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POWER SERIES RINGS OVER PRÜFER

v-MULTIPLICATION DOMAINS

Gyu Whan Chang

Abstract. Let D be an integral domain, {Xα} be a nonempty set of
indeterminates over D, and D[[{Xα}]]1 be the first type power series ring
over D. We show that if D is a t-SFT Prüfer v-multiplication domain,
then D[[{Xα}]]1D−{0} is a Krull domain, and D[[{Xα}]]1 is a Prüfer v-

multiplication domain if and only if D is a Krull domain.

1. Introduction

1.1. Motivation and results

Let D be an integral domain. An ideal I of D is called an SFT-ideal (an
ideal of strong finite type) if there exist a finitely generated ideal J ⊆ I and an
integer k ≥ 1 such that ak ∈ J for all a ∈ I. The ring D is called an SFT-ring

if each ideal of D is an SFT-ideal. The t-operation analogue of the notions of
SFT-ideals and SFT-rings, in [17], Kang-Park defined a nonzero ideal A of D
to be a t-SFT-ideal if there exist a nonzero finitely generated ideal B ⊆ A and
a positive integer k such that ak ∈ Bv for all a ∈ At, and D to be a t-SFT-
ring if each nonzero ideal of D is a t-SFT-ideal. (Definitions related to the
t-operation will be reviewed in Section 1.2.) It is known that D is an SFT-ring
(resp., a t-SFT-ring) if and only if each prime ideal (resp., prime t-ideal) of D is
an SFT-ideal (resp., a t-SFT-ideal) [3, Proposition 2.2] (resp., [17, Proposition
2.1]). Hence, a t-SFT-ring contains an integral domain whose prime t-ideals are
of finite type (see [5, Section 5] for such an integral domain). A Mori domain

is an integral domain that satisfies the ascending chain condition on integral
v-ideals. Clearly, a Noetherian domain is a Mori domain, and a Mori domain
is a t-SFT-ring. It is well known that D is a Krull domain if and only if D is a
completely integrally closed Mori domain, if and only if D is a Mori Prüfer v-
multiplication domain (PvMD) (cf. [19, Theorem 2.5]). Hence, a Krull domain
is a t-SFT PvMD. For more on basic properties of Krull domains, the reader
can be referred to [13, Sections 43 and 44].
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Let {Xα} be a nonempty set of indeterminates over D, D[{Xα}] be the
polynomial ring over D, and D[[{Xα}]]1 be the first type power series ring
over D, i.e., D[[{Xα}]]1 =

⋃

D[[X1, . . . , Xn]], where {X1, . . . , Xn} runs over
all finite subsets of {Xα}; so if |{Xα}| < ∞, then D[[{Xα}]]1 = D[[{Xα}]]
(cf. [13, Section 1] for the power series ring). It was shown in [1, The-
orem 3.7] that if D is an SFT Prüfer domain, then D[[{Xα}]]1D−{0} is a

Krull domain. The purpose of this paper is to generalize [1, Theorem 3.7]
to t-SFT PvMDs. Let X1(D) be the set of height-one prime ideals of D,
R =

⋂

P∈X1(D) DP , and qf(D[[{Xα}]]1) be the quotient field of D[[{Xα}]]1.
In Section 2, we show that if D is a t-SFT PvMD in which each maximal t-
ideal of D contains a height-one prime ideal, then R is a Krull domain and
R[[{Xα}]]1R−{0} ∩ qf(D[[{Xα}]]1) = D[[{Xα}]]1D−{0}. We also prove that if D

is a t-SFT PvMD, then D[[{Xα}]]1D−{0} is a Krull domain, and D[[{Xα}]]1 is a

PvMD if and only if D is a Krull domain. In Section 3, we show that D is a t-
SFT PvMD if and only if D[{Xα}] is a t-SFT PvMD, if and only if D[{Xα}]Nv

is an SFT Prüfer domain, where Nv = {f ∈ D[{Xα}] | c(f)v = D}. Hence, if
D is an SFT Prüfer domain, then D[{Xα}] is a t-SFT PvMD. We finally prove
that if K is the quotient field of D and X is an indeterminate over D, then
D +XK[X ] is a t-SFT PvMD if and only if D is a t-SFT PvMD.

1.2. Definitions related to the t-operation

Let D be an integral domain with quotient field K. Let F (D) (resp., f(D))
be the set of nonzero (resp., nonzero finitely generated) fractional ideals of
D; so f(D) ⊆ F (D). For I ∈ F (D), let I−1 = {x ∈ K | xI ⊆ D}, then
I−1 ∈ F (D). The v-operation is defined by Iv = (I−1)−1 and the t-operation
is by It =

⋃

{Fv | F ∈ f(D) and F ⊆ I}. Clearly, if I ∈ F (D), then I ⊆ It ⊆ Iv,
and if I is finitely generated, then It = Iv. The v- and t-operation are examples
of the so-called star operations. For a review of star operations, the reader may
look up [13, Sections 32 and 34]. If ∗ = v or t, then I is called a ∗-ideal if I = I∗
and a ∗-ideal of finite type if I = B∗ for some B ∈ f(D). A ∗-ideal of D is
called a maximal ∗-ideal if it is maximal among proper integral ∗-ideals of D.
Let ∗-Max(D) be the set of all maximal ∗-ideals of D. It is well known that
each proper integral t-ideal is contained in a maximal t-ideal; each maximal
t-ideal is a prime ideal; D =

⋂

P∈t-Max(D) DP ; and t-Max(D) 6= ∅ when D is

not a field even though v-Max(D) can be empty as in the case of a rank-one
non-discrete valuation domain D. An overring of D means a ring between D
and K. We say that an overring R of D is t-linked over D if Iv = D implies
(IR)v = R for all I ∈ f(D). It is known that R is t-linked over D if and only
if (Q ∩D)t ( D for each prime t-ideal Q of R [9, Proposition 2.1].

