J. Korean Math. Soc. ${\bf 53}$ (2016), No. 2, pp. 447–459 http://dx.doi.org/10.4134/JKMS.2016.53.2.447

POWER SERIES RINGS OVER PRÜFER v-MULTIPLICATION DOMAINS

GYU WHAN CHANG

ABSTRACT. Let *D* be an integral domain, $\{X_{\alpha}\}$ be a nonempty set of indeterminates over *D*, and $D[\![\{X_{\alpha}\}]\!]_1$ be the first type power series ring over *D*. We show that if *D* is a *t*-SFT Prüfer *v*-multiplication domain, then $D[\![\{X_{\alpha}\}]\!]_{1D-\{0\}}$ is a Krull domain, and $D[\![\{X_{\alpha}\}]\!]_1$ is a Prüfer *v*-multiplication domain if and only if *D* is a Krull domain.

1. Introduction

1.1. Motivation and results

Let D be an integral domain. An ideal I of D is called an SFT-ideal (an ideal of strong finite type) if there exist a finitely generated ideal $J \subseteq I$ and an integer $k \geq 1$ such that $a^k \in J$ for all $a \in I$. The ring D is called an SFT-ring if each ideal of D is an SFT-ideal. The t-operation analogue of the notions of SFT-ideals and SFT-rings, in [17], Kang-Park defined a nonzero ideal A of D to be a *t-SFT-ideal* if there exist a nonzero finitely generated ideal $B \subseteq A$ and a positive integer k such that $a^k \in B_v$ for all $a \in A_t$, and D to be a t-SFTring if each nonzero ideal of D is a t-SFT-ideal. (Definitions related to the t-operation will be reviewed in Section 1.2.) It is known that D is an SFT-ring (resp., a t-SFT-ring) if and only if each prime ideal (resp., prime t-ideal) of D is an SFT-ideal (resp., a t-SFT-ideal) [3, Proposition 2.2] (resp., [17, Proposition 2.1). Hence, a t-SFT-ring contains an integral domain whose prime t-ideals are of finite type (see [5, Section 5] for such an integral domain). A Mori domain is an integral domain that satisfies the ascending chain condition on integral v-ideals. Clearly, a Noetherian domain is a Mori domain, and a Mori domain is a t-SFT-ring. It is well known that D is a Krull domain if and only if D is a completely integrally closed Mori domain, if and only if D is a Mori Prüfer vmultiplication domain (PvMD) (cf. [19, Theorem 2.5]). Hence, a Krull domain is a t-SFT PvMD. For more on basic properties of Krull domains, the reader can be referred to [13, Sections 43 and 44].

©2016 Korean Mathematical Society

Received March 5, 2015.

²⁰¹⁰ Mathematics Subject Classification. 13A15, 13F05, 13F25.

Key words and phrases. t-operation, t-SFT PvMD, power series ring, Krull domain.

Let $\{X_{\alpha}\}$ be a nonempty set of indeterminates over $D, D[\{X_{\alpha}\}]$ be the polynomial ring over D, and $D[[{X_{\alpha}}]]_1$ be the first type power series ring over D, i.e., $D[[\{X_{\alpha}\}]]_1 = \bigcup D[[X_1, \ldots, X_n]]$, where $\{X_1, \ldots, X_n\}$ runs over all finite subsets of $\{X_{\alpha}\}$; so if $|\{X_{\alpha}\}| < \infty$, then $D[\![\{X_{\alpha}\}]\!]_1 = D[\![\{X_{\alpha}\}]\!]$ (cf. [13, Section 1] for the power series ring). It was shown in [1, Theorem 3.7] that if D is an SFT Prüfer domain, then $D[[{X_{\alpha}}]]_{1_{D-\{0\}}}$ is a Krull domain. The purpose of this paper is to generalize [1, Theorem 3.7] to t-SFT PvMDs. Let $X^1(D)$ be the set of height-one prime ideals of D, $R = \bigcap_{P \in X^1(D)} D_P$, and $qf(D[[\{X_\alpha\}]]_1)$ be the quotient field of $D[[\{X_\alpha\}]]_1$. In Section 2, we show that if D is a t-SFT PvMD in which each maximal tideal of D contains a height-one prime ideal, then R is a Krull domain and $R[[{X_{\alpha}}]]_{1_{R-\{0\}}} \cap qf(D[[{X_{\alpha}}]]_{1}) = D[[{X_{\alpha}}]]_{1_{D-\{0\}}}.$ We also prove that if D is a *t*-SFT PvMD, then $D[[{X_{\alpha}}]]_{1D-\{0\}}$ is a Krull domain, and $D[[{X_{\alpha}}]]_1$ is a PvMD if and only if D is a Krull domain. In Section 3, we show that D is a t-SFT PvMD if and only if $D[\{X_{\alpha}\}]$ is a t-SFT PvMD, if and only if $D[\{X_{\alpha}\}]_{N_v}$ is an SFT Prüfer domain, where $N_v = \{f \in D[\{X_\alpha\}] \mid c(f)_v = D\}$. Hence, if D is an SFT Prüfer domain, then $D[\{X_{\alpha}\}]$ is a $t\text{-}\mathrm{SFT}$ PvMD. We finally prove that if K is the quotient field of D and X is an indeterminate over D, then D + XK[X] is a t-SFT PvMD if and only if D is a t-SFT PvMD.

1.2. Definitions related to the *t*-operation

Let D be an integral domain with quotient field K. Let F(D) (resp., f(D)) be the set of nonzero (resp., nonzero finitely generated) fractional ideals of D; so $f(D) \subseteq F(D)$. For $I \in F(D)$, let $I^{-1} = \{x \in K \mid xI \subseteq D\}$, then $I^{-1} \in F(D)$. The v-operation is defined by $I_v = (I^{-1})^{-1}$ and the t-operation is by $I_t = \bigcup \{F_v \mid F \in f(D) \text{ and } F \subseteq I\}$. Clearly, if $I \in F(D)$, then $I \subseteq I_t \subseteq I_v$, and if I is finitely generated, then $I_t = I_v$. The v- and t-operation are examples of the so-called star operations. For a review of star operations, the reader may look up [13, Sections 32 and 34]. If * = v or t, then I is called a *-ideal if $I = I_*$ and a *-ideal of finite type if $I = B_*$ for some $B \in f(D)$. A *-ideal of D is called a *maximal* *-*ideal* if it is maximal among proper integral *-ideals of D. Let *-Max(D) be the set of all maximal *-ideals of D. It is well known that each proper integral t-ideal is contained in a maximal t-ideal; each maximal *t*-ideal is a prime ideal; $D = \bigcap_{P \in t-\operatorname{Max}(D)} D_P$; and $t-\operatorname{Max}(D) \neq \emptyset$ when D is not a field even though v-Max(D) can be empty as in the case of a rank-one non-discrete valuation domain D. An overring of D means a ring between Dand K. We say that an overring R of D is t-linked over D if $I_v = D$ implies $(IR)_v = R$ for all $I \in f(D)$. It is known that R is t-linked over D if and only if $(Q \cap D)_t \subsetneq D$ for each prime t-ideal Q of R [9, Proposition 2.1].

