POWER SERIES RINGS OVER PRÜFER v-MULTIPLICATION DOMAINS

Gyu Whan Chang

Abstract

Let D be an integral domain, $\left\{X_{\alpha}\right\}$ be a nonempty set of indeterminates over D, and $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ be the first type power series ring over D. We show that if D is a t-SFT Prüfer v-multiplication domain, then $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{D-\{0\}}$ is a Krull domain, and $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ is a Prüfer v multiplication domain if and only if D is a Krull domain.

1. Introduction

1.1. Motivation and results

Let D be an integral domain. An ideal I of D is called an SFT-ideal (an ideal of strong finite type) if there exist a finitely generated ideal $J \subseteq I$ and an integer $k \geq 1$ such that $a^{k} \in J$ for all $a \in I$. The ring D is called an SFT-ring if each ideal of D is an SFT-ideal. The t-operation analogue of the notions of SFT-ideals and SFT-rings, in [17], Kang-Park defined a nonzero ideal A of D to be a t-SFT-ideal if there exist a nonzero finitely generated ideal $B \subseteq A$ and a positive integer k such that $a^{k} \in B_{v}$ for all $a \in A_{t}$, and D to be a $t-S F T$ ring if each nonzero ideal of D is a t-SFT-ideal. (Definitions related to the t-operation will be reviewed in Section 1.2.) It is known that D is an SFT-ring (resp., a t-SFT-ring) if and only if each prime ideal (resp., prime t-ideal) of D is an SFT-ideal (resp., a t-SFT-ideal) [3, Proposition 2.2] (resp., [17, Proposition $2.1]$). Hence, a t-SFT-ring contains an integral domain whose prime t-ideals are of finite type (see [5, Section 5] for such an integral domain). A Mori domain is an integral domain that satisfies the ascending chain condition on integral v-ideals. Clearly, a Noetherian domain is a Mori domain, and a Mori domain is a t-SFT-ring. It is well known that D is a Krull domain if and only if D is a completely integrally closed Mori domain, if and only if D is a Mori Prüfer v multiplication domain (PvMD) (cf. [19, Theorem 2.5]). Hence, a Krull domain is a t-SFT PvMD. For more on basic properties of Krull domains, the reader can be referred to [13, Sections 43 and 44].

Let $\left\{X_{\alpha}\right\}$ be a nonempty set of indeterminates over $D, D\left[\left\{X_{\alpha}\right\}\right]$ be the polynomial ring over D, and $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ be the first type power series ring over D, i.e., $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}=\bigcup D \llbracket X_{1}, \ldots, X_{n} \rrbracket$, where $\left\{X_{1}, \ldots, X_{n}\right\}$ runs over all finite subsets of $\left\{X_{\alpha}\right\}$; so if $\left|\left\{X_{\alpha}\right\}\right|<\infty$, then $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}=D \llbracket\left\{X_{\alpha}\right\} \rrbracket$ (cf. [13, Section 1] for the power series ring). It was shown in [1, Theorem 3.7] that if D is an SFT Prüfer domain, then $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}$ is a Krull domain. The purpose of this paper is to generalize [1, Theorem 3.7] to t-SFT P v MDs. Let $X^{1}(D)$ be the set of height-one prime ideals of D, $R=\bigcap_{P \in X^{1}(D)} D_{P}$, and $q f\left(D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}\right)$ be the quotient field of $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$. In Section 2, we show that if D is a t-SFT P v MD in which each maximal t ideal of D contains a height-one prime ideal, then R is a Krull domain and $R \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{R-\{0\}}} \cap q f\left(D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}\right)=D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}$. We also prove that if D is a t-SFT P $v \mathrm{MD}$, then $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}$ is a Krull domain, and $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ is a $\mathrm{P} v \mathrm{MD}$ if and only if D is a Krull domain. In Section 3, we show that D is a t SFT P v MD if and only if $D\left[\left\{X_{\alpha}\right\}\right]$ is a t-SFT P $v \mathrm{MD}$, if and only if $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is an SFT Prüfer domain, where $N_{v}=\left\{f \in D\left[\left\{X_{\alpha}\right\}\right] \mid c(f)_{v}=D\right\}$. Hence, if D is an SFT Prüfer domain, then $D\left[\left\{X_{\alpha}\right\}\right]$ is a t-SFT P $v \mathrm{MD}$. We finally prove that if K is the quotient field of D and X is an indeterminate over D, then $D+X K[X]$ is a t-SFT $\mathrm{P} v \mathrm{MD}$ if and only if D is a t-SFT $\mathrm{P} v \mathrm{MD}$.

1.2. Definitions related to the t-operation

Let D be an integral domain with quotient field K. Let $F(D)$ (resp., $f(D)$) be the set of nonzero (resp., nonzero finitely generated) fractional ideals of D; so $f(D) \subseteq F(D)$. For $I \in F(D)$, let $I^{-1}=\{x \in K \mid x I \subseteq D\}$, then $I^{-1} \in F(D)$. The v-operation is defined by $I_{v}=\left(I^{-1}\right)^{-1}$ and the t-operation is by $I_{t}=\bigcup\left\{F_{v} \mid F \in f(D)\right.$ and $\left.F \subseteq I\right\}$. Clearly, if $I \in F(D)$, then $I \subseteq I_{t} \subseteq I_{v}$, and if I is finitely generated, then $I_{t}=I_{v}$. The v - and t-operation are examples of the so-called star operations. For a review of star operations, the reader may look up [13, Sections 32 and 34]. If $*=v$ or t, then I is called a $*$-ideal if $I=I_{*}$ and a *-ideal of finite type if $I=B_{*}$ for some $B \in f(D)$. A *-ideal of D is called a maximal $*$-ideal if it is maximal among proper integral $*$-ideals of D. Let $*-\operatorname{Max}(D)$ be the set of all maximal $*$-ideals of D. It is well known that each proper integral t-ideal is contained in a maximal t-ideal; each maximal t-ideal is a prime ideal; $D=\bigcap_{P \in t-\operatorname{Max}(D)} D_{P}$; and $t-\operatorname{Max}(D) \neq \emptyset$ when D is not a field even though $v-\operatorname{Max}(D)$ can be empty as in the case of a rank-one non-discrete valuation domain D. An overring of D means a ring between D and K. We say that an overring R of D is t-linked over D if $I_{v}=D$ implies $(I R)_{v}=R$ for all $I \in f(D)$. It is known that R is t-linked over D if and only if $(Q \cap D)_{t} \subsetneq D$ for each prime t-ideal Q of R [9, Proposition 2.1].

An $I \in F(D)$ is said to be t-invertible if $\left(I I^{-1}\right)_{t}=D$, while D is a Prüfer v-multiplication domain ($\mathrm{P} v \mathrm{MD}$) if each nonzero finitely generated ideal of D is t-invertible. It is well known that D is a $\mathrm{P} v \mathrm{MD}$ if and only if D_{P} is a valuation domain for each maximal t-ideal P of $D[16$, Theorem 3.2]; hence D is a Prüfer
domain if and only if D is a $\mathrm{P} v \mathrm{MD}$ whose maximal ideals are t-ideals. Also, it is clear that an invertible ideal is a t-ideal, and hence every nonzero finitely generated ideal of a Prüfer domain is a t-ideal; so t-SFT Prüfer domains \Leftrightarrow SFT Prüfer domains. Let X be an indeterminate over D and $D[X]$ be the polynomial ring over D. An upper to zero in $D[X]$ is a nonzero prime ideal Q of $D[X]$ such that $Q \cap D=(0)$. We say that D is a $U M T$-domain if each upper to zero in $D[X]$ is a maximal t-ideal of $D[X]$. It is well known that D is an integrally closed UMT-domain if and only if D is a $\mathrm{P} v \mathrm{MD}[15$, Proposition 3.2].

