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A NOTE ON LPI DOMAINS

Kui Hu, Fanggui Wang, and Hanlin Chen

Abstract. A domain is called an LPI domain if every locally principal
ideal is invertible. It is proved in this note that if D is a LPI domain,
then D[X] is also an LPI domain. This fact gives a positive answer to an
open question put forward by D. D. Anderson and M. Zafrullah.

0. Introduction

Throughout this note the ring D will always be a domain with quotient
field K. A flat D-module M is called faithfully flat if M

⊗

D N = 0 implies
N = 0 for any D-module N . It has been proved in [2] that a nonzero ideal
I of D is faithfully flat if and only if I is locally principal, that is, IP is a
principle ideal of DP for any prime ideal P of D. Let A be a D-submodule
of K. Define A−1 = {z ∈ K | zA ⊆ D}. A finitely generated ideal J of D is
called a GV-ideal if J−1 = D. Denote by GV(D) the set of GV-ideals of D. A
domain D is called an H domain if any ideal I of D with the property I−1 = D
contains a GV-ideal. It is well-known that a finitely generated flat module over
a domain is projective. Hence a finitely generated flat ideal over a domain is
invertible. Domains with flat ideals invertible, called domains with property
P , were studied by Sally and Vasconcelos in [6] where they showed that if D
has property P , then so does D[X ]. In 1977, Glaz and Vasconcelos [2] asked
whether a faithfully flat ideal I of an H domain is projective, or equivalently,
is finitely generated. This question has received a lot of attention. In 2009,
D. D. Anderson and M. Zafrullah [1] introduced the notion of LPI domains.
A domain D is called an LPI domain if every nonzero locally principal ideal
is invertible, or equivalently, if every faithfully flat ideal is finitely generated.
Mori domains and therefore Noetherian domains are LPI domains. Obviously
an LPI domain is a generalization of domains with the property P , so is there
an LPI domain that does not have property P? The answer is simple: A non-
discrete rank one valuation domain is clearly an LPI domain but it does not
satisfy the property P , because the maximal ideal is flat but not invertible.
Anderson and Zafrullah proved in [1] that if the polynomial ring D[X ] is an
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LPI domain, then so is D and that if D is an integrally closed LPI domain,
then D[X ] is an LPI domain. Then they asked consequently whether D[X ] is
an LPI domain when D is an LPI domain. In Section 1 of this note, we give a
positive answer to this question.

Recently G. Picozza and F. Tartarone [5] put up with a counterexample
to Glaz and Vasconcelos’ question, that is, an H domain which is not an LPI
domain. This result has inspired further investigation on LPI domains. In
Section 2 of this note, we show that D is an LPI domain if and only if every
locally finitely generated and locally free submodule of Dn of rank n over
D is finitely generated. Thus, we give a module-theoretic description of LPI
domains.

1. Anderson-Zafrullah’s question

Let f ∈ D[X ]. Denote by c(f) the ideal of D generated by coefficients of f ,
which is called the content of f . Let J be an ideal of D[X ]. Denote by c(J)
the set of coefficients of elements in J , which is an ideal of D and is called the
content of J .

Lemma 1.1. Let J be a finitely generated ideal of D[X ]. Then J−1
⋂

K[X ] =
D[X ] if and only if c(J) ∈ GV(D).

Proof. See [4, Lemma 4.2]. �

Lemma 1.2. Let g ∈ D[X ] with g(0) 6= 0. Then the ideal J = (Xn, g) ∈
GV(D[X ]) for all n > 1.