An I ∈ F (D) is said to be t-invertible if (II−1)t = D, while D is a Prüfer

v-multiplication domain (PvMD) if each nonzero finitely generated ideal of D is
t-invertible. It is well known that D is a PvMD if and only if DP is a valuation
domain for each maximal t-ideal P of D [16, Theorem 3.2]; hence D is a Prüfer
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domain if and only if D is a PvMD whose maximal ideals are t-ideals. Also,
it is clear that an invertible ideal is a t-ideal, and hence every nonzero finitely
generated ideal of a Prüfer domain is a t-ideal; so t-SFT Prüfer domains ⇔
SFT Prüfer domains. Let X be an indeterminate over D and D[X ] be the
polynomial ring over D. An upper to zero in D[X ] is a nonzero prime ideal
Q of D[X ] such that Q ∩ D = (0). We say that D is a UMT-domain if each
upper to zero in D[X ] is a maximal t-ideal of D[X ]. It is well known that D is
an integrally closed UMT-domain if and only if D is a PvMD [15, Proposition
3.2].

2. Power series rings over a t-SFT PvMD

Let D be an integral domain with quotient field K. In this section, we show
that if D is a t-SFT PvMD, then D[[{Xα}]]1D−{0} is a Krull domain (Theorem

9). This is a generalization of Anderson-Kang-Park’s result [1, Theorem 3.7]
that if D is an SFT Prüfer domain, then D[[{Xα}]]1D−{0} is a Krull domain.

Many of the techniques for the proofs of Theorem 9(3) and Lemma 8(2) are
borrowed from [1] and [4, Lemma 3.3] respectively, and the proofs of Proposition
2 and the (2)-(3) of Proposition 6 are similar to those of the counterparts in
[1].

For a polynomial f ∈ D[{Xα}], let c(f) denote the ideal of D generated
by the coefficients of f ; for an ideal A of D[{Xα}], c(A) denotes the ideal
∑

f∈A c(f) of D; and Nv = {f ∈ D[{Xα}] | c(f)v = D}.

Lemma 1. (1) {P [{Xα}]Nv | P ∈ t-Max(D)} is the set of maximal ideals

of D[{Xα}]Nv .

(2) The following statements are equivalent.

(a) D is a PvMD.

(b) D[{Xα}] is a PvMD.

(c) D[{Xα}]Nv is a Prüfer domain.

(d) Every ideal A of D[{Xα}]Nv is extended from D, i.e.,

A = ID[{Xα}]Nv for some ideal I of D. In this case, I can be

chosen so that I is finitely generated when A is finitely generated.

(3) D is a UMT-domain if and only if every prime ideal of D[{Xα}]Nv is

extended from D.

Proof. (1) and (2) [16, Proposition 2.1, Theorems 3.1 and 3.7]. Also, note
that if 0 6= f ∈ D[{Xα}], then c(f) is t-invertible, and hence fD[{Xα}]Nv =
c(f)D[{Xα}]Nv [16, Theorem 2.12]. Thus, if A = (f1, . . . , fn)D[{Xα}]Nv ,
where 0 6= fi ∈ D[{Xα}], then I =

∑n
i=1 c(fi) is finitely generated and

A = ID[{Xα}]Nv .
(3) Note that D is a UMT-domain if and only if DP is a quasi-Prüfer domain

for each prime t-ideal P of D, i.e., if Q is a prime ideal of DP [{Xα}] with
Q ⊆ PDP [{Xα}], then Q = (Q∩DP )[{Xα}] [7, Lemma 2.1 and Corollary 2.4].
Thus, D is a UMT-domain if and only if for each prime t-ideal P of D, if Q is
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a prime ideal of D[{Xα}] with Q ⊆ P [{Xα}], then Q = (Q ∩D)[{Xα}], if and
only if every prime ideal of D[{Xα}]Nv is extended from D by (1). (See [15,
Theorem 3.1] for one indeterminate.) �

An element d ∈ D is said to be Archimedean if
⋂∞

n=1 d
nD = (0) and d is

non-Archimedean or bounded if d is not Archimedean, i.e.,
⋂∞

n=1 d
nD 6= (0). We

say that D is Archimedean (resp., anti-Archimedean) if each nonzero element
of D is Archimedean (resp., bounded). Recall from [1, Proposition 2.1] that if
D is anti-Archimedean, then every nonzero prime ideal of D has infinite height
(or equivalently, D has no height-one prime ideal).

Proposition 2 (cf. [1, Theorem 2.15]). D[{Xα}]Nv is an anti-Archimedean

domain if and only if D is an anti-Archimedean UMT-domain.