2. Power series rings over a t-SFT PvMD

Let D be an integral domain with quotient field K. In this section, we show that if D is a t-SFT PvMD, then $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}$ is a Krull domain (Theorem 9). This is a generalization of Anderson-Kang-Park's result [1, Theorem 3.7] that if D is an SFT Prüfer domain, then $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}$ is a Krull domain. Many of the techniques for the proofs of Theorem 9(3) and Lemma 8(2) are borrowed from [1] and [4, Lemma 3.3] respectively, and the proofs of Proposition 2 and the (2)-(3) of Proposition 6 are similar to those of the counterparts in [1].

For a polynomial $f \in D\left[\left\{X_{\alpha}\right\}\right]$, let $c(f)$ denote the ideal of D generated by the coefficients of f; for an ideal A of $D\left[\left\{X_{\alpha}\right\}\right], c(A)$ denotes the ideal $\sum_{f \in A} c(f)$ of D; and $N_{v}=\left\{f \in D\left[\left\{X_{\alpha}\right\}\right] \mid c(f)_{v}=D\right\}$.
Lemma 1. (1) $\left\{P\left[\left\{X_{\alpha}\right\}\right]_{N_{v}} \mid P \in t-\operatorname{Max}(D)\right\}$ is the set of maximal ideals of $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$.
(2) The following statements are equivalent.
(a) D is a PvMD.
(b) $D\left[\left\{X_{\alpha}\right\}\right]$ is a PvMD.
(c) $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is a Prüfer domain.
(d) Every ideal A of $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is extended from D, i.e., $A=I D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ for some ideal I of D. In this case, I can be chosen so that I is finitely generated when A is finitely generated.
(3) D is a UMT-domain if and only if every prime ideal of $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is extended from D.

Proof. (1) and (2) [16, Proposition 2.1, Theorems 3.1 and 3.7]. Also, note that if $0 \neq f \in D\left[\left\{X_{\alpha}\right\}\right]$, then $c(f)$ is t-invertible, and hence $f D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}=$ $c(f) D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}} \quad\left[16\right.$, Theorem 2.12]. Thus, if $A=\left(f_{1}, \ldots, f_{n}\right) D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$, where $0 \neq f_{i} \in D\left[\left\{X_{\alpha}\right\}\right]$, then $I=\sum_{i=1}^{n} c\left(f_{i}\right)$ is finitely generated and $A=I D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$.
(3) Note that D is a UMT-domain if and only if D_{P} is a quasi-Prüfer domain for each prime t-ideal P of D, i.e., if Q is a prime ideal of $D_{P}\left[\left\{X_{\alpha}\right\}\right]$ with $Q \subseteq P D_{P}\left[\left\{X_{\alpha}\right\}\right]$, then $Q=\left(Q \cap D_{P}\right)\left[\left\{X_{\alpha}\right\}\right][7$, Lemma 2.1 and Corollary 2.4]. Thus, D is a UMT-domain if and only if for each prime t-ideal P of D, if Q is
a prime ideal of $D\left[\left\{X_{\alpha}\right\}\right]$ with $Q \subseteq P\left[\left\{X_{\alpha}\right\}\right]$, then $Q=(Q \cap D)\left[\left\{X_{\alpha}\right\}\right]$, if and only if every prime ideal of $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is extended from D by (1). (See [15, Theorem 3.1] for one indeterminate.)

An element $d \in D$ is said to be Archimedean if $\bigcap_{n=1}^{\infty} d^{n} D=(0)$ and d is non-Archimedean or bounded if d is not Archimedean, i.e., $\bigcap_{n=1}^{\infty} d^{n} D \neq(0)$. We say that D is Archimedean (resp., anti-Archimedean) if each nonzero element of D is Archimedean (resp., bounded). Recall from [1, Proposition 2.1] that if D is anti-Archimedean, then every nonzero prime ideal of D has infinite height (or equivalently, D has no height-one prime ideal).

Proposition 2 (cf. [1, Theorem 2.15]). $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is an anti-Archimedean domain if and only if D is an anti-Archimedean UMT-domain.

Proof. (\Rightarrow) If D is not a UMT-domain, there is an upper to zero Q in $D[X]$ that is not a maximal t-ideal, where $X \in\left\{X_{\alpha}\right\}$; so $Q \subseteq P[X]$ for some maximal t-ideal P of $D\left[15\right.$, Theorem 1.4]. Hence, $Q D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}} \subseteq P\left[\left\{X_{\alpha}\right\}\right]_{N_{v}} \subsetneq$ $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ and $\operatorname{ht}\left(Q D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}\right)=\operatorname{ht}\left(Q D\left[\left\{X_{\alpha}\right\}\right]\right)=\operatorname{ht} Q=1$, a contradiction because an anti-Archimedean domain has no height-one prime ideals. Thus, D is a UMT-domain. Next, if $0 \neq a \in D$, then $\bigcap_{n=1}^{\infty} a^{n} D[X]_{N_{v}} \neq(0)$. Hence if $0 \neq f \in \bigcap_{n=1}^{\infty} a^{n} D[X]_{N_{v}}$, then, for each integer $n \geq 1, f=\frac{a^{n} h_{n}}{g_{n}}$ for some $g_{n} \in N_{v}$ and $h_{n} \in D\left[\left\{X_{\alpha}\right\}\right] ;$ so $c(f) \subseteq c(f)_{v}=\left(c(f) c\left(g_{n}\right)\right)_{v}=c\left(f g_{n}\right)_{v}=$ $a^{n} c\left(h_{n}\right)_{v} \subseteq a^{n} D$. Thus, $(0) \neq c(f) \subseteq \bigcap_{n=1}^{\infty} a^{n} D$.
(\Leftarrow) Let Q be a prime ideal of $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$. Then $Q=P\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ for some prime ideal P of D by Lemma 1(3). So if $0 \neq d \in P \subseteq Q$, then (0) \neq $\bigcap_{n=1}^{\infty} d^{n} D \subseteq \bigcap_{n=1}^{\infty} d^{n} D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$, and hence Q contains a bounded element d. Thus, $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is an anti-Archimedean domain [1, Proposition 2.8].

Let R be a commutative ring with identity, and let I be an ideal of R. It is known that if every prime ideal of R minimal over I is the radical of a finitely generated ideal, then there are only a finite number of prime ideals minimal over $I[14$, Theorem 1.6], which was generalized by Chang as follows.

Lemma 3 ([6, Lemma 2.1]). Let I be an integral t-ideal of D. If every prime ideal of D minimal over I is the radical of a t-ideal of finite type, there are only finitely many prime ideals of D minimal over I.

If D is a t-SFT-ring, then every prime t-ideal of D is the radical of a t-ideal of finite type, and hence by Lemma 3, each t-ideal of D has only finitely many minimal prime ideals.