An $I \in F(D)$ is said to be *t-invertible* if $(II^{-1})_t = D$, while D is a *Prüfer v-multiplication domain* (PvMD) if each nonzero finitely generated ideal of D is *t*-invertible. It is well known that D is a PvMD if and only if D_P is a valuation domain for each maximal *t*-ideal P of D [16, Theorem 3.2]; hence D is a Prüfer

448

domain if and only if D is a PvMD whose maximal ideals are t-ideals. Also, it is clear that an invertible ideal is a t-ideal, and hence every nonzero finitely generated ideal of a Prüfer domain is a t-ideal; so t-SFT Prüfer domains \Leftrightarrow SFT Prüfer domains. Let X be an indeterminate over D and D[X] be the polynomial ring over D. An upper to zero in D[X] is a nonzero prime ideal Q of D[X] such that $Q \cap D = (0)$. We say that D is a UMT-domain if each upper to zero in D[X] is a maximal t-ideal of D[X]. It is well known that D is an integrally closed UMT-domain if and only if D is a PvMD [15, Proposition 3.2].

2. Power series rings over a t-SFT PvMD

Let D be an integral domain with quotient field K. In this section, we show that if D is a t-SFT PvMD, then $D[[{X_{\alpha}}]]_{1D-\{0\}}$ is a Krull domain (Theorem 9). This is a generalization of Anderson-Kang-Park's result [1, Theorem 3.7] that if D is an SFT Prüfer domain, then $D[[{X_{\alpha}}]]_{1D-\{0\}}$ is a Krull domain. Many of the techniques for the proofs of Theorem 9(3) and Lemma 8(2) are borrowed from [1] and [4, Lemma 3.3] respectively, and the proofs of Proposition 2 and the (2)-(3) of Proposition 6 are similar to those of the counterparts in [1].

For a polynomial $f \in D[\{X_{\alpha}\}]$, let c(f) denote the ideal of D generated by the coefficients of f; for an ideal A of $D[\{X_{\alpha}\}]$, c(A) denotes the ideal $\sum_{f \in A} c(f)$ of D; and $N_v = \{f \in D[\{X_{\alpha}\}] \mid c(f)_v = D\}$.

Lemma 1. (1) $\{P[\{X_{\alpha}\}]_{N_{v}} \mid P \in t\text{-}Max(D)\}$ is the set of maximal ideals of $D[\{X_{\alpha}\}]_{N_{v}}$.

- (2) The following statements are equivalent.
 - (a) D is a PvMD.
 - (b) $D[\{X_{\alpha}\}]$ is a PvMD.
 - (c) $D[\{X_{\alpha}\}]_{N_v}$ is a Prüfer domain.
 - (d) Every ideal A of D[{X_α}]_{N_v} is extended from D, i.e.,
 A = ID[{X_α}]_{N_v} for some ideal I of D. In this case, I can be chosen so that I is finitely generated when A is finitely generated.
- (3) D is a UMT-domain if and only if every prime ideal of $D[\{X_{\alpha}\}]_{N_v}$ is extended from D.

Proof. (1) and (2) [16, Proposition 2.1, Theorems 3.1 and 3.7]. Also, note that if $0 \neq f \in D[\{X_{\alpha}\}]$, then c(f) is t-invertible, and hence $fD[\{X_{\alpha}\}]_{N_{v}} = c(f)D[\{X_{\alpha}\}]_{N_{v}}$ [16, Theorem 2.12]. Thus, if $A = (f_{1}, \ldots, f_{n})D[\{X_{\alpha}\}]_{N_{v}}$, where $0 \neq f_{i} \in D[\{X_{\alpha}\}]$, then $I = \sum_{i=1}^{n} c(f_{i})$ is finitely generated and $A = ID[\{X_{\alpha}\}]_{N_{v}}$.

(3) Note that D is a UMT-domain if and only if D_P is a quasi-Prüfer domain for each prime t-ideal P of D, i.e., if Q is a prime ideal of $D_P[\{X_\alpha\}]$ with $Q \subseteq PD_P[\{X_\alpha\}]$, then $Q = (Q \cap D_P)[\{X_\alpha\}]$ [7, Lemma 2.1 and Corollary 2.4]. Thus, D is a UMT-domain if and only if for each prime t-ideal P of D, if Q is a prime ideal of $D[\{X_{\alpha}\}]$ with $Q \subseteq P[\{X_{\alpha}\}]$, then $Q = (Q \cap D)[\{X_{\alpha}\}]$, if and only if every prime ideal of $D[\{X_{\alpha}\}]_{N_v}$ is extended from D by (1). (See [15, Theorem 3.1] for one indeterminate.)

An element $d \in D$ is said to be Archimedean if $\bigcap_{n=1}^{\infty} d^n D = (0)$ and d is non-Archimedean or bounded if d is not Archimedean, i.e., $\bigcap_{n=1}^{\infty} d^n D \neq (0)$. We say that D is Archimedean (resp., anti-Archimedean) if each nonzero element of D is Archimedean (resp., bounded). Recall from [1, Proposition 2.1] that if D is anti-Archimedean, then every nonzero prime ideal of D has infinite height (or equivalently, D has no height-one prime ideal).

Proposition 2 (cf. [1, Theorem 2.15]). $D[\{X_{\alpha}\}]_{N_{v}}$ is an anti-Archimedean domain if and only if D is an anti-Archimedean UMT-domain.

Proof. (\Rightarrow) If D is not a UMT-domain, there is an upper to zero Q in D[X]that is not a maximal t-ideal, where $X \in \{X_{\alpha}\}$; so $Q \subseteq P[X]$ for some maximal t-ideal P of D [15, Theorem 1.4]. Hence, $QD[\{X_{\alpha}\}]_{N_{v}} \subseteq P[\{X_{\alpha}\}]_{N_{v}} \subseteq D[\{X_{\alpha}\}]_{N_{v}}$ and $\operatorname{ht}(QD[\{X_{\alpha}\}]_{N_{v}}) = \operatorname{ht}(QD[\{X_{\alpha}\}]) = \operatorname{ht}Q = 1$, a contradiction because an anti-Archimedean domain has no height-one prime ideals. Thus, Dis a UMT-domain. Next, if $0 \neq a \in D$, then $\bigcap_{n=1}^{\infty} a^{n}D[X]_{N_{v}} \neq (0)$. Hence if $0 \neq f \in \bigcap_{n=1}^{\infty} a^{n}D[X]_{N_{v}}$, then, for each integer $n \geq 1$, $f = \frac{a^{n}h_{n}}{g_{n}}$ for some $g_{n} \in N_{v}$ and $h_{n} \in D[\{X_{\alpha}\}]$; so $c(f) \subseteq c(f)_{v} = (c(f)c(g_{n}))_{v} = c(fg_{n})_{v} =$ $a^{n}c(h_{n})_{v} \subseteq a^{n}D$. Thus, $(0) \neq c(f) \subseteq \bigcap_{n=1}^{\infty} a^{n}D$.