Proof. (⇒) If D is not a UMT-domain, there is an upper to zero Q in D[X ]
that is not a maximal t-ideal, where X ∈ {Xα}; so Q ⊆ P [X ] for some max-
imal t-ideal P of D [15, Theorem 1.4]. Hence, QD[{Xα}]Nv ⊆ P [{Xα}]Nv (

D[{Xα}]Nv and ht(QD[{Xα}]Nv) = ht(QD[{Xα}]) = htQ = 1, a contradiction
because an anti-Archimedean domain has no height-one prime ideals. Thus, D
is a UMT-domain. Next, if 0 6= a ∈ D, then

⋂∞
n=1 a

nD[X ]Nv 6= (0). Hence

if 0 6= f ∈
⋂∞

n=1 a
nD[X ]Nv , then, for each integer n ≥ 1, f = anhn

gn
for some

gn ∈ Nv and hn ∈ D[{Xα}]; so c(f) ⊆ c(f)v = (c(f)c(gn))v = c(fgn)v =
anc(hn)v ⊆ anD. Thus, (0) 6= c(f) ⊆

⋂∞
n=1 a

nD.
(⇐) Let Q be a prime ideal of D[{Xα}]Nv . Then Q = P [{Xα}]Nv for some

prime ideal P of D by Lemma 1(3). So if 0 6= d ∈ P ⊆ Q, then (0) 6=
⋂∞

n=1 d
nD ⊆

⋂∞
n=1 d

nD[{Xα}]Nv , and hence Q contains a bounded element d.
Thus, D[{Xα}]Nv is an anti-Archimedean domain [1, Proposition 2.8]. �

Let R be a commutative ring with identity, and let I be an ideal of R. It is
known that if every prime ideal of R minimal over I is the radical of a finitely
generated ideal, then there are only a finite number of prime ideals minimal
over I [14, Theorem 1.6], which was generalized by Chang as follows.

Lemma 3 ([6, Lemma 2.1]). Let I be an integral t-ideal of D. If every prime

ideal of D minimal over I is the radical of a t-ideal of finite type, there are only

finitely many prime ideals of D minimal over I.

If D is a t-SFT-ring, then every prime t-ideal of D is the radical of a t-ideal
of finite type, and hence by Lemma 3, each t-ideal of D has only finitely many
minimal prime ideals.

Corollary 4 (cf. [1, Proposition 2.3]). If D is a t-SFT PvMD, then the

following statements are equivalent.

(1) D is an anti-Archimedean domain.

(2) X1(D) = ∅.
(3) D[{Xα}]Nv is an anti-Archimedean domain.
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Proof. (1) ⇒ (2) [1, Proposition 2.1].
(2) ⇒ (1) Let a be a nonzero nonunit of D. Then, by Lemma 3, aD has

only finitely many minimal prime ideals Q1, . . . , Qm, and since aD is a t-ideal,
each Qi is a t-ideal. Since X1(D) = ∅, each Qi contains a nonzero prime
ideal Pi; so a ∈ Qi − Pi. Let M ∈ t-Max(D), n ≥ 1 be an integer, and
I = P1 ∩ · · · ∩ Pm. If anDM = DM , then IDM ⊆ DM = anDM . Next, if
anDM ( DM , then IDM = PiDM ( anDM ⊆ QiDM ⊆ MDM ( DM for
some i, where the first equality follows because PjDM = DM for Pj 6= Pi.
Hence, anD =

⋂

M∈t-Max(D) a
nDM ⊇

⋂

M∈t-Max(D) IDM ⊇ I, and therefore
⋂∞

n=1 a
nD ⊇ I 6= (0).

(1) ⇔ (3) This follows directly from Proposition 2 because a PvMD is an
integrally closed UMT-domain. �

We next show that if D is a t-SFT PvMD, there are t-SFT PvMDs D1 and
D2 such that D = D1 ∩ D2, X

1(D1) = ∅, and each maximal t-ideal of D2

contains a height-one prime ideal. We begin with the following lemma.

Lemma 5. Let D be a PvMD and {P} ∪ {Pλ}λ be a family of prime t-ideals
of D. Then DP ⊇

⋂

λ DPλ
if and only if each finitely generated ideal contained

in P is contained in some Pλ.

Proof. Let X be an indeterminate over D and Nv = {f ∈ D[X ] | c(f)v = D}.
Then D[X ]Nv is a Prüfer domain by Lemma 1(2) and {P [X ]Nv} ∪ {Pλ[X ]Nv}
is a family of prime ideals of D[X ]Nv . Thus, D[X ]P [X] ⊇

⋂

λ D[X ]Pλ[X] if and
only if each finitely generated ideal contained in P [X ]Nv is contained in some
Pλ[X ]Nv [13, Ex. 16 on p. 332]. Also, note that each ideal A of D[X ]Nv is
of the form I[X ]Nv for some ideal I of D, and in this case, I can be chosen
so that I is finitely generated when A is finitely generated by Lemma 1(2).
Hence, each finitely generated ideal contained in P is contained in some Pλ if
and only if each finitely generated ideal contained in P [X ]Nv is contained in
some Pλ[X ]Nv . Thus, it suffices to show that D[X ]P [X] ⊇

⋂

λ D[X ]Pλ[X] ⇔
DP ⊇

⋂

λ DPλ
.

Claim 1. If Pβ is a prime t-ideal of D and 0 6= f ∈ D[X ], then 1
fDPβ

(X) =

c(f)−1DPβ
(X), where DPβ

(X) = DPβ
[X ]PβDPβ

[X] = D[X ]Pβ [X].