Corollary 4 (cf. [1, Proposition 2.3]). If D is a t-SFT PvMD, then the following statements are equivalent.
(1) D is an anti-Archimedean domain.
(2) $X^{1}(D)=\emptyset$.
(3) $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is an anti-Archimedean domain.

Proof. (1) $\Rightarrow(2)$ [1, Proposition 2.1].
$(2) \Rightarrow(1)$ Let a be a nonzero nonunit of D. Then, by Lemma 3, $a D$ has only finitely many minimal prime ideals Q_{1}, \ldots, Q_{m}, and since $a D$ is a t-ideal, each Q_{i} is a t-ideal. Since $X^{1}(D)=\emptyset$, each Q_{i} contains a nonzero prime ideal P_{i}; so $a \in Q_{i}-P_{i}$. Let $M \in t-\operatorname{Max}(D), n \geq 1$ be an integer, and $I=P_{1} \cap \cdots \cap P_{m}$. If $a^{n} D_{M}=D_{M}$, then $I D_{M} \subseteq D_{M}=a^{n} D_{M}$. Next, if $a^{n} D_{M} \subsetneq D_{M}$, then $I D_{M}=P_{i} D_{M} \subsetneq a^{n} D_{M} \subseteq Q_{i} D_{M} \subseteq M D_{M} \subsetneq D_{M}$ for some i, where the first equality follows because $P_{j} D_{M}=D_{M}$ for $P_{j} \neq P_{i}$. Hence, $a^{n} D=\bigcap_{M \in t-\operatorname{Max}(D)} a^{n} D_{M} \supseteq \bigcap_{M \in t-\operatorname{Max}(D)} I D_{M} \supseteq I$, and therefore $\bigcap_{n=1}^{\infty} a^{n} D \supseteq I \neq(0)$.
(1) $\Leftrightarrow(3)$ This follows directly from Proposition 2 because a $\mathrm{P} v \mathrm{MD}$ is an integrally closed UMT-domain.

We next show that if D is a t-SFT $\mathrm{P} v \mathrm{MD}$, there are t-SFT $\mathrm{P} v$ MDs D_{1} and D_{2} such that $D=D_{1} \cap D_{2}, X^{1}\left(D_{1}\right)=\emptyset$, and each maximal t-ideal of D_{2} contains a height-one prime ideal. We begin with the following lemma.
Lemma 5. Let D be a PvMD and $\{P\} \cup\left\{P_{\lambda}\right\}_{\lambda}$ be a family of prime t-ideals of D. Then $D_{P} \supseteq \bigcap_{\lambda} D_{P_{\lambda}}$ if and only if each finitely generated ideal contained in P is contained in some P_{λ}.

Proof. Let X be an indeterminate over D and $N_{v}=\left\{f \in D[X] \mid c(f)_{v}=D\right\}$. Then $D[X]_{N_{v}}$ is a Prüfer domain by Lemma 1(2) and $\left\{P[X]_{N_{v}}\right\} \cup\left\{P_{\lambda}[X]_{N_{v}}\right\}$ is a family of prime ideals of $D[X]_{N_{v}}$. Thus, $D[X]_{P[X]} \supseteq \bigcap_{\lambda} D[X]_{P_{\lambda}[X]}$ if and only if each finitely generated ideal contained in $P[X]_{N_{v}}$ is contained in some $P_{\lambda}[X]_{N_{v}}$ [13, Ex. 16 on p. 332]. Also, note that each ideal A of $D[X]_{N_{v}}$ is of the form $I[X]_{N_{v}}$ for some ideal I of D, and in this case, I can be chosen so that I is finitely generated when A is finitely generated by Lemma $1(2)$. Hence, each finitely generated ideal contained in P is contained in some P_{λ} if and only if each finitely generated ideal contained in $P[X]_{N_{v}}$ is contained in some $P_{\lambda}[X]_{N_{v}}$. Thus, it suffices to show that $D[X]_{P[X]} \supseteq \bigcap_{\lambda} D[X]_{P_{\lambda}[X]} \Leftrightarrow$ $D_{P} \supseteq \bigcap_{\lambda} D_{P_{\lambda}}$.
Claim 1. If P_{β} is a prime t-ideal of D and $0 \neq f \in D[X]$, then $\frac{1}{f} D_{P_{\beta}}(X)=$ $c(f)^{-1} D_{P_{\beta}}(X)$, where $D_{P_{\beta}}(X)=D_{P_{\beta}}[X]_{P_{\beta} D_{P_{\beta}}[X]}=D[X]_{P_{\beta}[X]}$.
Proof. $f D_{P_{\beta}}(X)=c_{\beta}(f) D_{P_{\beta}}(X)=c(f) D_{P_{\beta}}(X)$, where $c_{\beta}(f)=c(f) D_{P_{\beta}}$, because $D_{P_{\beta}}$ is a valuation domain. Note that $c(f)$ is finitely generated; so $\left(c(f) D_{P_{\beta}}\right)^{-1}$ $=c(f)^{-1} D_{P_{\beta}}$. Hence, $\left(c(f) D_{P_{\beta}}(X)\right)^{-1}=c_{\beta}(f)^{-1} D_{P_{\beta}}(X)=c(f)^{-1} D_{P_{\beta}}(X)$ [16, Proposition 2.2], and since $c(f) c(f)^{-1} \nsubseteq P_{\beta},\left(c(f) D_{P_{\beta}}(X)\right)\left(c(f) D_{P_{\beta}}(X)\right)^{-1}$ $=\left(c(f) c(f)^{-1}\right) D_{P_{\beta}}(X)=D_{P_{\beta}}(X)$. Thus, $f D_{P_{\beta}}(X)=c(f) D_{P_{\beta}}(X)$ implies $\frac{1}{f} D_{P_{\beta}}(X)=c(f)^{-1} D_{P_{\beta}}(X)$.
Claim 2. $D[X]_{P[X]} \supseteq \bigcap_{\lambda} D[X]_{P_{\lambda}[X]} \Leftrightarrow D_{P} \supseteq \bigcap_{\lambda} D_{P_{\lambda}}$.
Proof. $(\Rightarrow) \bigcap_{\lambda} D_{P_{\lambda}}=\left(\bigcap_{\lambda} D_{P_{\lambda}}(X)\right) \cap K \subseteq D_{P}(X) \cap K=D_{P} . \quad(\Leftarrow)$ Let $\frac{g}{f} \in \bigcap_{\lambda} D_{P_{\lambda}}(X)=\bigcap_{\lambda} D[X]_{P_{\lambda}[X]}$, where $0 \neq f, g \in D[X]$. Then $\frac{g}{f} D_{P_{\lambda}}(X) \subseteq$
$D_{P_{\lambda}}(X)$ for all λ, and hence $c(g) c(f)^{-1} \subseteq\left(c(g) c(f)^{-1}\right) D_{P_{\lambda}}(X)=\frac{g}{f} D_{P_{\lambda}}(X) \subseteq$ $D_{P_{\lambda}}(X)$ by Claim 1. Thus, $c(g) c(f)^{-1} \subseteq\left(\bigcap_{\lambda} D_{P_{\lambda}}(X)\right) \cap K=\bigcap_{\lambda} D_{P_{\lambda}} \subseteq D_{P}$. So $\frac{g}{f} \in \frac{g}{f} D_{P}(X)=\left(c(g) c(f)^{-1}\right) D_{P}(X) \subseteq D_{P}(X)$ by Claim 1. Therefore, $\bigcap_{\lambda} D_{P_{\lambda}}(X) \subseteq D_{P}(X)$.