(⇐) Let Q be a prime ideal of $D[\{X_{\alpha}\}]_{N_v}$. Then $Q = P[\{X_{\alpha}\}]_{N_v}$ for some prime ideal P of D by Lemma 1(3). So if $0 \neq d \in P \subseteq Q$, then (0) $\neq \bigcap_{n=1}^{\infty} d^n D \subseteq \bigcap_{n=1}^{\infty} d^n D[\{X_{\alpha}\}]_{N_v}$, and hence Q contains a bounded element d. Thus, $D[\{X_{\alpha}\}]_{N_v}$ is an anti-Archimedean domain [1, Proposition 2.8]. \Box

Let R be a commutative ring with identity, and let I be an ideal of R. It is known that if every prime ideal of R minimal over I is the radical of a finitely generated ideal, then there are only a finite number of prime ideals minimal over I [14, Theorem 1.6], which was generalized by Chang as follows.

Lemma 3 ([6, Lemma 2.1]). Let I be an integral t-ideal of D. If every prime ideal of D minimal over I is the radical of a t-ideal of finite type, there are only finitely many prime ideals of D minimal over I.

If D is a t-SFT-ring, then every prime t-ideal of D is the radical of a t-ideal of finite type, and hence by Lemma 3, each t-ideal of D has only finitely many minimal prime ideals.

Corollary 4 (cf. [1, Proposition 2.3]). If D is a t-SFT PvMD, then the following statements are equivalent.

- (1) D is an anti-Archimedean domain.
- (2) $X^1(D) = \emptyset$.
- (3) $D[{X_{\alpha}}]_{N_v}$ is an anti-Archimedean domain.

Proof. $(1) \Rightarrow (2)$ [1, Proposition 2.1].

 $(2) \Rightarrow (1)$ Let *a* be a nonzero nonunit of *D*. Then, by Lemma 3, *aD* has only finitely many minimal prime ideals Q_1, \ldots, Q_m , and since *aD* is a *t*-ideal, each Q_i is a *t*-ideal. Since $X^1(D) = \emptyset$, each Q_i contains a nonzero prime ideal P_i ; so $a \in Q_i - P_i$. Let $M \in t$ -Max(D), $n \ge 1$ be an integer, and $I = P_1 \cap \cdots \cap P_m$. If $a^n D_M = D_M$, then $ID_M \subseteq D_M = a^n D_M$. Next, if $a^n D_M \subsetneq D_M$, then $ID_M = P_i D_M \subsetneq a^n D_M \subseteq Q_i D_M \subseteq M D_M \subsetneq D_M$ for some *i*, where the first equality follows because $P_j D_M = D_M$ for $P_j \neq P_i$. Hence, $a^n D = \bigcap_{M \in t$ -Max $(D)} a^n D_M \supseteq \bigcap_{M \in t$ -Max $(D)} ID_M \supseteq I$, and therefore $\bigcap_{n=1}^{\infty} a^n D \supseteq I \neq (0)$.

(1) \Leftrightarrow (3) This follows directly from Proposition 2 because a PvMD is an integrally closed UMT-domain.

We next show that if D is a *t*-SFT PvMD, there are *t*-SFT PvMDs D_1 and D_2 such that $D = D_1 \cap D_2$, $X^1(D_1) = \emptyset$, and each maximal *t*-ideal of D_2 contains a height-one prime ideal. We begin with the following lemma.

Lemma 5. Let D be a PvMD and $\{P\} \cup \{P_{\lambda}\}_{\lambda}$ be a family of prime t-ideals of D. Then $D_P \supseteq \bigcap_{\lambda} D_{P_{\lambda}}$ if and only if each finitely generated ideal contained in P is contained in some P_{λ} .

Proof. Let X be an indeterminate over D and $N_v = \{f \in D[X] \mid c(f)_v = D\}$. Then $D[X]_{N_v}$ is a Prüfer domain by Lemma 1(2) and $\{P[X]_{N_v}\} \cup \{P_{\lambda}[X]_{N_v}\}$ is a family of prime ideals of $D[X]_{N_v}$. Thus, $D[X]_{P[X]} \supseteq \bigcap_{\lambda} D[X]_{P_{\lambda}[X]}$ if and only if each finitely generated ideal contained in $P[X]_{N_v}$ is contained in some $P_{\lambda}[X]_{N_v}$ [13, Ex. 16 on p. 332]. Also, note that each ideal A of $D[X]_{N_v}$ is of the form $I[X]_{N_v}$ for some ideal I of D, and in this case, I can be chosen so that I is finitely generated ideal contained in P is contained in some P_{λ} if and only if each finitely generated ideal contained in $P[X]_{N_v}$ is contained in some P_{λ} if and only if each finitely generated ideal contained in $P[X]_{N_v}$ is contained in some $P_{\lambda}[X]_{N_v}$. Thus, it suffices to show that $D[X]_{P[X]} \supseteq \bigcap_{\lambda} D[X]_{P_{\lambda}[X]} \Leftrightarrow D_P \supseteq \bigcap_{\lambda} D_{P_{\lambda}}$.

Claim 1. If P_{β} is a prime *t*-ideal of D and $0 \neq f \in D[X]$, then $\frac{1}{f}D_{P_{\beta}}(X) = c(f)^{-1}D_{P_{\beta}}(X)$, where $D_{P_{\beta}}(X) = D_{P_{\beta}}[X]_{P_{\beta}D_{P_{\beta}}[X]} = D[X]_{P_{\beta}[X]}$.

Proof. $fD_{P_{\beta}}(X) = c_{\beta}(f)D_{P_{\beta}}(X) = c(f)D_{P_{\beta}}(X)$, where $c_{\beta}(f) = c(f)D_{P_{\beta}}$, because $D_{P_{\beta}}$ is a valuation domain. Note that c(f) is finitely generated; so $(c(f)D_{P_{\beta}})^{-1} = c(f)^{-1}D_{P_{\beta}}$. Hence, $(c(f)D_{P_{\beta}}(X))^{-1} = c_{\beta}(f)^{-1}D_{P_{\beta}}(X) = c(f)^{-1}D_{P_{\beta}}(X)$ [16, Proposition 2.2], and since $c(f)c(f)^{-1} \not\subseteq P_{\beta}$, $(c(f)D_{P_{\beta}}(X))(c(f)D_{P_{\beta}}(X))^{-1} = (c(f)c(f)^{-1})D_{P_{\beta}}(X) = D_{P_{\beta}}(X)$. Thus, $fD_{P_{\beta}}(X) = c(f)D_{P_{\beta}}(X)$ implies $\frac{1}{f}D_{P_{\beta}}(X) = c(f)^{-1}D_{P_{\beta}}(X)$.