Proof. fDPβ
(X)=cβ(f)DPβ

(X)=c(f)DPβ
(X),where cβ(f)=c(f)DPβ

, because

DPβ
is a valuation domain. Note that c(f) is finitely generated; so (c(f)DPβ

)−1

= c(f)−1DPβ
. Hence, (c(f)DPβ

(X))−1 = cβ(f)
−1DPβ

(X) = c(f)−1DPβ
(X)

[16, Proposition 2.2], and since c(f)c(f)−1
*Pβ , (c(f)DPβ

(X))(c(f)DPβ
(X))−1

= (c(f)c(f)−1)DPβ
(X) = DPβ

(X). Thus, fDPβ
(X) = c(f)DPβ

(X) implies
1
fDPβ

(X) = c(f)−1DPβ
(X).

Claim 2. D[X ]P [X] ⊇
⋂

λ D[X ]Pλ[X] ⇔ DP ⊇
⋂

λ DPλ
.

Proof. (⇒)
⋂

λ DPλ
= (

⋂

λ DPλ
(X)) ∩ K ⊆ DP (X) ∩ K = DP . (⇐) Let

g
f ∈

⋂

λ DPλ
(X) =

⋂

λ D[X ]Pλ[X], where 0 6= f, g ∈ D[X ]. Then g
fDPλ

(X) ⊆
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DPλ
(X) for all λ, and hence c(g)c(f)−1 ⊆ (c(g)c(f)−1)DPλ

(X) = g
fDPλ

(X) ⊆

DPλ
(X) by Claim 1. Thus, c(g)c(f)−1 ⊆ (

⋂

λ DPλ
(X)) ∩K =

⋂

λ DPλ
⊆ DP .

So g
f ∈ g

fDP (X) = (c(g)c(f)−1)DP (X) ⊆ DP (X) by Claim 1. Therefore,
⋂

λ DPλ
(X) ⊆ DP (X). �

An overring R of D is said to be t-flat over D if RM = DM∩D for each
maximal t-ideal M of R. Clearly, a t-flat overring of D is t-linked over D.
Moreover, if D is a PvMD, then each t-linked overring of D is t-flat over D [18,
Proposition 2.10].

Proposition 6 (cf. [1, Lemma 3.5]). Let D be a t-SFT PvMD, Λ be a

nonempty set of prime t-ideals of D, and R =
⋂

P∈ΛDP .

(1) R is a t-SFT PvMD.

(2) If no P ∈ Λ contains a height-one prime ideal, then no prime t-ideal
of R contains a height-one prime ideal.

(3) If each P ∈ Λ contains a height-one prime ideal, then each prime t-ideal
of R contains a height-one prime ideal.

Proof. (1) Note that R is t-linked over D [16, Theorem 3.8]; so R is a PvMD
[16, Corollary 3.9] that is t-flat over D [18, Proposition 2.10]. Thus, R is a
t-SFT PvMD [17, Proposition 2.3].

For (2) and (3), let M be a prime t-ideal of R, and put M ∩D = P . Then
R is a PvMD by (1), and since R is t-linked over D, P is a t-ideal of D. Thus,
RM = DP is a valuation domain and DP = RM ⊇

⋂

Q∈ΛDQ. Since D is a

t-SFT ring, there is a nonzero finitely generated ideal I of D such that P =
√
I .

Hence, by Lemma 5, I ⊆ P ′ for some P ′ ∈ Λ, and thus P =
√
I ⊆ P ′.

(2) If M contains a height-one prime ideal Q0, then Q0∩D ⊆ M ∩D = P ⊆
P ′, and since DP = RM , ht(Q0 ∩D) = 1. Hence, P ′ ∈ Λ contains a height-one
prime ideal Q0 ∩D, a contradiction.

(3) Let P0 be a height-one prime ideal of D contained in P ′. Then, since DP ′

is a valuation domain and P ⊆ P ′, we have P0 = P0DP ′ ∩D ⊆ PDP ′ ∩D = P .
Thus, DP = RM implies that M contains a height-one prime ideal. �

Let Λ be a set of prime ideals of D, and for convenience, we let
⋂

P∈Λ DP =
K when Λ = ∅. Then, by Corollary 4 and Proposition 6, we have:

Corollary 7. Let D be a t-SFT PvMD, Λ1 be the set of maximal t-ideals of

D that contain no height-one prime ideal, Λ2 be the set of maximal t-ideals of

D that contain a height-one prime ideal, and put Di =
⋂

P∈Λi
DP for i = 1, 2.

(1) D1 and D2 are t-SFT PvMDs such that D1 ∩D2 = D,

(2) X1(D1) = ∅; so D1 is anti-Archimedean, and

(3) each prime t-ideal of D2 contains a height-one prime ideal.

Clearly, X1(D) = ∅ if and only if every prime ideal of D has infinite height,
and if D is a Krull domain, then t-Max(D) = X1(D). We recall that if D1 and
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D2 are Krull domains that are subrings of a field L, then D1 ∩ D2 is a Krull
domain [13, Corollary 44.10].

Lemma 8. Let D be a t-SFT PvMD in which each maximal t-ideal contains a
height-one prime ideal, R =

⋂

P∈X1(D) DP , and qf(D[[{Xα}]]1) be the quotient

field of D[[{Xα}]]1.

(1) R is a Krull domain.

(2) R[[{Xα}]]1R−{0} ∩ qf(D[[{Xα}]]1) = D[[{Xα}]]1D−{0}.

(3) D[[{Xα}]]1D−{0} is a Krull domain.