An overring R of D is said to be t-flat over D if $R_{M}=D_{M \cap D}$ for each maximal t-ideal M of R. Clearly, a t-flat overring of D is t-linked over D. Moreover, if D is a $\mathrm{P} v \mathrm{MD}$, then each t-linked overring of D is t-flat over $D[18$, Proposition 2.10].

Proposition 6 (cf. [1, Lemma 3.5]). Let D be a t-SFT PvMD, Λ be a nonempty set of prime t-ideals of D, and $R=\bigcap_{P \in \Lambda} D_{P}$.
(1) R is a t-SFT PvMD.
(2) If no $P \in \Lambda$ contains a height-one prime ideal, then no prime t-ideal of R contains a height-one prime ideal.
(3) If each $P \in \Lambda$ contains a height-one prime ideal, then each prime t-ideal of R contains a height-one prime ideal.

Proof. (1) Note that R is t-linked over D [16, Theorem 3.8]; so R is a $\mathrm{P} v \mathrm{MD}$ [16, Corollary 3.9] that is t-flat over D [18, Proposition 2.10]. Thus, R is a t-SFT P v MD [17, Proposition 2.3].

For (2) and (3), let M be a prime t-ideal of R, and put $M \cap D=P$. Then R is a $\mathrm{P} v \mathrm{MD}$ by (1), and since R is t-linked over D, P is a t-ideal of D. Thus, $R_{M}=D_{P}$ is a valuation domain and $D_{P}=R_{M} \supseteq \bigcap_{Q \in \Lambda} D_{Q}$. Since D is a t-SFT ring, there is a nonzero finitely generated ideal I of D such that $P=\sqrt{I}$. Hence, by Lemma $5, I \subseteq P^{\prime}$ for some $P^{\prime} \in \Lambda$, and thus $P=\sqrt{I} \subseteq P^{\prime}$.
(2) If M contains a height-one prime ideal Q_{0}, then $Q_{0} \cap D \subseteq M \cap D=P \subseteq$ P^{\prime}, and since $D_{P}=R_{M}, \operatorname{ht}\left(Q_{0} \cap D\right)=1$. Hence, $P^{\prime} \in \Lambda$ contains a height-one prime ideal $Q_{0} \cap D$, a contradiction.
(3) Let P_{0} be a height-one prime ideal of D contained in P^{\prime}. Then, since $D_{P^{\prime}}$ is a valuation domain and $P \subseteq P^{\prime}$, we have $P_{0}=P_{0} D_{P^{\prime}} \cap D \subseteq P D_{P^{\prime}} \cap D=P$. Thus, $D_{P}=R_{M}$ implies that M contains a height-one prime ideal.

Let Λ be a set of prime ideals of D, and for convenience, we let $\bigcap_{P \in \Lambda} D_{P}=$ K when $\Lambda=\emptyset$. Then, by Corollary 4 and Proposition 6, we have:

Corollary 7. Let D be a t-SFT PvMD, Λ_{1} be the set of maximal t-ideals of D that contain no height-one prime ideal, Λ_{2} be the set of maximal t-ideals of D that contain a height-one prime ideal, and put $D_{i}=\bigcap_{P \in \Lambda_{i}} D_{P}$ for $i=1,2$.
(1) D_{1} and D_{2} are $t-S F T$ PvMDs such that $D_{1} \cap D_{2}=D$,
(2) $X^{1}\left(D_{1}\right)=\emptyset$; so D_{1} is anti-Archimedean, and
(3) each prime t-ideal of D_{2} contains a height-one prime ideal.

Clearly, $X^{1}(D)=\emptyset$ if and only if every prime ideal of D has infinite height, and if D is a Krull domain, then $t-\operatorname{Max}(D)=X^{1}(D)$. We recall that if D_{1} and
D_{2} are Krull domains that are subrings of a field L, then $D_{1} \cap D_{2}$ is a Krull domain [13, Corollary 44.10].

Lemma 8. Let D be at-SFT PvMD in which each maximal t-ideal contains a height-one prime ideal, $R=\bigcap_{P \in X^{1}(D)} D_{P}$, and $q f\left(D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}\right)$ be the quotient field of $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$.
(1) R is a Krull domain.

(3) $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}$ is a Krull domain.

Proof. (1) If $P \in X^{1}(D)$, then P is a t-ideal, and hence $P^{2} \subseteq A_{v} \subseteq P$ for some finitely generated ideal A of D [17, Proposition 2.6]. Hence, $\left(P D_{P}\right)^{2}=$ $P^{2} D_{P} \subseteq A_{v} D_{P}=\left(A D_{P}\right)_{v}=A D_{P} \subseteq P D_{P}$, where the third equality follows because A is t-invertible and the fourth equality is because D_{P} is a valuation domain. Thus, if $A D_{P}=P D_{P}$, then $P D_{P}$ is principal, and hence D_{P} is a rankone DVR. If $A D_{P} \subsetneq P D_{P}$, then $\left(P D_{P}\right)^{2} \subsetneq P D_{P}$, and so $P D_{P}$ is principal. Thus, D_{P} is a rank-one DVR.

Let $a \in D$ be a nonzero nonunit, and let Q be a prime ideal of D minimal over $a D$. Then Q is a t-ideal, and so $Q=\sqrt{A_{t}}$ for some finitely generated ideal A. Hence, there are only finitely many prime ideals minimal over $a D$ by Lemma 3, and thus there are only finitely many prime ideals in $X^{1}(D)$ containing a. This means that the intersection $R=\bigcap_{P \in X^{1}(D)} D_{P}$ is locally finite. Thus, $R=\bigcap_{P \in X^{1}(D)} D_{P}$ is a Krull domain.
(2) The containment (\supseteq) is clear. For the reverse containment, note that if $u \in R \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{R-\{0\}} \cap q f\left(D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}\right) \text {, then }}$

$$
u \in R \llbracket X_{1}, \ldots, X_{n} \rrbracket_{R-\{0\}} \cap q f\left(D \llbracket X_{1}, \ldots, X_{n} \rrbracket\right)
$$

for some $X_{1}, \ldots, X_{n} \in\left\{X_{\alpha}\right\}$; so it suffices to show that

$$
R \llbracket X_{1}, \ldots, X_{n} \rrbracket_{R-\{0\}} \cap q f\left(D \llbracket X_{1}, \ldots, X_{n} \rrbracket\right) \subseteq D \llbracket X_{1}, \ldots, X_{n} \rrbracket_{D-\{0\}}
$$

For convenience, let $T \llbracket X_{1}, \ldots, X_{k} \rrbracket=T \llbracket X_{k} \rrbracket$ for an integral domain T and an integer $k \geq 1, \xi\left(X_{1}, \ldots, X_{k}\right)=\xi\left(X_{k}\right)$ for any $\xi\left(X_{1}, \ldots, X_{k}\right) \in T \llbracket X_{k} \rrbracket, K_{n}$ be the quotient field of $D \llbracket X_{n} \rrbracket$, and $X^{1}(D)=\Lambda$.

