero homogeneous prime ideal of A, then A/P is a graded
Noetherian domain of finite h-length as a graded A-module (and hence as a
graded A/P -module). We will show that P is a maximal homogeneous ideal
of A. Let I be a nonzero minimal homogeneous ideal of A/P and let x be a
nonzero homogeneous element of I. Then xI ⊆ I. By the minimality of I,
we have xI = I, and consequently, x = xa for some a ∈ I. Then a = 1, so
I = A/P . Thus A/P has no nontrivial homogeneous ideals and hence P is a
maximal homogeneous ideal of A. Therefore, h-dimA ≤ 1. □

5. The Mori-Nagata theorem

It was shown in [16, Section 2] and [15, Theorem 9.1] that the integral closure
of a graded Noetherian domain is a graded Krull domain, which is a graded
version of the Mori-Nagata theorem. The proof could be simplified by using
induction as in [2, 10]. The key will be Theorem 3.6, which is a variation of
the generalized principal ideal theorem.

We recall first the v- and t-operations. For each nonzero fractional ideal I
of an integral domain R with quotient field F , Iv = (I−1)−1, where I−1 =
{x ∈ F | xI ⊆ R}, and It =

∪
{Jv | J is a finitely generated subideal of I}. If

I = Iv, then I is called a v-ideal or a divisorial ideal, and if I = It, then I is
called a t-ideal.

We denote by h-t-Max(R) the set of ideals of a graded integral domain
R which are maximal in the set of all proper homogeneous t-ideals of R. It
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is easy to check that any prime ideal minimal over a homogeneous t-ideal is
a homogeneous t-ideal and any proper homogeneous t-ideal is contained in a
maximal homogeneous t-ideal. Thus each ideal in the set h-t-Max(R) is a prime
ideal and the set h-t-Max(R) is nonempty unless R is equal to its homogeneous
quotient field.

Lemma 5.1. Let R be a graded integral domain and let S be the set of nonzero
homogeneous elements of R. Then R =

∩
P∈h-t-Max(R) RS\P .

Proof. Since the intersection
∩

P∈h-t-Max(R) RS\P is a homogeneous overring of

R, it suffices to show that each homogeneous element of the ring∩
P∈h-t-Max(R)

RS\P

is contained in R. Let x be a homogeneous element of the ring∩
P∈h-t-Max(R)

RS\P .

Then the ideal (R :R x) is a homogeneous t-ideal of R which is not contained
in any maximal homogeneous t-ideal. Therefore, we have (R :R x) = R, which
implies that x ∈ R. □

Lemma 5.2. Let R be a graded Noetherian domain and let S be the set of
nonzero homogeneous elements of R. Then the intersection

R =
∩

P∈h-t-Max(R)

RS\P

is homogeneously locally finite.

Proof. Let a be a nonzero homogeneous element of R. Suppose that a is con-
tained in infinitely many maximal homogeneous t-ideals of R, say P1, P2, . . ..

Set Ik =
∩k

i=1 Pi, k = 1, 2, . . .. Since each Pi is a finitely generated t-ideal, it
is divisorial. Therefore, {Ik}∞k=1 is a strictly descending chain of homogeneous
divisorial ideals. Thus we have an infinite chain of homogeneous integral ideals
aI1

−1 ⊊ aI2
−1 ⊊ · · · , which contradicts the fact that R is a graded Noetherian

domain. □

Theorem 5.3 (cf. Mori-Nagata [13, Theorem 33.10]). Let R be a graded
Noetherian domain. Then the integral closure R′ of R is a graded Krull domain.

Proof. By Lemma 5.2, R =
∩

M∈h-t-Max(R) RS\M is homogeneously locally fi-

nite. Then by [16, Lemma 2.2 and Lemma 2.3], we have

R′ =
∩

M∈h-t-Max(R)

(RS\M )′

and it is also homogeneously locally finite. In view of [1, Theorem 5.15], it
suffices to show that each (RS\M )′ is a graded Krull domain. Thus by replacing
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R with RS\M , we may assume that R is a graded Noetherian domain with the
unique maximal homogeneous ideal M . Then by Theorem 3.6, h-dimR =
h-htM < ∞. We will prove the theorem by induction on h-dimR := n.