Proof. (1) If P ∈ X1(D), then P is a t-ideal, and hence P 2 ⊆ Av ⊆ P for
some finitely generated ideal A of D [17, Proposition 2.6]. Hence, (PDP )

2 =
P 2DP ⊆ AvDP = (ADP )v = ADP ⊆ PDP , where the third equality follows
because A is t-invertible and the fourth equality is because DP is a valuation
domain. Thus, if ADP = PDP , then PDP is principal, and henceDP is a rank-
one DVR. If ADP ( PDP , then (PDP )

2
( PDP , and so PDP is principal.

Thus, DP is a rank-one DVR.
Let a ∈ D be a nonzero nonunit, and let Q be a prime ideal of D minimal

over aD. Then Q is a t-ideal, and so Q =
√
At for some finitely generated

ideal A. Hence, there are only finitely many prime ideals minimal over aD
by Lemma 3, and thus there are only finitely many prime ideals in X1(D)
containing a. This means that the intersection R =

⋂

P∈X1(D) DP is locally

finite. Thus, R =
⋂

P∈X1(D) DP is a Krull domain.

(2) The containment (⊇) is clear. For the reverse containment, note that if
u ∈ R[[{Xα}]]1R−{0} ∩ qf(D[[{Xα}]]1), then

u ∈ R[[X1, . . . , Xn]]R−{0} ∩ qf(D[[X1, . . . , Xn]])

for some X1, . . . , Xn ∈ {Xα}; so it suffices to show that

R[[X1, . . . , Xn]]R−{0} ∩ qf(D[[X1, . . . , Xn]]) ⊆ D[[X1, . . . , Xn]]D−{0}.

For convenience, let T [[X1, . . . , Xk]] = T [[Xk]] for an integral domain T and an
integer k ≥ 1, ξ(X1, . . . , Xk) = ξ(Xk) for any ξ(X1, . . . , Xk) ∈ T [[Xk]], Kn be
the quotient field of D[[Xn]], and X1(D) = Λ.

Let F(Λ) be the family of finite subsets of Λ. For λ = {Pα1
, . . . , Pαr} ∈

F(Λ), letSλ denote the set of t-invertible idealsA ofD such that (
∏r

i=1 Pαi)t (
At ⊆ D but A * Pαi for i = 1, . . . , r (hence, A * P for all P ∈ X1(D) because
∏r

i=1 Pαi ⊆ At). If A ∈ Sλ, then

Pαi ⊇ (

r
∏

i=1

Pαi)t = (((

r
∏

i=1

Pαi)A
−1)A)t and (

r
∏

i=1

Pαi)A
−1 ⊆ D.

But, since A * Pαi for i = 1, . . . , r, we have (
∏r

i=1 Pαi)A
−1 ⊆

⋂r
i=1 Pαi . Note

that (Pαi + Pαj )t = D for i 6= j; so
⋂r

i=1 Pαi = (
∏r

i=1 Pαi)t, and therefore

(
∏r

i=1 Pαi)t = ((
∏r

i=1 Pαi)A
−1)t. In particular, if A1, A2 ∈ Sλ, then A1A2 is
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t-invertible,

(A1A2)t ) ((

r
∏

i=1

Pαi)A1A2)t = (((

r
∏

i=1

Pαi)A
−1
2 A−1

1 )A1A2)t = (

r
∏

i=1

Pαi)t,

and A1A2 * Pαi for i = 1, . . . , r; soA1A2 ∈ Sλ. Hence, Sλ is a multiplicatively
closed set of ideals of D. Thus, if we let Dλ = DSλ

(:= {ξ ∈ K | ξA ⊆ D for
some A ∈ Sλ}), then Dλ is t-linked over D [16, Lemma 3.10], Dλ is a t-SFT
PvMD by the proof of Proposition 6(1), and (D : Dλ) = {x ∈ K | xDλ ⊆
D} contains

∏r
i=1 Pαi (for if x ∈ Dλ, then xA ⊆ D for some A ∈ Sλ, and

since
∏r

i=1 Pαi ⊆ At, we have x(
∏r

i=1 Pαi) ⊆ xAt = (xA)t ⊆ D). Thus,
D[[Xn]]D−{0} = Dλ[[Xn]]Dλ−{0} = Dλ[[Xn]]D−{0}.

Let S =
⋃

λ∈F(Λ) Sλ. If A1, A2 ∈ S, then Ai ∈ Sλi for some λi ∈ F(Λ).

Note that λ1 ∪ λ2 ∈ F(Λ) and Ai ∈ Sλ1∪λ2
; so A1A2 ∈ Sλ1∪λ2

⊆ S. Thus, S
is a multiplicatively closed set of ideals of D and DS =

⋃

λ∈F(Λ) Dλ.

Claim 1. R = DS.
Proof. (⊇) If x ∈ DS, then x ∈ Dλ for some λ ∈ F(Λ), and so xA ⊆ D for some
A ∈ Sλ. Note that A * P for all P ∈ X1(D); so x ∈ xDP = xADP ⊆ DP .
Thus, x ∈

⋂

P∈X1(D) DP = R. (⊆) Let y ∈ R. Since D ⊆ DS, we assume

that y 6∈ D. Hence, if we let Ay = {r ∈ D | ry ∈ D}, then Ay * P for all
P ∈ X1(D), Ay ( D, and Ay is a t-invertible t-ideal of D because D is a
PvMD. Since D is a t-SFT-ring, by Lemma 3, there are only a finite number of
prime ideals of D minimal over Ay, say, Q1, . . . , Qk. By assumption and DQi

being a valuation domain, each Qi contains a unique prime ideal of X1(D),
and hence there are finitely many (distinct) prime ideals P1, . . . , Pm in X1(D)
that are contained in some Qi. Let I =