Let $\mathcal{F}(\Lambda)$ be the family of finite subsets of Λ. For $\lambda=\left\{P_{\alpha_{1}}, \ldots, P_{\alpha_{r}}\right\} \in$ $\mathcal{F}(\Lambda)$, let \mathfrak{S}_{λ} denote the set of t-invertible ideals A of D such that $\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right)_{t} \subsetneq$ $A_{t} \subseteq D$ but $A \nsubseteq P_{\alpha_{i}}$ for $i=1, \ldots, r$ (hence, $A \nsubseteq P$ for all $P \in X^{1}(D)$ because $\left.\prod_{i=1}^{r} P_{\alpha_{i}} \subseteq A_{t}\right)$. If $A \in \mathfrak{S}_{\lambda}$, then

$$
P_{\alpha_{i}} \supseteq\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right)_{t}=\left(\left(\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right) A^{-1}\right) A\right)_{t} \text { and }\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right) A^{-1} \subseteq D .
$$

But, since $A \nsubseteq P_{\alpha_{i}}$ for $i=1, \ldots, r$, we have $\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right) A^{-1} \subseteq \bigcap_{i=1}^{r} P_{\alpha_{i}}$. Note that $\left(P_{\alpha_{i}}+P_{\alpha_{j}}\right)_{t}=D$ for $i \neq j$; so $\bigcap_{i=1}^{r} P_{\alpha_{i}}=\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right)_{t}$, and therefore $\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right)_{t}=\left(\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right) A^{-1}\right)_{t}$. In particular, if $A_{1}, A_{2} \in \mathfrak{S}_{\lambda}$, then $A_{1} A_{2}$ is
t-invertible,

$$
\left(A_{1} A_{2}\right)_{t} \supsetneq\left(\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right) A_{1} A_{2}\right)_{t}=\left(\left(\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right) A_{2}^{-1} A_{1}^{-1}\right) A_{1} A_{2}\right)_{t}=\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right)_{t}
$$

and $A_{1} A_{2} \nsubseteq P_{\alpha_{i}}$ for $i=1, \ldots, r$; so $A_{1} A_{2} \in \mathfrak{S}_{\lambda}$. Hence, \mathfrak{S}_{λ} is a multiplicatively closed set of ideals of D. Thus, if we let $D_{\lambda}=D_{\mathfrak{S}_{\lambda}}(:=\{\xi \in K \mid \xi A \subseteq D$ for some $\left.A \in \mathfrak{S}_{\lambda}\right\}$), then D_{λ} is t-linked over D [16, Lemma 3.10], D_{λ} is a t-SFT $\mathrm{P} v \mathrm{MD}$ by the proof of Proposition 6(1), and $\left(D: D_{\lambda}\right)=\left\{x \in K \mid x D_{\lambda} \subseteq\right.$ $D\}$ contains $\prod_{i=1}^{r} P_{\alpha_{i}}$ (for if $x \in D_{\lambda}$, then $x A \subseteq D$ for some $A \in \mathfrak{S}_{\lambda}$, and since $\prod_{i=1}^{r} P_{\alpha_{i}} \subseteq A_{t}$, we have $\left.x\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right) \subseteq x A_{t}=(x A)_{t} \subseteq D\right)$. Thus, $D \llbracket X_{n} \rrbracket_{D-\{0\}}=D_{\lambda} \llbracket X_{n} \rrbracket_{D_{\lambda}-\{0\}}=D_{\lambda} \llbracket X_{n} \rrbracket_{D-\{0\}}$.

Let $\mathfrak{S}=\bigcup_{\lambda \in \mathcal{F}(\Lambda)} \mathfrak{S}_{\lambda}$. If $A_{1}, A_{2} \in \mathfrak{S}$, then $A_{i} \in \mathfrak{S}_{\lambda_{i}}$ for some $\lambda_{i} \in \mathcal{F}(\Lambda)$. Note that $\lambda_{1} \cup \lambda_{2} \in \mathcal{F}(\Lambda)$ and $A_{i} \in \mathfrak{S}_{\lambda_{1} \cup \lambda_{2}} ;$ so $A_{1} A_{2} \in \mathfrak{S}_{\lambda_{1} \cup \lambda_{2}} \subseteq \mathfrak{S}$. Thus, \mathfrak{S} is a multiplicatively closed set of ideals of D and $D_{\mathfrak{S}}=\bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$.

Claim 1. $R=D_{\mathfrak{S}}$.
Proof. (\supseteq) If $x \in D_{\mathfrak{S}}$, then $x \in D_{\lambda}$ for some $\lambda \in \mathcal{F}(\Lambda)$, and so $x A \subseteq D$ for some $A \in \mathfrak{S}_{\lambda}$. Note that $A \nsubseteq P$ for all $P \in X^{1}(D)$; so $x \in x D_{P}=x A D_{P} \subseteq D_{P}$. Thus, $x \in \bigcap_{P \in X^{1}(D)} D_{P}=R$. ($\left.\subseteq\right)$ Let $y \in R$. Since $D \subseteq D_{\mathfrak{G}}$, we assume that $y \notin D$. Hence, if we let $A_{y}=\{r \in D \mid r y \in D\}$, then $A_{y} \nsubseteq P$ for all $P \in X^{1}(D), A_{y} \subsetneq D$, and A_{y} is a t-invertible t-ideal of D because D is a $\mathrm{P} v \mathrm{MD}$. Since D is a t-SFT-ring, by Lemma 3, there are only a finite number of prime ideals of D minimal over A_{y}, say, Q_{1}, \ldots, Q_{k}. By assumption and $D_{Q_{i}}$ being a valuation domain, each Q_{i} contains a unique prime ideal of $X^{1}(D)$, and hence there are finitely many (distinct) prime ideals P_{1}, \ldots, P_{m} in $X^{1}(D)$ that are contained in some Q_{i}. Let $I=\prod_{i=1}^{m} P_{i}$ and $M \in t-\operatorname{Max}(D)$. If $Q_{j} \subseteq M$ for some j, then $I D_{M} \subsetneq A_{y} D_{M} \subseteq Q_{j} D_{M} \subseteq D_{M}$ because $A_{y} \nsubseteq P_{i}$ for $i=1, \ldots, m$. Next, if $Q_{i} \nsubseteq M$ for $i=1, \ldots, k$, then $I D_{M} \subseteq D_{M}=A_{y} D_{M}$. Hence, $I_{t}=\bigcap_{M \in t-\operatorname{Max}(D)} I D_{M} \subseteq \bigcap_{M \in t-\operatorname{Max}(D)} A_{y} D_{M}=\left(A_{y}\right)_{t}=A_{y}[16$, Theorem 3.5], and since $A_{y} \nsubseteq P$ for all $P \in X^{1}(D)$, we have $I_{t} \subsetneq A_{y}$. Thus, $\lambda=\left\{P_{1}, \ldots, P_{m}\right\} \in \mathcal{F}(\Lambda), A_{y} \in \mathfrak{S}_{\lambda}$, and $y A_{y} \subseteq D$. Thus, $y \in D_{\lambda} \subseteq D_{\mathfrak{S}}$.
Claim 2. $R \llbracket X_{n} \rrbracket \cap K_{n}=\bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda} \llbracket X_{n} \rrbracket$.
Proof. (\supseteq) This follows because $R=\bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$ by Claim 1 and $D_{\lambda} \llbracket X_{n} \rrbracket \subseteq$ $D \llbracket X_{n} \rrbracket_{D-\{0\}} \subseteq K_{n}$ for each $\lambda \in \mathcal{F}(\Lambda)$. (\subseteq) Let $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ be a subset of R, and suppose that there exist $0 \neq d \in D$ and positive integers $\left\{m_{i}\right\}_{i=1}^{\infty}$ such that $d^{m_{i}} \xi_{i} \in D$. If $d D=D$, then $\xi_{i} \in D$, so we assume $d D \subsetneq D$. Hence, by Lemma 3 , there are only finitely many prime ideals $P_{\alpha_{1}}, \ldots, P_{\alpha_{r}}$ in $X^{1}(D)$ that are contained in some minimal prime ideals of $d D$ (cf. the proof of Claim 1). Let $\lambda=\left\{P_{\alpha_{1}}, \ldots, P_{\alpha_{r}}\right\}$ and $A_{\xi_{i}}=\left\{a \in D \mid a \xi_{i} \in D\right\}$. Clearly, $A_{\xi_{i}}$ is a t-invertible t-ideal and $A_{\xi_{i}} \nsubseteq P_{\alpha_{j}}$ for $j=1, \ldots, r$. Let $p \in \prod_{j=1}^{r} P_{\alpha_{j}}$ and $M \in t$ - $\operatorname{Max}(D)$. If $d \notin M$, then $p \xi_{i} \in D_{M}$. If $d \in M$, then $P_{\alpha_{j}} \subseteq M$ for some j, whence $p \xi_{i} \in$ $p R \subseteq P_{\alpha_{j}} D_{P_{\alpha_{j}}}=P_{\alpha_{j}} D_{M} \subsetneq D_{M}$. Hence, $p \xi_{i} \in \bigcap_{M \in t-\operatorname{Max}(D)} D_{M}=D$. Thus,
$\left(\prod_{j=1}^{r} P_{\alpha_{j}}\right)_{t} \subsetneq\left(A_{\xi_{i}}\right)_{t}=A_{\xi_{i}}$, and so $\xi_{i} \in D_{\lambda}$. By induction, we can easily show that if $k \geq 0$ is an integer, $\left\{\xi_{i}\left(X_{k}\right)\right\}_{i=1}^{\infty}$ is a subset of $R \llbracket X_{k} \rrbracket,\left\{m_{i}\right\}_{i=1}^{\infty}$ is a set of positive integers, and $0 \neq d\left(X_{k}\right) \in D \llbracket X_{k} \rrbracket$ such that $d\left(X_{k}\right)^{m_{i}} \xi_{i}\left(X_{k}\right) \in D \llbracket X_{k} \rrbracket$, then $\left\{\xi_{i}\left(X_{k}\right)\right\}_{i=1}^{\infty} \subseteq D_{\lambda} \llbracket X_{k} \rrbracket$ for some $\lambda \in \mathcal{F}(\Lambda)$ (see the proof of [4, Lemma 3.3]).