Proof. We must prove that J−1 = D[X ]. Let α ∈ J−1. Notice that K[X ] is a
PID and the quotient field of D[X ] is also the quotient field of K[X ]. Hence

we may write α = h(X)
f(X) , where h(X) and f(X) are in K[X ] and are relatively

prime in K[X ]. By the definition of J−1, both h(X)Xn

f(X) and h(X)g
f(X) are elements

of D[X ]. Therefore f(X)|Xn and f(X)|g in the ring K[X ]. Hence we get that
f(X) is a unit in K[X ], that is, f(X) ∈ K. Consequently α ∈ K[X ], which
implies that J−1 ⊂ K[X ]. Clearly, c(J) = D since 1 ∈ c(J). Hence c(J)−1 = D
(i.e., c(J) ∈ GV(D)). Therefore, J−1 = J−1

⋂

K[X ] = D[X ] by Lemma 1.1,
that is, J ∈ GV(R[X ]). �

Lemma 1.3. Suppose A is a flat ideal of D and let J be a GV-ideal of D.

Suppose z ∈ D with Jz ⊆ A. Then z ∈ A.

Proof. See [6, Lemma 1.1]. �

Lemma 1.4. Let A be a flat ideal of D[X ] such that A is not contained in

XD[X ]. Then, for any n > 1, A
⋂

XnD[X ] = XnA.

Proof. It is obvious that A
⋂

XnD[X ] ⊇ XnA. We only need to prove the
reverse inclusion.
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Let h ∈ D[X ] with Xnh ∈ A. Because A is not contained in XD[X ], there
exists an element g ∈ A, but g 6∈ XD[X ]. Thus g(0) 6= 0. Thus we have
(Xn, g)h ⊆ A. By Lemma 1.2 and Lemma 1.3 we get h ∈ A. Therefore,
A
⋂

XnD[X ] ⊆ XnA. �

Lemma 1.5. Let R be a commutative ring and let I be a nilpotent ideal of R.

Let A be an R-module. Suppose x1, x2, . . . , xn ∈ A such that {x1, x2, . . . , xn}
is a generating set of A/IA. Then {x1, x2, . . . , xn} is a generating set of A.

Proof. Let B = Rx1+Rx2+ · · ·+Rxn. Then A = IA+B by hypothesis. Thus
we have A/B = I(A/B). Since I is nilpotent, we can assume that Im = 0 for
some m. Therefore A/B = I(A/B) = I2(A/B) = · · · = Im(A/B) = 0, that
imples A = B. �

Theorem 1.6. If A is a faithfully flat D[X ]-module, then A/XA must be a

faithfully flat D-module.

Proof. Let N be a D-module such that A/XA
⊗

D N = 0. Then we have the
isomorphism

A/XA
⊗

D N ∼= A
⊗

D[X]D[X ]/XD[X ]
⊗

D N = 0.

Since A is a faithfully flat D[X ]-module, we get N ∼= D[X ]/XD[X ]
⊗

D N = 0.
Therefore A/XA is a faithfully flat D-module. �

Lemma 1.7. Let A be a flat ideal of D[X ]. Then A is finitely generated if and

only if c(A) is finitely generated.

Proof. See [6, Theorem 3.1]. �

In [6] Sally and Vasconcelos showed that if flat ideals of a domain D are
finitely generated, then flat ideals of D[X ] are also finitely generated. Now we
begin to prove the main theorem. The trick of the following proof is due to
Sally and Vasconcelos and what we do is a slight modification for our goal.

Theorem 1.8. If D is an LPI domain, then D[X ] is also an LPI domain.

Proof. We only need to prove that faithfully flat ideals of the domain D[X ]
are finitely generated. Let A be a faithfully flat ideal of the domain D[X ].
Since

⋂

∞

n=1 X
nD[X ] = 0, we may assume A ⊆ XkD[X ] for some k > 0,

but A 6⊆ Xk+1D[X ]. Thus we have A = XkB for some ideal B of D[X ]
with B 6⊆ XD[X ]. Since A ∼= B, by replacing A with B we can assume
that A 6⊆ XD[X ]. Hence, for any n > 1, we have A

⋂

XnD[X ] = XnA by
Lemma 1.4. Therefore, the natural homomorphism A/XnA → D[X ]/XnD[X ]
is monomorphic.