Claim 2. $D[X]_{P[X]} \supseteq \bigcap_{\lambda} D[X]_{P_{\lambda}[X]} \Leftrightarrow D_P \supseteq \bigcap_{\lambda} D_{P_{\lambda}}.$ *Proof.* $(\Rightarrow) \bigcap_{\lambda} D_{P_{\lambda}} = (\bigcap_{\lambda} D_{P_{\lambda}}(X)) \cap K \subseteq D_P(X) \cap K = D_P.$ (\Leftarrow) Let $\frac{g}{f} \in \bigcap_{\lambda} D_{P_{\lambda}}(X) = \bigcap_{\lambda} D[X]_{P_{\lambda}[X]},$ where $0 \neq f, g \in D[X].$ Then $\frac{g}{f} D_{P_{\lambda}}(X) \subseteq D[X]$. $D_{P_{\lambda}}(X) \text{ for all } \lambda, \text{ and hence } c(g)c(f)^{-1} \subseteq (c(g)c(f)^{-1})D_{P_{\lambda}}(X) = \frac{g}{f}D_{P_{\lambda}}(X) \subseteq D_{P_{\lambda}}(X) \text{ by Claim 1. Thus, } c(g)c(f)^{-1} \subseteq (\bigcap_{\lambda} D_{P_{\lambda}}(X)) \cap K = \bigcap_{\lambda} D_{P_{\lambda}} \subseteq D_{P}.$ So $\frac{g}{f} \in \frac{g}{f}D_{P}(X) = (c(g)c(f)^{-1})D_{P}(X) \subseteq D_{P}(X) \text{ by Claim 1. Therefore,}$ $\bigcap_{\lambda} D_{P_{\lambda}}(X) \subseteq D_{P}(X).$

An overring R of D is said to be t-flat over D if $R_M = D_{M \cap D}$ for each maximal t-ideal M of R. Clearly, a t-flat overring of D is t-linked over D. Moreover, if D is a PvMD, then each t-linked overring of D is t-flat over D [18, Proposition 2.10].

Proposition 6 (cf. [1, Lemma 3.5]). Let D be a t-SFT PvMD, Λ be a nonempty set of prime t-ideals of D, and $R = \bigcap_{P \in \Lambda} D_P$.

- (1) R is a t-SFT PvMD.
- (2) If no $P \in \Lambda$ contains a height-one prime ideal, then no prime t-ideal of R contains a height-one prime ideal.
- (3) If each $P \in \Lambda$ contains a height-one prime ideal, then each prime t-ideal of R contains a height-one prime ideal.

Proof. (1) Note that R is t-linked over D [16, Theorem 3.8]; so R is a PvMD [16, Corollary 3.9] that is t-flat over D [18, Proposition 2.10]. Thus, R is a t-SFT PvMD [17, Proposition 2.3].

For (2) and (3), let M be a prime t-ideal of R, and put $M \cap D = P$. Then R is a PvMD by (1), and since R is t-linked over D, P is a t-ideal of D. Thus, $R_M = D_P$ is a valuation domain and $D_P = R_M \supseteq \bigcap_{Q \in \Lambda} D_Q$. Since D is a t-SFT ring, there is a nonzero finitely generated ideal I of D such that $P = \sqrt{I}$. Hence, by Lemma 5, $I \subseteq P'$ for some $P' \in \Lambda$, and thus $P = \sqrt{I} \subseteq P'$.

(2) If M contains a height-one prime ideal Q_0 , then $Q_0 \cap D \subseteq M \cap D = P \subseteq P'$, and since $D_P = R_M$, $\operatorname{ht}(Q_0 \cap D) = 1$. Hence, $P' \in \Lambda$ contains a height-one prime ideal $Q_0 \cap D$, a contradiction.

(3) Let P_0 be a height-one prime ideal of D contained in P'. Then, since $D_{P'}$ is a valuation domain and $P \subseteq P'$, we have $P_0 = P_0 D_{P'} \cap D \subseteq P D_{P'} \cap D = P$. Thus, $D_P = R_M$ implies that M contains a height-one prime ideal.

Let Λ be a set of prime ideals of D, and for convenience, we let $\bigcap_{P \in \Lambda} D_P = K$ when $\Lambda = \emptyset$. Then, by Corollary 4 and Proposition 6, we have:

Corollary 7. Let D be a t-SFT PvMD, Λ_1 be the set of maximal t-ideals of D that contain no height-one prime ideal, Λ_2 be the set of maximal t-ideals of D that contain a height-one prime ideal, and put $D_i = \bigcap_{P \in \Lambda_i} D_P$ for i = 1, 2.

- (1) D_1 and D_2 are t-SFT PvMDs such that $D_1 \cap D_2 = D$,
- (2) $X^1(D_1) = \emptyset$; so D_1 is anti-Archimedean, and
- (3) each prime t-ideal of D_2 contains a height-one prime ideal.

Clearly, $X^1(D) = \emptyset$ if and only if every prime ideal of D has infinite height, and if D is a Krull domain, then t-Max $(D) = X^1(D)$. We recall that if D_1 and D_2 are Krull domains that are subrings of a field L, then $D_1 \cap D_2$ is a Krull domain [13, Corollary 44.10].

Lemma 8. Let D be a t-SFT PvMD in which each maximal t-ideal contains a height-one prime ideal, $R = \bigcap_{P \in X^1(D)} D_P$, and $qf(D[[\{X_\alpha\}]]_1)$ be the quotient field of $D[[\{X_\alpha\}]]_1$.

- (1) R is a Krull domain.
- (2) $R[[{X_{\alpha}}]]_{1_{R-\{0\}}} \cap qf(D[[{X_{\alpha}}]]_{1}) = D[[{X_{\alpha}}]]_{1_{D-\{0\}}}.$
- (3) $D[[{X_{\alpha}}]]_{1_{D-\{0\}}}$ is a Krull domain.

Proof. (1) If $P \in X^1(D)$, then P is a t-ideal, and hence $P^2 \subseteq A_v \subseteq P$ for some finitely generated ideal A of D [17, Proposition 2.6]. Hence, $(PD_P)^2 =$ $P^2D_P \subseteq A_vD_P = (AD_P)_v = AD_P \subseteq PD_P$, where the third equality follows because A is t-invertible and the fourth equality is because D_P is a valuation domain. Thus, if $AD_P = PD_P$, then PD_P is principal, and hence D_P is a rankone DVR. If $AD_P \subsetneq PD_P$, then $(PD_P)^2 \subsetneq PD_P$, and so PD_P is principal. Thus, D_P is a rank-one DVR.

Let $a \in D$ be a nonzero nonunit, and let Q be a prime ideal of D minimal over aD. Then Q is a *t*-ideal, and so $Q = \sqrt{A_t}$ for some finitely generated ideal A. Hence, there are only finitely many prime ideals minimal over aDby Lemma 3, and thus there are only finitely many prime ideals in $X^1(D)$ containing a. This means that the intersection $R = \bigcap_{P \in X^1(D)} D_P$ is locally finite. Thus, $R = \bigcap_{P \in X^1(D)} D_P$ is a Krull domain.

(2) The containment (\supseteq) is clear. For the reverse containment, note that if $u \in R[\![\{X_{\alpha}\}]\!]_{1_{R-\{0\}}} \cap qf(D[\![\{X_{\alpha}\}]\!]_{1})$, then

$$u \in R[X_1, \dots, X_n]_{R-\{0\}} \cap qf(D[X_1, \dots, X_n])$$

for some $X_1, \ldots, X_n \in \{X_\alpha\}$; so it suffices to show that

$$R[\![X_1,\ldots,X_n]\!]_{R-\{0\}} \cap qf(D[\![X_1,\ldots,X_n]\!]) \subseteq D[\![X_1,\ldots,X_n]\!]_{D-\{0\}}.$$

For convenience, let $T[\![X_1, \ldots, X_k]\!] = T[\![X_k]\!]$ for an integral domain T and an integer $k \ge 1$, $\xi(X_1, \ldots, X_k) = \xi(X_k)$ for any $\xi(X_1, \ldots, X_k) \in T[\![X_k]\!]$, K_n be the quotient field of $D[\![X_n]\!]$, and $X^1(D) = \Lambda$.