Let $\xi\left(X_{n}\right)=\frac{f\left(X_{n}\right)}{g\left(X_{n}\right)} \in R \llbracket X_{n} \rrbracket \cap K_{n}$, where $0 \neq f\left(X_{n}\right), g\left(X_{n}\right) \in D \llbracket X_{n} \rrbracket$, and write $\xi\left(X_{n}\right)=\sum_{i=0}^{\infty} \xi_{i}\left(X_{n-1}\right) X_{n}^{i}$ and $g\left(X_{n}\right)=\sum_{i=0}^{\infty} d_{i}\left(X_{n-1}\right) X_{n}^{i}$. We may assume that $d_{0}\left(X_{n-1}\right) \neq 0$, then

$$
\xi\left(X_{n}\right) g\left(X_{n}\right)=\sum_{k=0}^{\infty}\left(\sum_{i+j=k} \xi_{i}\left(X_{n-1}\right) d_{j}\left(X_{n-1}\right)\right) X_{n}^{k} \in D \llbracket X_{n} \rrbracket .
$$

Hence, $d_{0}\left(X_{n-1}\right)^{i+1} \cdot \xi_{i}\left(X_{n-1}\right) \in D \llbracket X_{n-1} \rrbracket$ for all $i \geq 0$, and thus $\left\{\xi_{i}\left(X_{n-1}\right)\right\} \subseteq$ $D_{\lambda} \llbracket X_{n-1} \rrbracket$ for some $\lambda \in \mathcal{F}(\Lambda)$ by the above paragraph. Thus, $\xi\left(X_{n}\right) \in D_{\lambda} \llbracket X_{n} \rrbracket$.

Finally, note that $R \llbracket X_{n} \rrbracket_{R-\{0\}}=R \llbracket X_{n} \rrbracket_{D-\{0\}}$; so if $u\left(X_{n}\right) \in R \llbracket X_{n} \rrbracket_{R-\{0\}} \cap$ K_{n}, then there is $0 \neq d \in D$ such that $d \cdot u\left(X_{n}\right) \in R \llbracket X_{n} \rrbracket \cap K_{n}$, and hence, by Claim 2, $d \cdot u\left(X_{n}\right) \in D_{\lambda} \llbracket X_{n} \rrbracket$ for some $\lambda \in \mathcal{F}(\Lambda)$. Therefore, $u\left(X_{n}\right) \in$ $D \llbracket X_{n} \rrbracket_{D-\{0\}}$ since $D_{\lambda} \llbracket X_{n} \rrbracket \subseteq D_{\lambda} \llbracket X_{n} \rrbracket_{D-\{0\}}=D \llbracket X_{n} \rrbracket_{D-\{0\}}$.
(3) Since R is a Krull domain, $R \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ is a Krull domain [12, Theorem 2.1] and $R \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{R-\{0\}}}$ is a Krull domain [13, Corollary 43.6]. Clearly, $q f\left(D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}\right)$ is a Krull domain, and thus $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}$ is a Krull domain by (2) and [13, Corollary 44.10].

We are now ready to prove the main result of this paper for which we let $\bigcap_{P \in X^{1}(D)} D_{P}=K$ when $X^{1}(D)=\emptyset$.

Theorem 9. If D is a t-SFT PvMD, then
(1) $R=\bigcap_{P \in X^{1}(D)} D_{P}$ is a Krull domain,
(2) D is a Krull domain if and only if $X^{1}(D)=t-\operatorname{Max}(D)$, and
(3) $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}$ is a Krull domain.

Proof. (1) If $X^{1}(D)=\emptyset$, then $R=K$, and hence R is a Krull domain, whence we assume that $X^{1}(D) \neq \emptyset$. However, this can be proved by an argument similar to the proof of Lemma 8(1).
(2) It is well known that if D is a Krull domain, then $X^{1}(D)=t-\operatorname{Max}(D)$. For the converse, note that if $X^{1}(D)=t-\operatorname{Max}(D)$, then $D=\bigcap_{P \in X^{1}(D)} D_{P}=$ R. Thus, by (1), D is a Krull domain.
(3) Let Λ_{i} and D_{i} for $i=1,2$ be as in Corollary 7. Note that if $\Lambda_{i}=\emptyset$, then $D_{i} \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}=K \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ is a Krull domain; so we assume that $\Lambda_{i} \neq \emptyset$ for $i=$ 1,2 . Then D_{1} is anti-Archimedean by Corollary 7, and thus $D_{1} \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D_{1}-\{0\}}}$ is a Krull domain $\left[1\right.$, Corollary 3.4]. Next, note that $D_{2} \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D_{2}-\{0\}}}$ is a Krull domain by Corollary 7(3) and Lemma 8(3), and

$$
D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}=D_{1} \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}} \cap D_{2} \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}
$$

$$
=D_{1} \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D_{1}-\{0\}} \cap D_{2} \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D_{2}-\{0\}}}, ~}
$$

where the second equality follows because D_{1} and D_{2} are overrings of D. Thus, $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}$ is a Krull domain [13, Corollary 44.10].