By Lemma 1.4, the natural map A/XA → D[X ]/XD[X ] is a monomor-
phism. By Theorem 1.6, A/XA is a faithfully flat ideal of D ∼= D[X ]/XD[X ].
Hence A/XA is finitely generated by hypothesis. Let f1, f2, . . . , fk ∈ A such
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that A = XA + (f1, f2, . . . , fk). Set Rn = D[X ]/XnD[X ]. Denote by f the
image of f ∈ D[X ] in Rn. Then in the ring Rn = D[X ]/XnD[X ], we have

A = XA+ (f1, f2, . . . , fk).

Since I = (X) is a nilpotent ideal of the ring Rn = D[X ]/XnD[X ], by Lemma
1.5, we have

A = XnA+ (f1, f2, . . . , fk).

Notice that this is true for all n > 1. Let g be a nonzero element in A and
deg(g) = m. For a sufficiently large integer s such that s > m, we can find an
element h ∈ A and h1, h2, . . . , hk of D[X ] such that

g = Xsh+ h1f1 + · · ·+ hkfk.

Comparing coefficients of both side, we get that

c(g) ⊆ c(f1, f2, . . . , fk).

Hence we have c(A) = c(f1, f2, . . . , fk). Therefore, c(A) is finitely generated.
By Lemma 1.7, A is finitely generated and this fact completes the proof of the
theorem. �

2. Locally finitely generated and locally free modules

We begin this section with a generalization of Glaz-Vasconcelos’result on
faithfully flat ideal over a domain.

Proposition 2.1. Let (D,m) be a local domain and let A be a D-submodule

of K. Suppose A is flat. Then either A = mA or A is a principal fractional

ideal of D. In the later case, if a ∈ A−mA, then A = (a).

Proof. If A 6= mA, take an element a ∈ A but a 6∈ mA. For any b ∈ A, take a
nonzero s ∈ D such that sa, sb ∈ D. Thus (sa)b − (sb)a = 0. Since A is flat,
there are elements ci, di ∈ D and ui ∈ A such that a =

∑

i ciui, b =
∑

i diui,
and sadi = sbci for all i. Since a 6∈ mA, there is a ci 6∈ m, say c1. Thus c1 is a
unit. Hence b = c−1

1 d1a ∈ (a), which implies A = (a). �

Proposition 2.2. Let A be a nonzero D-submodule of K. Then A is faithfully

flat if and only if Am is a principal fractional ideal of Dm for any maximal

ideal m of D.

Proof. Suppose A is faithfully flat and let m be a maximal ideal of D. Hence
A/mA 6= 0. Since D/m is a field, we have Dm/mDm

∼= D/m. Consequently
Am/mAm 6= 0, that is, Am 6= mAm. So Am is a principal fractional ideal of Dm

by Proposition 2.1.
Conversely, if Am is a principal fractional ideal of Dm for any maximal ideal

m of D, then A is a flat D-module. Clearly, Am 6= mAm, and hence A 6= mA.
This means that A is faithfully flat. �
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We know that a faithfully flat ideal of an LPI domain D is finitely generated.
The following example shows that a faithfully flat D-submodule of K over an
LPI domain D, even if locally principal, need not to be finitely generated.

Example 2.3. This example is to show that faithfully flat D-submodules of
K are not necessarily finitely generated. Let A be a Z-submodule in Q which
is generated by the set { 1

p
| p is a prime integer in Z}. Z is Noetherian and

therefore an LPI domain. It is easy to check that A is faithfully flat and locally
principal but A is obviously not finitely generated.