Let $\mathcal{F}(\Lambda)$ be the family of finite subsets of Λ . For $\lambda = \{P_{\alpha_1}, \ldots, P_{\alpha_r}\} \in \mathcal{F}(\Lambda)$, let \mathfrak{S}_{λ} denote the set of *t*-invertible ideals A of D such that $(\prod_{i=1}^{r} P_{\alpha_i})_t \subsetneq A_t \subseteq D$ but $A \nsubseteq P_{\alpha_i}$ for $i = 1, \ldots, r$ (hence, $A \nsubseteq P$ for all $P \in X^1(D)$ because $\prod_{i=1}^{r} P_{\alpha_i} \subseteq A_t$). If $A \in \mathfrak{S}_{\lambda}$, then

$$P_{\alpha_i} \supseteq (\prod_{i=1}^r P_{\alpha_i})_t = (((\prod_{i=1}^r P_{\alpha_i})A^{-1})A)_t \text{ and } (\prod_{i=1}^r P_{\alpha_i})A^{-1} \subseteq D.$$

But, since $A \not\subseteq P_{\alpha_i}$ for $i = 1, \ldots, r$, we have $(\prod_{i=1}^r P_{\alpha_i})A^{-1} \subseteq \bigcap_{i=1}^r P_{\alpha_i}$. Note that $(P_{\alpha_i} + P_{\alpha_j})_t = D$ for $i \neq j$; so $\bigcap_{i=1}^r P_{\alpha_i} = (\prod_{i=1}^r P_{\alpha_i})_t$, and therefore $(\prod_{i=1}^r P_{\alpha_i})_t = ((\prod_{i=1}^r P_{\alpha_i})A^{-1})_t$. In particular, if $A_1, A_2 \in \mathfrak{S}_{\lambda}$, then A_1A_2 is

t-invertible,

$$(A_1A_2)_t \supseteq ((\prod_{i=1}^r P_{\alpha_i})A_1A_2)_t = (((\prod_{i=1}^r P_{\alpha_i})A_2^{-1}A_1^{-1})A_1A_2)_t = (\prod_{i=1}^r P_{\alpha_i})_t,$$

and $A_1A_2 \not\subseteq P_{\alpha_i}$ for $i = 1, \ldots, r$; so $A_1A_2 \in \mathfrak{S}_{\lambda}$. Hence, \mathfrak{S}_{λ} is a multiplicatively closed set of ideals of D. Thus, if we let $D_{\lambda} = D_{\mathfrak{S}_{\lambda}} (:= \{\xi \in K \mid \xi A \subseteq D \text{ for} some A \in \mathfrak{S}_{\lambda}\})$, then D_{λ} is *t*-linked over D [16, Lemma 3.10], D_{λ} is a *t*-SFT PvMD by the proof of Proposition 6(1), and $(D : D_{\lambda}) = \{x \in K \mid xD_{\lambda} \subseteq D\}$ contains $\prod_{i=1}^r P_{\alpha_i}$ (for if $x \in D_{\lambda}$, then $xA \subseteq D$ for some $A \in \mathfrak{S}_{\lambda}$, and since $\prod_{i=1}^r P_{\alpha_i} \subseteq A_t$, we have $x(\prod_{i=1}^r P_{\alpha_i}) \subseteq xA_t = (xA)_t \subseteq D)$. Thus, $D[[X_n]]_{D-\{0\}} = D_{\lambda}[[X_n]]_{D_{\lambda}-\{0\}} = D_{\lambda}[[X_n]]_{D-\{0\}}$.

Let $\mathfrak{S} = \bigcup_{\lambda \in \mathcal{F}(\Lambda)} \mathfrak{S}_{\lambda}$. If $A_1, A_2 \in \mathfrak{S}$, then $A_i \in \mathfrak{S}_{\lambda_i}$ for some $\lambda_i \in \mathcal{F}(\Lambda)$. Note that $\lambda_1 \cup \lambda_2 \in \mathcal{F}(\Lambda)$ and $A_i \in \mathfrak{S}_{\lambda_1 \cup \lambda_2}$; so $A_1 A_2 \in \mathfrak{S}_{\lambda_1 \cup \lambda_2} \subseteq \mathfrak{S}$. Thus, \mathfrak{S} is a multiplicatively closed set of ideals of D and $D_{\mathfrak{S}} = \bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$.

Claim 1. $R = D_{\mathfrak{S}}$.

Proof. (⊇) If $x \in D_{\mathfrak{S}}$, then $x \in D_{\lambda}$ for some $\lambda \in \mathcal{F}(\Lambda)$, and so $xA \subseteq D$ for some $A \in \mathfrak{S}_{\lambda}$. Note that $A \nsubseteq P$ for all $P \in X^{1}(D)$; so $x \in xD_{P} = xAD_{P} \subseteq D_{P}$. Thus, $x \in \bigcap_{P \in X^{1}(D)} D_{P} = R$. (⊆) Let $y \in R$. Since $D \subseteq D_{\mathfrak{S}}$, we assume that $y \notin D$. Hence, if we let $A_{y} = \{r \in D \mid ry \in D\}$, then $A_{y} \nsubseteq P$ for all $P \in X^{1}(D)$, $A_{y} \subsetneq D$, and A_{y} is a *t*-invertible *t*-ideal of D because D is a *Pv*MD. Since D is a *t*-SFT-ring, by Lemma 3, there are only a finite number of prime ideals of D minimal over A_{y} , say, Q_{1}, \ldots, Q_{k} . By assumption and $D_{Q_{i}}$ being a valuation domain, each Q_{i} contains a unique prime ideal of $X^{1}(D)$, and hence there are finitely many (distinct) prime ideals P_{1}, \ldots, P_{m} in $X^{1}(D)$ that are contained in some Q_{i} . Let $I = \prod_{i=1}^{m} P_{i}$ and $M \in t$ -Max(D). If $Q_{j} \subseteq M$ for some j, then $ID_{M} \subsetneq A_{y}D_{M} \subseteq Q_{j}D_{M} \subseteq D_{M}$ because $A_{y} \nsubseteq P_{i}$ for $i = 1, \ldots, m$. Next, if $Q_{i} \nsubseteq M$ for $i = 1, \ldots, k$, then $ID_{M} \subseteq D_{M} = A_{y}D_{M}$. Hence, $I_{t} = \bigcap_{M \in t-Max(D)} ID_{M} \subseteq \bigcap_{M \in t-Max(D)} A_{y}D_{M} = (A_{y})_{t} = A_{y}$ [16, Theorem 3.5], and since $A_{y} \nsubseteq P$ for all $P \in X^{1}(D)$, we have $I_{t} \subsetneq A_{y}$. Thus, $\lambda = \{P_{1}, \ldots, P_{m}\} \in \mathcal{F}(\Lambda), A_{y} \in \mathfrak{S}_{\lambda}$, and $yA_{y} \subseteq D$. Thus, $y \in D_{\lambda} \subseteq D_{\mathfrak{S}}$.