∏m
i=1 Pi and M ∈ t-Max(D). If

Qj ⊆ M for some j, then IDM ( AyDM ⊆ QjDM ⊆ DM because Ay * Pi for
i = 1, . . . ,m. Next, if Qi * M for i = 1, . . . , k, then IDM ⊆ DM = AyDM .
Hence, It =

⋂

M∈t-Max(D) IDM ⊆
⋂

M∈t-Max(D) AyDM = (Ay)t = Ay [16,

Theorem 3.5], and since Ay * P for all P ∈ X1(D), we have It ( Ay. Thus,
λ = {P1, . . . , Pm} ∈ F(Λ), Ay ∈ Sλ, and yAy ⊆ D. Thus, y ∈ Dλ ⊆ DS.

Claim 2. R[[Xn]] ∩Kn =
⋃

λ∈F(Λ) Dλ[[Xn]].

Proof. (⊇) This follows because R =
⋃

λ∈F(Λ) Dλ by Claim 1 and Dλ[[Xn]] ⊆

D[[Xn]]D−{0} ⊆ Kn for each λ ∈ F(Λ). (⊆) Let {ξi}∞i=1 be a subset of R, and
suppose that there exist 0 6= d ∈ D and positive integers {mi}∞i=1 such that
dmiξi ∈ D. If dD = D, then ξi ∈ D, so we assume dD ( D. Hence, by Lemma
3, there are only finitely many prime ideals Pα1

, . . . , Pαr in X1(D) that are
contained in some minimal prime ideals of dD (cf. the proof of Claim 1). Let
λ = {Pα1

, . . . , Pαr} and Aξi = {a ∈ D | aξi ∈ D}. Clearly, Aξi is a t-invertible
t-ideal and Aξi * Pαj for j = 1, . . . , r. Let p ∈

∏r
j=1 Pαj and M ∈ t-Max(D).

If d 6∈ M , then pξi ∈ DM . If d ∈ M , then Pαj ⊆ M for some j, whence pξi ∈
pR ⊆ PαjDPαj

= PαjDM ( DM . Hence, pξi ∈
⋂

M∈t-Max(D) DM = D. Thus,



POWER SERIES RINGS OVER A PvMD 455

(
∏r

j=1 Pαj )t ( (Aξi )t = Aξi , and so ξi ∈ Dλ. By induction, we can easily show

that if k ≥ 0 is an integer, {ξi(Xk)}
∞
i=1 is a subset of R[[Xk]], {mi}

∞
i=1 is a set of

positive integers, and 0 6= d(Xk) ∈ D[[Xk]] such that d(Xk)
miξi(Xk) ∈ D[[Xk]],

then {ξi(Xk)}∞i=1 ⊆ Dλ[[Xk]] for some λ ∈ F(Λ) (see the proof of [4, Lemma
3.3]).

Let ξ(Xn) =
f(Xn)
g(Xn) ∈ R[[Xn]] ∩Kn, where 0 6= f(Xn), g(Xn) ∈ D[[Xn]], and

write ξ(Xn) =
∑∞

i=0 ξi(Xn−1)X
i
n and g(Xn) =

∑∞
i=0 di(Xn−1)X

i
n. We may

assume that d0(Xn−1) 6= 0, then

ξ(Xn)g(Xn) =
∞
∑

k=0

(
∑

i+j=k

ξi(Xn−1)dj(Xn−1))X
k
n ∈ D[[Xn]].

Hence, d0(Xn−1)
i+1 ·ξi(Xn−1) ∈ D[[Xn−1]] for all i ≥ 0, and thus {ξi(Xn−1)} ⊆

Dλ[[Xn−1]] for some λ ∈ F(Λ) by the above paragraph. Thus, ξ(Xn) ∈ Dλ[[Xn]].

Finally, note that R[[Xn]]R−{0} = R[[Xn]]D−{0}; so if u(Xn) ∈ R[[Xn]]R−{0} ∩
Kn, then there is 0 6= d ∈ D such that d · u(Xn) ∈ R[[Xn]] ∩Kn, and hence,
by Claim 2, d · u(Xn) ∈ Dλ[[Xn]] for some λ ∈ F(Λ). Therefore, u(Xn) ∈
D[[Xn]]D−{0} since Dλ[[Xn]] ⊆ Dλ[[Xn]]D−{0} = D[[Xn]]D−{0}.

(3) Since R is a Krull domain, R[[{Xα}]]1 is a Krull domain [12, Theo-
rem 2.1] and R[[{Xα}]]1R−{0} is a Krull domain [13, Corollary 43.6]. Clearly,

qf(D[[{Xα}]]1) is a Krull domain, and thus D[[{Xα}]]1D−{0} is a Krull domain

by (2) and [13, Corollary 44.10]. �

We are now ready to prove the main result of this paper for which we let
⋂

P∈X1(D) DP = K when X1(D) = ∅.

Theorem 9. If D is a t-SFT PvMD, then

(1) R =
⋂

P∈X1(D)DP is a Krull domain,

(2) D is a Krull domain if and only if X1(D) = t-Max(D), and
(3) D[[{Xα}]]1D−{0} is a Krull domain.

Proof. (1) If X1(D) = ∅, then R = K, and hence R is a Krull domain, whence
we assume that X1(D) 6= ∅. However, this can be proved by an argument
similar to the proof of Lemma 8(1).