If n = 1, then R′ is a completely integrally closed graded Noetherian domain
(Theorem 4.2) and hence a graded Krull domain.

Let n > 1. Assume that the assertion is true for the graded Noetherian
domains with h-dimension less than n.

Let A = R′∩Rhg. Then A is a homogeneous overring of R contained in Rhg

and hence A is a graded Noetherian domain by [16, Theorem 1.4]. Again by
Lemma 5.2 and [16, Lemma 2.2 and Lemma 2.3], A′ =

∩
P∈h-t-Max(A)(AT\P )

′

is homogeneously locally finite, where T is the set of nonzero homogeneous
elements of A. We will show that for each P ∈ h-t-Max(A), (AT\P )

′ is a
graded Krull domain.

Consider the case where P is not a maximal homogeneous ideal of A. Since
A is integral over R, P ∩ R is not a maximal homogeneous ideal of R and
hence h-dimAT\P = h-htP ≤ h-ht (P ∩ R) < h-htM = h-dimR = n. By the
induction hypothesis, (AT\P )

′ is a graded Krull domain.

Assume now that P is a maximal homogeneous ideal of A. Then PP−1 = P
or A. Suppose that PP−1 = P . Then P−1 = (P : P ) ⊆ A′ = R′ since P is a
finitely generated ideal of A. Also, P−1 = (A : P ) ⊆ (Rhg : P ∩ R) = (Rhg :
M) = Rhg. Therefore, P−1 ⊆ R′ ∩ Rhg = A, which implies that Pv = A. But
since P is a finitely generated t-ideal of A, it is a divisorial ideal of A. We reach
a contradiction. Therefore, P is invertible.

We claim that h-htP = 1. Suppose that there exists a nonzero homogeneous
prime ideal Q properly contained in P . Then Q ⊆

∩∞
k=1 P

k [4, Theorem 7.6].
Choose a nonzero homogeneous element a ∈ Q. Then we have an infinite chain
of homogeneous integral ideals aP−1 ⊊ a(P 2)−1 ⊊ · · · , which contradicts the
fact that A is a graded Noetherian domain.

Thus we have h-dimAT\P = h-htP = 1. Then by Theorem 4.2, (AT\P )
′ is

a graded Krull domain.
Since A′ =

∩
P∈h-t-Max(A)(AT\P )

′ is homogeneously locally finite and each

(AT\P )
′ is a graded Krull domain, it follows that A′ = R′ is a graded Krull

domain. □

6. The Nagata theorem

In this section we generalize the following Nagata theorem to a graded Noe-
therian domain: If R is a Noetherian domain with dimR ≤ 2, then the integral
closure R′ of R is a Noetherian domain. We follow the proof by Nishimura
[14]. As in his proof, the graded versions of the Krull-Akizuki theorem (The-
orem 4.2), the Mori-Nagata theorem (Theorem 5.3), and the Mori-Nishimura
theorem (Theorem 6.7) will play critical roles in our proof of the main theorem,
Theorem 6.8.
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Lemma 6.1. Let M be a finitely generated graded module over a graded Noe-
therian ring R. Then M is a graded Noetherian R-module, i.e., every graded
R-submodule of M is finitely generated.

Proof. We prove the assertion by induction on the number of generators of M .
If M is generated by the empty set, then M = {0} and the assertion is obvious.
Assume that M = Rx1 + · · · + Rxn, where each xi is a homogeneous element
of M . Set M ′ = Rx2 + · · · + Rxn. Then by the induction hypothesis, M ′ is
graded Noetherian.

Now let N be a graded R-submodule of M . Let I be the set of elements
a of R such that ax1 ∈ N + M ′, i.e., I = ((N + M ′) :R x1). Then since I is
a homogeneous ideal of R, I is generated by a finite number of homogeneous
elements of R, say a1, . . . , am. For each i = 1, . . . ,m, let yi be a homogeneous
element of N such that yi−aix1 ∈ M ′, and let N ′ be the graded R-submodule
Ry1+· · ·+Rym of N . Then N = N ′+(N∩M ′). SinceM ′ is graded Noetherian,
N ∩M ′ is finitely generated and hence N is finitely generated.

Therefore, M is graded Noetherian. □

Lemma 6.2. Let R ⊂ A be graded rings with A integral over R. Then the
h-dimension of A equals the h-dimension of R. In particular, if R is a graded
Noetherian domain, then h-dimR′ = h-dimR.