Claim 2. $R[\![X_n]\!] \cap K_n = \bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}[\![X_n]\!].$

Proof. (⊇) This follows because $R = \bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$ by Claim 1 and $D_{\lambda} [\![X_n]\!] \subseteq D[\![X_n]\!]_{D-\{0\}} \subseteq K_n$ for each $\lambda \in \mathcal{F}(\Lambda)$. (⊆) Let $\{\xi_i\}_{i=1}^{\infty}$ be a subset of R, and suppose that there exist $0 \neq d \in D$ and positive integers $\{m_i\}_{i=1}^{\infty}$ such that $d^{m_i}\xi_i \in D$. If dD = D, then $\xi_i \in D$, so we assume $dD \subsetneq D$. Hence, by Lemma 3, there are only finitely many prime ideals $P_{\alpha_1}, \ldots, P_{\alpha_r}$ in $X^1(D)$ that are contained in some minimal prime ideals of dD (cf. the proof of Claim 1). Let $\lambda = \{P_{\alpha_1}, \ldots, P_{\alpha_r}\}$ and $A_{\xi_i} = \{a \in D \mid a\xi_i \in D\}$. Clearly, A_{ξ_i} is a *t*-invertible *t*-ideal and $A_{\xi_i} \notin P_{\alpha_j}$ for $j = 1, \ldots, r$. Let $p \in \prod_{j=1}^r P_{\alpha_j}$ and $M \in t$ -Max(D). If $d \notin M$, then $p\xi_i \in D_M$. If $d \in M$, then $P_{\alpha_j} \subseteq M$ for some j, whence $p\xi_i \in pR \subseteq P_{\alpha_j}D_{P_{\alpha_j}} = P_{\alpha_j}D_M \subsetneq D_M$. Hence, $p\xi_i \in \bigcap_{M \in t$ -Max(D) $D_M = D$. Thus,

454

 $(\prod_{j=1}^{r} P_{\alpha_{j}})_{t} \subseteq (A_{\xi_{i}})_{t} = A_{\xi_{i}}, \text{ and so } \xi_{i} \in D_{\lambda}. \text{ By induction, we can easily show that if } k \geq 0 \text{ is an integer}, \{\xi_{i}(X_{k})\}_{i=1}^{\infty} \text{ is a subset of } R[\![X_{k}]\!], \{m_{i}\}_{i=1}^{\infty} \text{ is a set of positive integers, and } 0 \neq d(X_{k}) \in D[\![X_{k}]\!] \text{ such that } d(X_{k})^{m_{i}}\xi_{i}(X_{k}) \in D[\![X_{k}]\!], \text{ then } \{\xi_{i}(X_{k})\}_{i=1}^{\infty} \subseteq D_{\lambda}[\![X_{k}]\!] \text{ for some } \lambda \in \mathcal{F}(\Lambda) \text{ (see the proof of } [4, \text{ Lemma } 3.3]).$

Let $\xi(X_n) = \frac{f(X_n)}{g(X_n)} \in R[\![X_n]\!] \cap K_n$, where $0 \neq f(X_n), g(X_n) \in D[\![X_n]\!]$, and write $\xi(X_n) = \sum_{i=0}^{\infty} \xi_i(X_{n-1})X_n^i$ and $g(X_n) = \sum_{i=0}^{\infty} d_i(X_{n-1})X_n^i$. We may assume that $d_0(X_{n-1}) \neq 0$, then

$$\xi(X_n)g(X_n) = \sum_{k=0}^{\infty} (\sum_{i+j=k} \xi_i(X_{n-1})d_j(X_{n-1}))X_n^k \in D[\![X_n]\!].$$

Hence, $d_0(X_{n-1})^{i+1} \cdot \xi_i(X_{n-1}) \in D[\![X_{n-1}]\!]$ for all $i \ge 0$, and thus $\{\xi_i(X_{n-1})\} \subseteq D_{\lambda}[\![X_{n-1}]\!]$ for some $\lambda \in \mathcal{F}(\Lambda)$ by the above paragraph. Thus, $\xi(X_n) \in D_{\lambda}[\![X_n]\!]$.

Finally, note that $R[\![X_n]\!]_{R-\{0\}} = R[\![X_n]\!]_{D-\{0\}}$; so if $u(X_n) \in R[\![X_n]\!]_{R-\{0\}} \cap K_n$, then there is $0 \neq d \in D$ such that $d \cdot u(X_n) \in R[\![X_n]\!] \cap K_n$, and hence, by Claim 2, $d \cdot u(X_n) \in D_{\lambda}[\![X_n]\!]$ for some $\lambda \in \mathcal{F}(\Lambda)$. Therefore, $u(X_n) \in D[\![X_n]\!]_{D-\{0\}}$ since $D_{\lambda}[\![X_n]\!] \subseteq D_{\lambda}[\![X_n]\!]_{D-\{0\}} = D[\![X_n]\!]_{D-\{0\}}$.

(3) Since R is a Krull domain, $R[[\{X_{\alpha}\}]]_1$ is a Krull domain [12, Theorem 2.1] and $R[[\{X_{\alpha}\}]]_{1_{R-\{0\}}}$ is a Krull domain [13, Corollary 43.6]. Clearly, $qf(D[[\{X_{\alpha}\}]]_1)$ is a Krull domain, and thus $D[[\{X_{\alpha}\}]]_{1_{D-\{0\}}}$ is a Krull domain by (2) and [13, Corollary 44.10].

We are now ready to prove the main result of this paper for which we let $\bigcap_{P \in X^1(D)} D_P = K$ when $X^1(D) = \emptyset$.

Theorem 9. If D is a t-SFT PvMD, then

- (1) $R = \bigcap_{P \in X^1(D)} D_P$ is a Krull domain,
- (2) D is a Krull domain if and only if $X^1(D) = t$ -Max(D), and
- (3) $D[[{X_\alpha}]]_{1D-{0}}$ is a Krull domain.

Proof. (1) If $X^1(D) = \emptyset$, then R = K, and hence R is a Krull domain, whence we assume that $X^1(D) \neq \emptyset$. However, this can be proved by an argument similar to the proof of Lemma 8(1).

(2) It is well known that if D is a Krull domain, then $X^1(D) = t$ -Max(D). For the converse, note that if $X^1(D) = t$ -Max(D), then $D = \bigcap_{P \in X^1(D)} D_P = R$. Thus, by (1), D is a Krull domain.

(3) Let Λ_i and D_i for i = 1, 2 be as in Corollary 7. Note that if $\Lambda_i = \emptyset$, then $D_i[\![\{X_\alpha\}]\!]_1 = K[\![\{X_\alpha\}]\!]_1$ is a Krull domain; so we assume that $\Lambda_i \neq \emptyset$ for i = 1, 2. Then D_1 is anti-Archimedean by Corollary 7, and thus $D_1[\![\{X_\alpha\}]\!]_{1D_1-\{0\}}$ is a Krull domain [1, Corollary 3.4]. Next, note that $D_2[\![\{X_\alpha\}]\!]_{1D_2-\{0\}}$ is a Krull domain by Corollary 7(3) and Lemma 8(3), and

$$D[[{X_{\alpha}}]]_{1D-\{0\}} = D_1[[{X_{\alpha}}]]_{1D-\{0\}} \cap D_2[[{X_{\alpha}}]]_{1D-\{0\}}$$

GYU WHAN CHANG

$$= D_1 \llbracket \{X_\alpha\} \rrbracket_{1D_1 - \{0\}} \cap D_2 \llbracket \{X_\alpha\} \rrbracket_{1D_2 - \{0\}},$$

where the second equality follows because D_1 and D_2 are overrings of D. Thus, $D[[{X_{\alpha}}]_{1D-\{0\}}]$ is a Krull domain [13, Corollary 44.10].