(2) It is well known that if D is a Krull domain, then X1(D) = t-Max(D).
For the converse, note that if X1(D) = t-Max(D), then D =

⋂

P∈X1(D) DP =

R. Thus, by (1), D is a Krull domain.
(3) Let Λi and Di for i = 1, 2 be as in Corollary 7. Note that if Λi = ∅, then

Di[[{Xα}]]1 = K[[{Xα}]]1 is a Krull domain; so we assume that Λi 6= ∅ for i =
1, 2. Then D1 is anti-Archimedean by Corollary 7, and thus D1[[{Xα}]]1D1−{0}

is a Krull domain [1, Corollary 3.4]. Next, note that D2[[{Xα}]]1D2−{0} is a

Krull domain by Corollary 7(3) and Lemma 8(3), and

D[[{Xα}]]1D−{0} = D1[[{Xα}]]1D−{0} ∩D2[[{Xα}]]1D−{0}
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= D1[[{Xα}]]1D1−{0} ∩D2[[{Xα}]]1D2−{0},

where the second equality follows because D1 and D2 are overrings of D. Thus,
D[[{Xα}]]1D−{0} is a Krull domain [13, Corollary 44.10]. �

The next theorem shows that D[[{Xα}]]1D−{0} is a Krull domain but D[[{Xα}]]1
is not a Krull domain when D is a t-SFT PvMD but not a Krull domain.

Theorem 10. If D is a t-SFT PvMD, then D[[{Xα}]]1 is a PvMD if and only if D

is a Krull domain.

Proof. Assume that D is a t-SFT PvMD. Then each prime t-ideal of D is a v-ideal
[17, Proposition 2.10]; so if P is a prime t-ideal of D, then

(PD[[{Xα}]]1)v = Pv[[{Xα}]]1 = P [[{Xα}]]1,

and hence P [[{Xα}]]1 is a t-ideal. Hence, D[[{Xα}]]1P [[{Xα}]]1
is a valuation domain,

and therefore, D is a Krull domain [8, Theorem 3.3]. Conversely, if D is a Krull
domain, then D[[{Xα}]]1 is a Krull domain, and thus a PvMD. �

3. Examples of t-SFT PvMDs

Let D be an integral domain with quotient field K, D[{Xα}] be the polynomial
ring over D, and Nv = {f ∈ D[{Xα}] | c(f)v = D}.

Theorem 11. The following statements are equivalent for D.

(1) D is a t-SFT PvMD.

(2) D[{Xα}] is a t-SFT PvMD.

(3) D[{Xα}]Nv is an SFT Prüfer domain.

Proof. (1) ⇒ (2) By Lemma 1(2), D[{Xα}] is a PvMD; so it suffices to show that
every prime t-ideal of D[{Xα}] is a t-SFT ideal [17, Proposition 2.1]. For this, let Q
be a prime t-ideal of D[{Xα}].

If c(Q)t ( D, then Q ∩ Nv = ∅, and so Q = (Q ∩ D)[{Xα}] by Lemma 1(2)
because D is a PvMD. Let I ⊆ P (:= Q ∩ D) be a nonzero finitely generated ideal
and k ≥ 1 be an integer such that ak ∈ It for all a ∈ P . If 0 6= f ∈ P [{Xα}]
with c(f) = (a1, . . . , an), then fk ∈ c(fk)[{Xα}] ⊆ c(fk)v[{Xα}] = (c(f)k)v[{Xα}] =
(ak

1 , . . . , a
k

n)v[{Xα}] ⊆ It[{Xα}] = (I [{Xα}])t, where the second and third equali-
ties are from [13, Corollary 28.3] and [2, Lemma 3.3] respectively because c(f) is
t-invertible. Thus, Q is a t-SFT ideal.

Next, assume c(Q)t = D. Then Q is a maximal t-ideal of D[{Xα}] and Q∩D = (0)
(cf. [11, Proposition 2.2]); so htQ = 1 (cf. [11, Lemma 2.3]). Since K[{Xα}] is a
UFD, there is an f ∈ Q such that QK[{Xα}] = fK[{Xα}]. Then Q = QK[{Xα}] ∩
D[{Xα}] = fK[{Xα}] ∩ D[{Xα}] = fc(f)−1[{Xα}], and so if 0 6= d ∈ c(f), then
dQ ⊆ fD[{Xα}]. Clearly, d

f
Q ⊆ D[{Xα}], but d

f
· f = d ∈ Q−1Q − Q. Hence

Q ( QQ−1, and since Q is a maximal t-ideal, (QQ−1)t = D[{Xα}], and so Q = At

for some finitely generated ideal A ⊆ Q. Thus, Q is a t-SFT ideal.
(2) ⇒ (3) D[{Xα}]Nv is flat over D[{Xα}], and thus D[{Xα}]Nv is a t-SFT PvMD.

Note that D[{Xα}]Nv is a Prüfer domain by Lemma 1(2); so every ideal of D[{Xα}]Nv

is a t-ideal. Thus, D[{Xα}]Nv is an SFT Prüfer domain.
(3) ⇒ (1) Let P be a prime t-ideal of D. Then P [{Xα}]Nv is a proper prime ideal

of D[{Xα}]Nv , and hence by (3) and Lemma 1(2), there is a finitely generated ideal
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I ⊆ P and an integer k ≥ 1 such that fk ∈ I [{Xα}]Nv for all f ∈ P [{Xα}]Nv . In
particular, if a ∈ P , then ak ∈ I [{Xα}]Nv ∩K = It (cf. [16, Propositions 2.2(3) and
2.8(1)] for the equality). �

If |{Xα}| = ∞, then D[{Xα}] is not an SFT-ring because ({Xα}) is not an SFT-
ideal. However, since an SFT Prüfer domain is a t-SFT PvMD, by Theorem 11, we
have:

Corollary 12. If D is an SFT Prüfer domain, then D[{Xα}] is a t-SFT PvMD.