Proof. Consider a chain P1 ⊂ P2 ⊂ · · · ⊂ Pn of homogeneous prime ideals of R.
Then by GU, there exists a chain Q1 ⊂ Q2 ⊂ · · · ⊂ Qn of prime ideals of A such
that Qi ∩R = Pi. Let Q

∗
i be the ideal generated by the homogeneous elements

in Qi. Then Q∗
i is a homogeneous prime ideal of A such that Q∗

i ∩R = Pi. By
INC, Q∗

i = Qi, i.e., Qi is homogeneous. Therefore, h-dimR ≤ h-dimA.
Conversely, let Q1 ⊂ · · · ⊂ Qn be a chain of distinct homogeneous prime

ideals of A. Then by INC, Q1 ∩ R ⊂ Q2 ∩ R ⊂ · · · ⊂ Qn ∩ R is a chain of
distinct prime ideals of R. Since each Qi ∩ R is a homogeneous ideal of R,
h-dimA ≤ h-dimR. □

Lemma 6.3. Let R be a graded ring, and let I1, . . . , In be homogeneous ideals
in R such that

∩n
i=1 Ii = (0) and each R/Ii is graded Noetherian. Then R is

graded Noetherian.

Proof. It suffices to consider the case n = 2.
Since (I1+I2)/I2 is a homogeneous ideal of the graded Noetherian ring R/I2,

there exist a finite number of homogeneous elements of I1, say a1, . . . , ar, such
that (I1 + I2)/I2 = ((a1, . . . , ar) + I2) /I2, i.e., I1 + I2 = (a1, . . . , ar) + I2. By
assumption that I1∩I2 = (0), we have I1 = (a1, . . . , ar). Similarly, I2 is finitely
generated.

Now let P be a homogeneous prime ideal of R. Then I1 ∩ I2 = (0) ⊆ P , and
hence I1 ⊆ P or I2 ⊆ P . Assume that I1 ⊆ P . Then since I1 and P/I1 are
finitely generated, so is P . Therefore, R is a graded Noetherian ring. □
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Lemma 6.4. Let R be a graded ring and let M be a faithful graded R-module.
If M is a graded Noetherian R-module, then R is a graded Noetherian ring.

Proof. SinceM is a graded Noetherian R-module, it is finitely generated. Write
M = Rx1 + · · · + Rxn, where each xi is a homogeneous element of M . Then
each Rxi is a graded Noetherian R-module and Rxi

∼= R/(0 :R xi) as graded
R-modules. Hence R/(0 :R xi) is a graded Noetherian ring. Now

∩n
i=1(0 :R

xi) = (0 :R M) = (0), because M is a faithful R-module. Therefore, the
conclusion follows from Lemma 6.3. □

Lemma 6.5. Let R be a graded ring and let M be a graded R-module which is
finitely generated and faithful over R. Assume that the set of submodules of M
of the form IM with I a homogeneous ideal of R satisfies the ascending chain
condition. Then R is a graded Noetherian ring.

Proof. By Lemma 6.4, it suffices to show that M is a graded Noetherian R-
module. Suppose not. Let S be the set of submodules of M of the form IM ,
where I is a homogeneous ideal of R and M/IM is not a graded Noetherian
R-module. Since (0) ∈ S, S is non-empty. By assumption, S has a maximal
element, say IM .

Replacing M by M/IM and R by R/(0 :R M/IM), we may assume that M
is not a graded Noetherian R-module, but for any nonzero homogeneous ideal
I of R, M/IM is a graded Noetherian R-module.

Let T be the set of graded R-submodules N of M such that M/N is a
faithful R-module. Since {0} ∈ T , T is non-empty. Give a partial ordering on
T by set inclusion.

We will show that T is inductive; that is, let {Nλ}λ∈Λ be a chain in T , then
N :=

∪
λ∈Λ Nλ is in T . It is obvious that N is a graded R-submodule of M .

Suppose that M/N is not faithful over R. Then there exists a nonzero element
a ∈ R such that a(M/N) = 0, i.e., aM ⊆ N . Since M is finitely generated
over R, aM ⊆ Nλ, i.e., a(M/Nλ) = 0 for some λ ∈ Λ. This contradicts the
fact that M/Nλ is faithful over R.