The next theorem shows that $D[\![{X_\alpha}]]\!]_{1_{D-\{0\}}}$ is a Krull domain but $D[\![{X_\alpha}]]\!]_1$ is not a Krull domain when D is a *t*-SFT PvMD but not a Krull domain.

Theorem 10. If D is a t-SFT PvMD, then $D[[{X_{\alpha}}]]_1$ is a PvMD if and only if D is a Krull domain.

Proof. Assume that D is a t-SFT PvMD. Then each prime t-ideal of D is a v-ideal [17, Proposition 2.10]; so if P is a prime t-ideal of D, then

$$(PD[[{X_{\alpha}}]]_1)_v = P_v[[{X_{\alpha}}]]_1 = P[[{X_{\alpha}}]]_1,$$

and hence $P[\![\{X_{\alpha}\}]\!]_1$ is a *t*-ideal. Hence, $D[\![\{X_{\alpha}\}]\!]_{1}_{P[\![\{X_{\alpha}\}]\!]_1}$ is a valuation domain, and therefore, D is a Krull domain [8, Theorem 3.3]. Conversely, if D is a Krull domain, then $D[\![\{X_{\alpha}\}]\!]_1$ is a Krull domain, and thus a PvMD. \Box

3. Examples of t-SFT PvMDs

Let D be an integral domain with quotient field K, $D[\{X_{\alpha}\}]$ be the polynomial ring over D, and $N_v = \{f \in D[\{X_{\alpha}\}] \mid c(f)_v = D\}.$

Theorem 11. The following statements are equivalent for D.

- (1) D is a t-SFT PvMD.
- (2) $D[\{X_{\alpha}\}]$ is a t-SFT PvMD.
- (3) $D[\{X_{\alpha}\}]_{N_v}$ is an SFT Prüfer domain.

Proof. (1) \Rightarrow (2) By Lemma 1(2), $D[\{X_{\alpha}\}]$ is a PvMD; so it suffices to show that every prime t-ideal of $D[\{X_{\alpha}\}]$ is a t-SFT ideal [17, Proposition 2.1]. For this, let Q be a prime t-ideal of $D[\{X_{\alpha}\}]$.

If $c(Q)_t \subseteq D$, then $Q \cap N_v = \emptyset$, and so $Q = (Q \cap D)[\{X_\alpha\}]$ by Lemma 1(2) because D is a PvMD. Let $I \subseteq P(:=Q \cap D)$ be a nonzero finitely generated ideal and $k \ge 1$ be an integer such that $a^k \in I_t$ for all $a \in P$. If $0 \ne f \in P[\{X_\alpha\}]$ with $c(f) = (a_1, \ldots, a_n)$, then $f^k \in c(f^k)[\{X_\alpha\}] \subseteq c(f^k)_v[\{X_\alpha\}] = (c(f)^k)_v[\{X_\alpha\}] = (a_1^k, \ldots, a_n^k)_v[\{X_\alpha\}] \subseteq I_t[\{X_\alpha\}] = (I[\{X_\alpha\}])_t$, where the second and third equalities are from [13, Corollary 28.3] and [2, Lemma 3.3] respectively because c(f) is *t*-invertible. Thus, Q is a *t*-SFT ideal.

Next, assume $c(Q)_t = D$. Then Q is a maximal t-ideal of $D[\{X_\alpha\}]$ and $Q \cap D = (0)$ (cf. [11, Proposition 2.2]); so htQ = 1 (cf. [11, Lemma 2.3]). Since $K[\{X_\alpha\}]$ is a UFD, there is an $f \in Q$ such that $QK[\{X_\alpha\}] = fK[\{X_\alpha\}]$. Then $Q = QK[\{X_\alpha\}] \cap D[\{X_\alpha\}] = fK[\{X_\alpha\}] \cap D[\{X_\alpha\}] = fc(f)^{-1}[\{X_\alpha\}]$, and so if $0 \neq d \in c(f)$, then $dQ \subseteq fD[\{X_\alpha\}]$. Clearly, $\frac{d}{f}Q \subseteq D[\{X_\alpha\}]$, but $\frac{d}{f} \cdot f = d \in Q^{-1}Q - Q$. Hence $Q \subsetneq QQ^{-1}$, and since Q is a maximal t-ideal, $(QQ^{-1})_t = D[\{X_\alpha\}]$, and so $Q = A_t$ for some finitely generated ideal $A \subseteq Q$. Thus, Q is a t-SFT ideal.

 $(2) \Rightarrow (3) D[\{X_{\alpha}\}]_{N_{v}}$ is flat over $D[\{X_{\alpha}\}]$, and thus $D[\{X_{\alpha}\}]_{N_{v}}$ is a *t*-SFT PvMD. Note that $D[\{X_{\alpha}\}]_{N_{v}}$ is a Prüfer domain by Lemma 1(2); so every ideal of $D[\{X_{\alpha}\}]_{N_{v}}$ is a *t*-ideal. Thus, $D[\{X_{\alpha}\}]_{N_{v}}$ is an SFT Prüfer domain.

 $(3) \Rightarrow (1)$ Let P be a prime t-ideal of D. Then $P[\{X_{\alpha}\}]_{N_v}$ is a proper prime ideal of $D[\{X_{\alpha}\}]_{N_v}$, and hence by (3) and Lemma 1(2), there is a finitely generated ideal

456

 $I \subseteq P$ and an integer $k \geq 1$ such that $f^k \in I[\{X_\alpha\}]_{N_v}$ for all $f \in P[\{X_\alpha\}]_{N_v}$. In particular, if $a \in P$, then $a^k \in I[\{X_\alpha\}]_{N_v} \cap K = I_t$ (cf. [16, Propositions 2.2(3) and 2.8(1)] for the equality).

If $|\{X_{\alpha}\}| = \infty$, then $D[\{X_{\alpha}\}]$ is not an SFT-ring because $(\{X_{\alpha}\})$ is not an SFT-ideal. However, since an SFT Prüfer domain is a *t*-SFT PvMD, by Theorem 11, we have:

Corollary 12. If D is an SFT Prüfer domain, then $D[{X_{\alpha}}]$ is a t-SFT PvMD.

Remark 13. It is well known that D is a PvMD if and only if $D[\{X_{\alpha}\}]$ is a PvMD, and a PvMD is integrally closed. Hence, the (1) \Leftrightarrow (2) of Theorem 11 also follows from [17, Corollary 2.14] that if D is integrally closed, D is a *t*-SFT-ring if and only if $D[\{X_{\alpha}\}]$ is a *t*-SFT-ring. Also, we use Theorem 11 to give other proofs of Corollary 4 and Theorem 9.

(1) Proof of Corollary 4. It suffices to show the implication (2) \Rightarrow (3). By Lemma 1(3), $X^1(D[\{X_\alpha\}]_{N_v}) = X^1(D) = \emptyset$. Also, $D[\{X_\alpha\}]_{N_v}$ is an SFT Prüfer domain by Theorem 11, and therefore $D[\{X_\alpha\}]_{N_v}$ is an anti-Archimedean domain [1, Proposition 2.3].