Remark 13. It is well known that D is a PvMD if and only if D[{Xα}] is a PvMD,
and a PvMD is integrally closed. Hence, the (1) ⇔ (2) of Theorem 11 also follows
from [17, Corollary 2.14] that if D is integrally closed, D is a t-SFT-ring if and only if
D[{Xα}] is a t-SFT-ring. Also, we use Theorem 11 to give other proofs of Corollary
4 and Theorem 9.

(1) Proof of Corollary 4. It suffices to show the implication (2) ⇒ (3). By Lemma
1(3), X1(D[{Xα}]Nv ) = X1(D) = ∅. Also, D[{Xα}]Nv is an SFT Prüfer domain by
Theorem 11, and therefore D[{Xα}]Nv is an anti-Archimedean domain [1, Proposition
2.3].

(2) Proof of Theorem 9. If D is a t-SFT PvMD, then D[X]Nv is an SFT Prüfer
domain by Theorem 11, and hence (D[X]Nv )[[{Xα}]]1D[X]Nv−{0} is a Krull domain

[1, Theorem 3.7]. Note that

(D[X]Nv )[[{Xα}]]1D[X]Nv−{0} ∩K[[{Xα}]]1 = D[[{Xα}]]1D−{0}.

(For if ξ ∈ (D[X]Nv )[[{Xα}]]1D[X]Nv−{0} ∩K[[{Xα}]]1, then fξ ∈ (D[X]Nv )[[{Xα}]]1 ∩

K[[{Xα}]]1 for some 0 6= f ∈ D[X]Nv . Hence, if ω is one of the nonzero coefficients
of ξ, then fω ∈ K ∩D[X]Nv = D, and thus f ∈ D and fξ ∈ D[[{Xα}]]1. Therefore,
ξ ∈ D[[{Xα}]]1D−{0}.) Clearly, K[[{Xα}]]1 is a Krull domain. Thus, D[[{Xα}]]1D−{0}

is a Krull domain.

We end this paper with a theorem by which one can construct new t-SFT PvMDs
from old ones (e.g., Krull domains).

Theorem 14. Let T be an integral domain, M be a nonzero maximal ideal of T ,

ϕ : T → T/M be the canonical homomorphism, D be a subring of T/M , and R =
ϕ−1(D). Then R is a t-SFT PvMD if and only if T/M is the quotient field of D, D

and T are t-SFT PvMDs, and TM is a valuation domain such that P 2
( P for all

nonzero prime ideals P of TM .

Proof. The result follows from the facts that (i) R is a PvMD if and only if T/M
is the quotient field of D, D and T are PvMDs, and TM is a valuation domain [10,
Theorem 4.1]; (ii) R is a t-SFT ring if and only if D and T are t-SFT-rings [17,
Theorem 2.8]; (iii) if T is a t-SFT-ring, then TM is a t-SFT-ring [17, Proposition 2.3];
and (iv) a valuation domain V is a t-SFT-ring if and only if V is an SFT-ring, if and
only if P 2

( P for all nonzero prime ideals P of V (by the definitions). �

Corollary 15. Let X be an indeterminate over D, and let R = D +XK[X]. Then

R is a t-SFT PvMD if and only if D is a t-SFT PvMD.

Proof. Let T = K[X] and M = XK[X]. Then T is a t-SFT PvMD, T/M ∼= K is the
quotient field D, and TM is a rank-one DVR. Thus, the result follows directly from
Theorem 14. �
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Example 16. Let D be a Krull domain with quotient field K, V = K[[X]] be the
power series ring over K, and R = D +XK[[X]].

(1) R is a t-SFT PvMD with a unique nonzero minimal prime ideal XK[[X]].
(2) R[[{Xα}]]1R−{0} is a Krull domain, but R[[{Xα}]]1 is not a PvMD.

(3) D is a Dedekind domain if and only if R is a Prüfer domain.

Proof. (1) Note that V = K[[X]] is a rank-one DVR; so V is a t-SFT PvMD. Thus,
by Theorem 14, R is a t-SFT PvMD. Also, XK[[X]] is contained in every nonzero
prime ideal of R, and hence XK[[X]] is a unique nonzero minimal prime ideal of R.

(2) By Theorem 9, R[[{Xα}]]1R−{0} is a Krull domain. Clearly, R is not a Krull

domain, and hence by Theorem 10, R[[{Xα}]]1 is not a Krull domain.
(3) It is obvious that a Krull domain is a Prüfer domain if and only if it is a

Dedekind domain. Thus, R is a Prüfer domain if and only if D is a Prüfer domain
[13, Exercise 13 on page 286], if and only if D is a Dedekind domain. �
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mains, Comm. Algebra 37 (2009), 164–192.
[8] G. W. Chang and D. Y. Oh, The rings D((X ))i and D{{X}}i, J. Algebra Appl. 12

(2013), 1250147 (11 pages).
[9] D. Dobbs, E. Houston, T. Lucas, and M. Zafrullah, t-linked overrings and Prüfer v-
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