By Zorn’s lemma, T has a maximal element, say N0. Then M/N0 is a
faithful graded R-module. If M/N0 is a graded Noetherian R-module, then R
is a graded Noetherian ring by Lemma 6.4, and henceM is a graded Noetherian
R-module by Lemma 6.1. This contradicts our hypothesis.

ReplacingM byM/N0, we arrive at a gradedR-moduleM with the following
properties:

(1) M is not a graded Noetherian R-module;
(2) for any nonzero homogeneous ideal I of R, M/IM is a graded Noe-

therian R-module;
(3) for any nonzero graded submodule N of M , M/N is not faithful over

R.

Now let N be any nonzero graded submodule of M . By (3), (0 :R M/N) ̸=
(0). Since (0 :R M/N) is a nonzero homogeneous ideal of R, there exists a
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nonzero homogeneous element a ∈ R such that a(M/N) = 0, i.e., aM ⊆ N .
By (2), M/aM is a graded Noetherian R-module, so that N/aM is finitely
generated. But since M is finitely generated, so is aM , and hence N is finitely
generated. Thus, M is a graded Noetherian R-module, which contradicts (1).

□

Theorem 6.6 (cf. Eakin-Nagata [12, Theorem 3.7]). Let A be a graded Noe-
therian ring and let R be a graded subring of A such that A is finite over R.
Then R is also a graded Noetherian ring.

Proof. Since A is an extension ring of R, it is a faithful R-module. Therefore,
the conclusion follows directly from Lemma 6.5. □

Theorem 6.7 (cf. Mori-Nishimura [12, Theorem 12.7]). Let R be a graded
Krull domain and let XH(R) be the set of homogeneous prime ideals of R of
height 1. If R/P is a graded Noetherian domain for every P ∈ XH(R), then R
is a graded Noetherian domain.

Proof. By [18, Lemma 2.3], it suffices to show that each nonzero homogeneous
prime ideal Q of R is finitely generated. Choose a nonzero homogeneous ele-

ment a ∈ Q. Then by [1, Proposition 5.6], aR = P
(n1)
1 ∩ · · · ∩ P

(nr)
r , where

P1, . . . , Pr are distinct prime ideals in XH(R) and n1, . . . , nr are positive in-

tegers. If each R/P
(ni)
i is graded Noetherian, then by Lemma 6.3, R/aR is

graded Noetherian, and hence Q/aR is finitely generated. Thus it follows that
Q is finitely generated.

Therefore, it is enough to show that R/P (n) is graded Noetherian for every
P ∈ XH(R) and positive integer n.

Choose a nonzero homogeneous element a ∈ P \ P (2). Then aR = P ∩
P

(n2)
2 ∩ · · · ∩P

(nr)
r , where P, P2, . . . , Pr are distinct prime ideals in XH(R) and

n2, . . . , nr are positive integers. Choose a homogeneous element bi ∈ Pi \ P
for each i = 2, . . . , r. Let x = a

b
n2
2 ···bnr

r
(or, let x = a when aR = P ). Then x

is a homogeneous element in RS , where S is the set of nonzero homogeneous
elements of R. By [1, Proposition 5.5], Rq is a DVR for each q ∈ XH(R). Let
vq be the normalized additive valuation determined by Rq. Then vP (x) = 1
and vq(x) ≤ 0 for all q ∈ XH(R) \ {P}.

Set A = R[x], then A is a homogeneous overring of R.

Claim: A/xA ∼= R/P as graded rings.
Since vP (x) = 1, xA ⊆ xRP = PRP and hence xA∩R ⊆ P . Conversely, let

y be a homogeneous element in P . Then since vP (
y
x ) ≥ 0 and vq(

y
x ) ≥ 0 for

all q ∈ XH(R) \ {P}, y
x ∈ RS ∩ (

∩
q∈XH(R) Rq) = R [1, Theorem 5.8], and so

y ∈ xR ⊆ xA. Therefore, P ⊆ xA ∩R. Thus we have P = xA ∩R. Moreover,
A = R+ xA, and hence A/xA ∼= R/(xA ∩R) = R/P .
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By assumption, A/xA is a graded Noetherian ring. Since any homogeneous
prime ideal of A containing xnA contains xA, A/xnA is also a graded Noe-
therian ring by [18, Lemma 2.3]. Note that A/xnA is a graded R/(xnA ∩ R)-
module generated by the images 1, x, . . . , xn−1. Then it follows from The-
orem 6.6 that R/(xnA ∩ R) is a graded Noetherian ring. Moreover, since
xnA∩R ⊆ xnRP ∩R = PnRP ∩R = P (n), R/P (n) is also a graded Noetherian
ring. □