(2) Proof of Theorem 9. If D is a t-SFT PvMD, then $D[X]_{N_v}$ is an SFT Prüfer domain by Theorem 11, and hence $(D[X]_{N_v})[[{X_\alpha}]]_{1}_{D[X]_{N_v}-\{0\}}$ is a Krull domain [1, Theorem 3.7]. Note that

$$[D[X]_{N_v}) [\{X_\alpha\}]]_{1 D[X]_{N_v} = \{0\}} \cap K [\{X_\alpha\}]]_1 = D [\{X_\alpha\}]]_{1 D = \{0\}}.$$

(For if $\xi \in (D[X]_{N_v})[\![\{X_\alpha\}]\!]_{1 D[X]_{N_v}-\{0\}} \cap K[\![\{X_\alpha\}]\!]_1$, then $f\xi \in (D[X]_{N_v})[\![\{X_\alpha\}]\!]_1 \cap K[\![\{X_\alpha\}]\!]_1$ for some $0 \neq f \in D[X]_{N_v}$. Hence, if ω is one of the nonzero coefficients of ξ , then $f\omega \in K \cap D[X]_{N_v} = D$, and thus $f \in D$ and $f\xi \in D[\![\{X_\alpha\}]\!]_1$. Therefore, $\xi \in D[\![\{X_\alpha\}]\!]_{1D-\{0\}}$.) Clearly, $K[\![\{X_\alpha\}]\!]_1$ is a Krull domain. Thus, $D[\![\{X_\alpha\}]\!]_{1D-\{0\}}$ is a Krull domain.

We end this paper with a theorem by which one can construct new t-SFT PvMDs from old ones (e.g., Krull domains).

Theorem 14. Let T be an integral domain, M be a nonzero maximal ideal of T, $\varphi: T \to T/M$ be the canonical homomorphism, D be a subring of T/M, and $R = \varphi^{-1}(D)$. Then R is a t-SFT PvMD if and only if T/M is the quotient field of D, D and T are t-SFT PvMDs, and T_M is a valuation domain such that $P^2 \subsetneq P$ for all nonzero prime ideals P of T_M .

Proof. The result follows from the facts that (i) R is a PvMD if and only if T/M is the quotient field of D, D and T are PvMDs, and T_M is a valuation domain [10, Theorem 4.1]; (ii) R is a t-SFT ring if and only if D and T are t-SFT-rings [17, Theorem 2.8]; (iii) if T is a t-SFT-ring, then T_M is a t-SFT-ring [17, Proposition 2.3]; and (iv) a valuation domain V is a t-SFT-ring if and only if V is an SFT-ring, if and only if $P^2 \subsetneq P$ for all nonzero prime ideals P of V (by the definitions).

Corollary 15. Let X be an indeterminate over D, and let R = D + XK[X]. Then R is a t-SFT PvMD if and only if D is a t-SFT PvMD.

Proof. Let T = K[X] and M = XK[X]. Then T is a t-SFT PvMD, $T/M \cong K$ is the quotient field D, and T_M is a rank-one DVR. Thus, the result follows directly from Theorem 14.

Example 16. Let *D* be a Krull domain with quotient field *K*, V = K[X] be the power series ring over *K*, and R = D + XK[X].

(1) R is a t-SFT PvMD with a unique nonzero minimal prime ideal XK[X].

- (2) $R[[{X_{\alpha}}]]_{1_{R-\{0\}}}$ is a Krull domain, but $R[[{X_{\alpha}}]]_{1}$ is not a PvMD.
- (3) D is a Dedekind domain if and only if R is a Prüfer domain.

Proof. (1) Note that $V = K[\![X]\!]$ is a rank-one DVR; so V is a t-SFT PvMD. Thus, by Theorem 14, R is a t-SFT PvMD. Also, $XK[\![X]\!]$ is contained in every nonzero prime ideal of R, and hence $XK[\![X]\!]$ is a unique nonzero minimal prime ideal of R.

(2) By Theorem 9, $R[\![{X_\alpha}]\!]_{1_{R-\{0\}}}$ is a Krull domain. Clearly, R is not a Krull domain, and hence by Theorem 10, $R[\![{X_\alpha}]\!]_1$ is not a Krull domain.

(3) It is obvious that a Krull domain is a Prüfer domain if and only if it is a Dedekind domain. Thus, R is a Prüfer domain if and only if D is a Prüfer domain [13, Exercise 13 on page 286], if and only if D is a Dedekind domain.

Acknowledgements. This work was supported by the Incheon National University Research Fund in 2013 (Grant No. 20130396).

References

- D. D. Anderson, B. G. Kang, and M. H. Park, Anti-Archimedean rings and power series rings, Comm. Algebra 26 (1998), 3223–3238.
- [2] D. D. Anderson and M. Zafrullah, Almost Bezout domains, J. Algebra 142 (1991), 285–309.
- [3] J. Arnold, Power series rings over Prüfer domains, Pacific J. Math. 44 (1973), 1-11.
- [4] _____, Power series rings with finite Krull dimension, Indiana Univ. Math. J. 31 (1982), 897–911.
- [5] G. W. Chang, A pinched-Krull domain at a prime ideal, Comm. Algebra 30 (2002), 3669–3686.
- [6] _____, Spectral localizing systems that are t-splitting multiplicative sets of ideals, J. Korean Math. Soc. 44 (2007), 863–872.
- [7] G. W. Chang and M. Fontana, Upper to zero in polynomial rings and Prüfer-like domains, Comm. Algebra 37 (2009), 164–192.
- [8] G. W. Chang and D. Y. Oh, The rings D((𝑋))_i and D{{𝑋}_i, J. Algebra Appl. 12 (2013), 1250147 (11 pages).
- D. Dobbs, E. Houston, T. Lucas, and M. Zafrullah, t-linked overrings and Prüfer vmultiplication domains, Comm. Algebra 17 (1989), 2835–2852.
- [10] M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra 181 (1996), 803–835.
- [11] M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra 26 (1998), 1017–1039.
- [12] R. Gilmer, Power series rings over a Krull domain, Pacific J. Math. 29 (1969), 543-549.
- [13] _____, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [14] R. Gilmer and W. Heinzer, Primary ideals with finitely generated radical in a commutative ring, Manuscripta Math. 78 (1993), 201–221.
- [15] E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17 (1989), 1955– 1969.
- [16] B. G. Kang, Prüfer v-multiplication domains and the ring R[X]_{Nv}, J. Algebra 123 (1989), 151–170.
- [17] B. G. Kang and M. H. Park, A note on t-SFT-rings, Comm. Algebra 34 (2006), 3153– 3165.
- [18] D. J. Kwak and Y. S. Park, On t-flat overrings, Chinese J. Math. 23 (1995), 17–24.

 $\left[19\right]$ J. Mott and M. Zafrullah, On Krull domains, Arch. Math. 56 (1991), 559–568.

DEPARTMENT OF MATHEMATICS EDUCATION INCHEON NATIONAL UNIVERSITY INCHEON 22012, KOREA *E-mail address:* whan@inu.ac.kr