Let M be a locally finitely generated free module. Then M is certainly
torsion-free of finite rank. If rank(M) = n, then M can be embedded in Kn.
Naturally, we may view an element in Kn as a row-vector over K. For xi =
(ai1, . . . , ain) ∈ Kn, i = 1, . . . , n, A = (aij) is an n× n matrix over K. Define
det(x1, . . . , xn) = det(A). LetM be anD-submodule ofKn. Denote by det(M)
the D-submodule of K generated by the set {det(x1, . . . , xn) |x1, . . . , xn ∈ M}
and call it the determinant of M . Clearly, if M is finitely generated, then
det(M) is a finitely generated fractional ideal of D; and if M ⊆ Dn, then
det(M) is an ideal of D.

Proposition 2.4. Let M be a D-submodule of Kn. Then we have:
(1) det(M) = 0 if and only if rank(M) < n.
(2) If N ⊆ M , then det(N) ⊆ det(M).
(3) Let S be a multiplicative subset of D. Then det(M)S = det(MS).

Proof. It is straightforward. �

Theorem 2.5. Let (D,m) be a local domain and let M be a D-submodule of

Kn of rank n. Then M is finitely generated free if and only if det(M) is a

nonzeo principal fractional ideal of D.

Proof. Suppose M is finitely generated free. Let {x1, . . . , xn} be a basis of M
and write a = det(x1, . . . , xn) ∈ K. For any y1, . . . , yn ∈ M , there is an n× n
matrix C over D such that







y1
...
yn






= C







x1

...
xn






.

Thus det(y1, . . . , yn) = det(C)a ∈ (a). It follows that det(M) = (a) is a
principal fractional ideal of D.

Conversely, suppose det(M) = (a) is principal. Then we may write a =
∑

i ri det(xi1, . . . , xin), ri ∈ D, xi1, . . . , xin ∈ M . For each i, we have

det(xi1, . . . , xin) = sia, si ∈ D.

Since D is a domain and a ∈ K, we have
∑

i risi = 1. Because D is local, we
have that si is a unit for some i. Therefore, we may assume x1, . . . , xn ∈ M
with det(x1, . . . , xn) = a. Hence x1, . . . , xn are linearly independent over D.
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Let x ∈ M . Then x = k1x1 + · · · + knxn, ki ∈ K, i = 2, . . . , n. Since
det(x, x2, . . . , xn) = k1a ∈ (a), we have k1 ∈ D. By the same argument, we
have all ki ∈ D. Therefore, M is free with a basis {x1, . . . , xn}. �

Theorem 2.6. Let M be a D-submodule of Kn of rank n. Suppose M is locally

finitely generated and locally free. Then det(M) is faithfully flat.

Proof. Let m be a maximal ideal of D. Then Mm is free of rank n by hypoth-
esis. Hence det(Mm) = det(M)m is principal over Dm by Proposition 2.4 and
Theorem 2.5. Consequently det(M) is faithfully flat. �

Theorem 2.7. Let M be a D-submodule of Kn of rank n. Suppose M is locally

finitely generated and locally free. If det(M) is finitely generated, then M is

finitely generated.

Proof. Let {det(xi1, . . . , xin) | i = 1, . . . , s} be a generating set of det(M).
For any maximal ideal m of D, there is some k (1 ≤ k ≤ s) such that
det(xk1, . . . , xkn) is a basis of det(Mm) by Theorem 2.6. Hence {xk1, . . . , xkn}
is a basis of Mm by Theorem 2.5. Therefore, {xij | i = 1, . . . , s; j = 1, . . . , n}
is a generating set of M . �

Corollary 2.8. The following statements are equivalent for a domain D.

(1) D is an LPI domain.

(2) Every locally finitely generated and locally free submodule of Dn of rank

n over D is finitely generated.

Proof. (1) ⇒ (2) Let M be a locally finitely generated and locally free submod-
ule of Dn of rank n over D. Thus M can be embedded into Kn. By Theorem
2.6, det(M) is a faithfully flat ideal of D. By hypothesis and Theorem 2.7, M
is finitely generated.

(2) ⇒ (1) It is obvious since every nonzero locally principal ideal of D is in
fact a locally finitely generated and locally free submodule of D of rank 1 over
D. �
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