Theorem 6.8 (cf. Nagata Theorem [14]). Let R be a graded Noetherian do-
main with h-dimR ≤ 2. Then the integral closure R′ is also a graded Noether-
ian domain with h-dimR′ ≤ 2.

Proof. By Theorem 4.2 and [16, Lemma 2.2 and Lemma 2.3], we may assume
that h-dimR = 2. By Theorem 5.3 and Lemma 6.2, R′ is a graded Krull
domain with h-dimR′ = 2. Therefore, by Theorem 6.7, it suffices to show that
R′/P ′ is graded Noetherian for every P ′ ∈ XH(R′).

If P ′ is a maximal homogeneous ideal of R′, then R′/P ′ has no nontrivial
homogeneous ideals and hence it is trivially graded Noetherian.

Assume that P ′ is not a maximal homogeneous ideal of R′. Set P = P ′ ∩R.
Then since R′ is integral over R, P is not a maximal homogeneous ideal of R.
Since h-dimR = 2, h-htP = 1 and each (homogeneous) prime ideal of R′ lying
over P is of h-height 1.

Since R′ is a graded Krull domain, there exist only a finite number of ho-
mogeneous prime ideals of R′ lying over P , say P ′, P ′

2, . . . , P
′
r. Choose a ho-

mogeneous element xi ∈ P ′ \ P ′
i for each i = 2, . . . , r. Since R[x2, . . . , xr] is a

graded subring of R′ and it is finite over R, R[x2, . . . , xr] is a graded Noetherian
domain with h-dimension 2 by Lemma 6.1 and Lemma 6.2.

Replacing R by R[x2, . . . , xr], we may assume that P ′ is the unique homo-
geneous prime ideal of R′ lying over P .

Since RS\P is a graded Noetherian domain with h-dimRS\P = 1, it fol-
lows from Theorem 4.2 that (RS\P )

′/a(RS\P )
′ = R′

S\P /aR
′
S\P is a finite

RS\P -module for each nonzero homogeneous element a of RS\P . In particu-
lar, R′

S\P /P
′R′

S\P is a finite RS\P /PRS\P -module. Note that R′
S\P /P

′R′
S\P ,

RS\P /PRS\P are homogeneous quotient fields of R′/P ′, R/P , respectively.
Since R/P is a graded Noetherian domain with h-dimR/P = 1, R′/P ′ is
graded Noetherian by Theorem 4.2 again. □

7. Concluding remarks

We have only investigated the results which can be generalized to graded
rings. But there are some important properties of rings whose graded versions
do not hold. We end this paper by mentioning two well-known negative results.

One is among the most useful tools in the theory of commutative rings: If
an ideal I is not contained in any of the prime ideals P1, . . . , Pn, then there
exists an element a ∈ I \

∪n
i=1 Pi. However, the corresponding homogeneous
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version does not hold. That is, for a homogeneous ideal I and homogeneous
prime ideals P1, . . . , Pn, it may happen that all homogeneous elements in I are
in

∪n
i=1 Pi even though I is not contained in any of Pi.

Example 7.1. Let R = k[X,Y ] =
⊕

(n,m)∈N0×N0
kXnY m. Then h-Spec(R) =

{(0), (X), (Y ), (X,Y )}. Note that (X,Y ) ̸⊆ (X)∪ (Y ), but there does not exist
any homogeneous element in (X,Y ) \ (X) ∪ (Y ).

The other is that if P ⊂ Q are prime ideals in a Noetherian ring such that
ht(Q/P ) = 2, then there are infinitely many prime ideals between P and Q.
Ratliff Jr. and Rush show that the analogous result concerning homogeneous
prime ideals in a Z-graded Noetherian ring fails to hold. For specific examples,
see [17, Remark 3.12 and Example 4.9].
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