The next theorem shows that $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}$ is a Krull domain but $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ is not a Krull domain when D is a t-SFT PvMD but not a Krull domain.
Theorem 10. If D is a $t-S F T$ PvMD, then $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ is a PvMD if and only if D is a Krull domain.

Proof. Assume that D is a t-SFT PvMD. Then each prime t-ideal of D is a v-ideal [17, Proposition 2.10]; so if P is a prime t-ideal of D, then

$$
\left(P D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}\right)_{v}=P_{v} \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}=P \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1},
$$

and hence $P \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ is a t-ideal. Hence, $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{P \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}}}$ is a valuation domain, and therefore, D is a Krull domain [8, Theorem 3.3]. Conversely, if D is a Krull domain, then $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ is a Krull domain, and thus a $\mathrm{P} v \mathrm{MD}$.

3. Examples of t-SFT P v MDs

Let D be an integral domain with quotient field $K, D\left[\left\{X_{\alpha}\right\}\right]$ be the polynomial ring over D, and $N_{v}=\left\{f \in D\left[\left\{X_{\alpha}\right\}\right] \mid c(f)_{v}=D\right\}$.

Theorem 11. The following statements are equivalent for D.
(1) D is a t-SFT PvMD.
(2) $D\left[\left\{X_{\alpha}\right\}\right]$ is a t-SFT PvMD.
(3) $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is an SFT Prüfer domain.

Proof. (1) \Rightarrow (2) By Lemma $1(2), D\left[\left\{X_{\alpha}\right\}\right]$ is a P $v \mathrm{MD}$; so it suffices to show that every prime t-ideal of $D\left[\left\{X_{\alpha}\right\}\right]$ is a t-SFT ideal [17, Proposition 2.1]. For this, let Q be a prime t-ideal of $D\left[\left\{X_{\alpha}\right\}\right]$.

If $c(Q)_{t} \subsetneq D$, then $Q \cap N_{v}=\emptyset$, and so $Q=(Q \cap D)\left[\left\{X_{\alpha}\right\}\right]$ by Lemma 1(2) because D is a $\mathrm{P} v \mathrm{MD}$. Let $I \subseteq P(:=Q \cap D)$ be a nonzero finitely generated ideal and $k \geq 1$ be an integer such that $a^{k} \in I_{t}$ for all $a \in P$. If $0 \neq f \in P\left[\left\{X_{\alpha}\right\}\right]$ with $c(f)=\left(a_{1}, \ldots, a_{n}\right)$, then $f^{k} \in c\left(f^{k}\right)\left[\left\{X_{\alpha}\right\}\right] \subseteq c\left(f^{k}\right)_{v}\left[\left\{X_{\alpha}\right\}\right]=\left(c(f)^{k}\right)_{v}\left[\left\{X_{\alpha}\right\}\right]=$ $\left(a_{1}^{k}, \ldots, a_{n}^{k}\right)_{v}\left[\left\{X_{\alpha}\right\}\right] \subseteq I_{t}\left[\left\{X_{\alpha}\right\}\right]=\left(I\left[\left\{X_{\alpha}\right\}\right]\right)_{t}$, where the second and third equalities are from [13, Corollary 28.3] and [2, Lemma 3.3] respectively because $c(f)$ is t-invertible. Thus, Q is a t-SFT ideal.

Next, assume $c(Q)_{t}=D$. Then Q is a maximal t-ideal of $D\left[\left\{X_{\alpha}\right\}\right]$ and $Q \cap D=(0)$ (cf. [11, Proposition 2.2]); so ht $Q=1$ (cf. [11, Lemma 2.3]). Since $K\left[\left\{X_{\alpha}\right\}\right]$ is a UFD, there is an $f \in Q$ such that $Q K\left[\left\{X_{\alpha}\right\}\right]=f K\left[\left\{X_{\alpha}\right\}\right]$. Then $Q=Q K\left[\left\{X_{\alpha}\right\}\right] \cap$ $D\left[\left\{X_{\alpha}\right\}\right]=f K\left[\left\{X_{\alpha}\right\}\right] \cap D\left[\left\{X_{\alpha}\right\}\right]=f c(f)^{-1}\left[\left\{X_{\alpha}\right\}\right]$, and so if $0 \neq d \in c(f)$, then $d Q \subseteq f D\left[\left\{X_{\alpha}\right\}\right]$. Clearly, $\frac{d}{f} Q \subseteq D\left[\left\{X_{\alpha}\right\}\right]$, but $\frac{d}{f} \cdot f=d \in Q^{-1} Q-Q$. Hence $Q \subsetneq Q Q^{-1}$, and since Q is a maximal t-ideal, $\left(Q Q^{-1}\right)_{t}=D\left[\left\{X_{\alpha}\right\}\right]$, and so $Q=A_{t}$ for some finitely generated ideal $A \subseteq Q$. Thus, Q is a t-SFT ideal.
(2) $\Rightarrow(3) D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is flat over $D\left[\left\{X_{\alpha}\right\}\right]$, and thus $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is a t-SFT P v MD. Note that $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is a Prüfer domain by Lemma 1(2); so every ideal of $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is a t-ideal. Thus, $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is an SFT Prüfer domain.
(3) \Rightarrow (1) Let P be a prime t-ideal of D. Then $P\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is a proper prime ideal of $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$, and hence by (3) and Lemma 1(2), there is a finitely generated ideal
$I \subseteq P$ and an integer $k \geq 1$ such that $f^{k} \in I\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ for all $f \in P\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$. In particular, if $a \in P$, then $a^{k} \in I\left[\left\{X_{\alpha}\right\}\right]_{N_{v}} \cap K=I_{t}$ (cf. [16, Propositions 2.2(3) and 2.8(1)] for the equality).

If $\left|\left\{X_{\alpha}\right\}\right|=\infty$, then $D\left[\left\{X_{\alpha}\right\}\right]$ is not an SFT-ring because $\left(\left\{X_{\alpha}\right\}\right)$ is not an SFTideal. However, since an SFT Prüfer domain is a t-SFT PvMD, by Theorem 11, we have:

Corollary 12. If D is an SFT Prüfer domain, then $D\left[\left\{X_{\alpha}\right\}\right]$ is a t-SFT PvMD.
Remark 13. It is well known that D is a $\mathrm{P} v \mathrm{MD}$ if and only if $D\left[\left\{X_{\alpha}\right\}\right]$ is a $\mathrm{P} v \mathrm{MD}$, and a $\mathrm{P} v \mathrm{MD}$ is integrally closed. Hence, the $(1) \Leftrightarrow(2)$ of Theorem 11 also follows from [17, Corollary 2.14] that if D is integrally closed, D is a t-SFT-ring if and only if $D\left[\left\{X_{\alpha}\right\}\right]$ is a t-SFT-ring. Also, we use Theorem 11 to give other proofs of Corollary 4 and Theorem 9.
(1) Proof of Corollary 4. It suffices to show the implication (2) \Rightarrow (3). By Lemma $1(3), X^{1}\left(D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}\right)=X^{1}(D)=\emptyset$. Also, $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is an SFT Prüfer domain by Theorem 11, and therefore $D\left[\left\{X_{\alpha}\right\}\right]_{N_{v}}$ is an anti-Archimedean domain [1, Proposition 2.3].
(2) Proof of Theorem 9. If D is a t-SFT P $v \mathrm{MD}$, then $D[X]_{N_{v}}$ is an SFT Prüfer domain by Theorem 11, and hence $\left(D[X]_{N_{v}}\right) \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D_{[X]_{N_{v}}}-\{0\}} \text { is a Krull domain }}$ [1, Theorem 3.7]. Note that

$$
\left(D[X]_{N_{v}}\right) \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D[X]_{N_{v}}-\{0\}} \cap K \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}=D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}} . . . ~} .
$$

(For if $\xi \in\left(D[X]_{N_{v}}\right) \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D[X]_{N_{v}}-\{0\}} \cap K \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1} \text {, then } f \xi \in\left(D[X]_{N_{v}}\right) \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1} \cap, ~\left(\left\{X_{\alpha}\right\},\right.}$ $K \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ for some $0 \neq f \in D[X]_{N_{v}}$. Hence, if ω is one of the nonzero coefficients of ξ, then $f \omega \in K \cap D[X]_{N_{v}}=D$, and thus $f \in D$ and $f \xi \in D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$. Therefore, $\xi \in D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}$.) Clearly, $K \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ is a Krull domain. Thus, $D \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}$ is a Krull domain.

We end this paper with a theorem by which one can construct new t-SFT P v MDs from old ones (e.g., Krull domains).
Theorem 14. Let T be an integral domain, M be a nonzero maximal ideal of T, $\varphi: T \rightarrow T / M$ be the canonical homomorphism, D be a subring of T / M, and $R=$ $\varphi^{-1}(D)$. Then R is a t-SFT PvMD if and only if T / M is the quotient field of D, D and T are $t-S F T$ PvMDs, and T_{M} is a valuation domain such that $P^{2} \subsetneq P$ for all nonzero prime ideals P of T_{M}.

Proof. The result follows from the facts that (i) R is a $\mathrm{P} v \mathrm{MD}$ if and only if T / M is the quotient field of D, D and T are $\mathrm{P} v \mathrm{MDs}$, and T_{M} is a valuation domain [10, Theorem 4.1]; (ii) R is a t-SFT ring if and only if D and T are t-SFT-rings [17, Theorem 2.8]; (iii) if T is a t-SFT-ring, then T_{M} is a t-SFT-ring [17, Proposition 2.3]; and (iv) a valuation domain V is a t-SFT-ring if and only if V is an SFT-ring, if and only if $P^{2} \subsetneq P$ for all nonzero prime ideals P of V (by the definitions).
Corollary 15. Let X be an indeterminate over D, and let $R=D+X K[X]$. Then R is a t-SFT PvMD if and only if D is a t-SFT PvMD.

Proof. Let $T=K[X]$ and $M=X K[X]$. Then T is a t-SFT $\mathrm{P} v \mathrm{MD}, T / M \cong K$ is the quotient field D, and T_{M} is a rank-one DVR. Thus, the result follows directly from Theorem 14.

Example 16. Let D be a Krull domain with quotient field $K, V=K \llbracket X \rrbracket$ be the power series ring over K, and $R=D+X K \llbracket X \rrbracket$.
(1) R is a t-SFT $\mathrm{P} v \mathrm{MD}$ with a unique nonzero minimal prime ideal $X K \llbracket X \rrbracket$.
(2) $R \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{R-\{0\}}}$ is a Krull domain, but $R \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ is not a $\mathrm{P} v \mathrm{MD}$.
(3) D is a Dedekind domain if and only if R is a Prüfer domain.

Proof. (1) Note that $V=K \llbracket X \rrbracket$ is a rank-one DVR; so V is a t-SFT P $v \mathrm{MD}$. Thus, by Theorem 14, R is a t-SFT $\mathrm{P} v \mathrm{MD}$. Also, $X K \llbracket X \rrbracket$ is contained in every nonzero prime ideal of R, and hence $X K \llbracket X \rrbracket$ is a unique nonzero minimal prime ideal of R.
(2) By Theorem $9, R \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1_{R-\{0\}}}$ is a Krull domain. Clearly, R is not a Krull domain, and hence by Theorem $10, R \llbracket\left\{X_{\alpha}\right\} \rrbracket_{1}$ is not a Krull domain.
(3) It is obvious that a Krull domain is a Prüfer domain if and only if it is a Dedekind domain. Thus, R is a Prüfer domain if and only if D is a Prüfer domain [13, Exercise 13 on page 286], if and only if D is a Dedekind domain.

Acknowledgements. This work was supported by the Incheon National University Research Fund in 2013 (Grant No. 20130396).

References

[1] D. D. Anderson, B. G. Kang, and M. H. Park, Anti-Archimedean rings and power series rings, Comm. Algebra 26 (1998), 3223-3238.
[2] D. D. Anderson and M. Zafrullah, Almost Bezout domains, J. Algebra 142 (1991), 285-309.
[3] J. Arnold, Power series rings over Prüfer domains, Pacific J. Math. 44 (1973), 1-11.
[4] , Power series rings with finite Krull dimension, Indiana Univ. Math. J. 31 (1982), 897-911.
[5] G. W. Chang, A pinched-Krull domain at a prime ideal, Comm. Algebra 30 (2002), 3669-3686.
[6] , Spectral localizing systems that are t-splitting multiplicative sets of ideals, J. Korean Math. Soc. 44 (2007), 863-872.
[7] G. W. Chang and M. Fontana, Upper to zero in polynomial rings and Prüfer-like domains, Comm. Algebra 37 (2009), 164-192.
[8] G. W. Chang and D. Y. Oh, The rings $D((\mathcal{X}))_{i}$ and $D\{\{\mathcal{X}\}\}_{i}$, J. Algebra Appl. 12 (2013), 1250147 (11 pages).
[9] D. Dobbs, E. Houston, T. Lucas, and M. Zafrullah, t-linked overrings and Prüfer vmultiplication domains, Comm. Algebra 17 (1989), 2835-2852.
[10] M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra 181 (1996), 803-835.
[11] M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra 26 (1998), 1017-1039.
[12] R. Gilmer, Power series rings over a Krull domain, Pacific J. Math. 29 (1969), 543-549.
[13] \qquad , Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[14] R. Gilmer and W. Heinzer, Primary ideals with finitely generated radical in a commutative ring, Manuscripta Math. 78 (1993), 201-221.
[15] E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17 (1989), 19551969.
[16] B. G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_{v}}$, J. Algebra 123 (1989), 151-170.
[17] B. G. Kang and M. H. Park, A note on t-SFT-rings, Comm. Algebra 34 (2006), 31533165.
[18] D. J. Kwak and Y. S. Park, On t-flat overrings, Chinese J. Math. 23 (1995), 17-24.
[19] J. Mott and M. Zafrullah, On Krull domains, Arch. Math. 56 (1991), 559-568.
Department of Mathematics Education
Incheon National University
Incheon 22012, Korea
E-mail address: whan@inu.ac.kr

