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POWER SERIES RINGS OVER PRUFER
v-MULTIPLICATION DOMAINS

GyYU WHAN CHANG

ABSTRACT. Let D be an integral domain, {X,} be a nonempty set of
indeterminates over D, and D[{X}]1 be the first type power series ring
over D. We show that if D is a ¢t-SFT Priifer v-multiplication domain,
then D[[{Xa}]]ID,{Q} is a Krull domain, and D[{X}]1 is a Prifer v-
multiplication domain if and only if D is a Krull domain.

1. Introduction
1.1. Motivation and results

Let D be an integral domain. An ideal I of D is called an SFT-ideal (an
ideal of strong finite type) if there exist a finitely generated ideal J C I and an
integer k > 1 such that a* € J for all a € I. The ring D is called an SFT-ring
if each ideal of D is an SFT-ideal. The t-operation analogue of the notions of
SFT-ideals and SFT-rings, in [17], Kang-Park defined a nonzero ideal A of D
to be a t-SFT-ideal if there exist a nonzero finitely generated ideal B C A and
a positive integer k such that a* € B, for all a € A;, and D to be a t-SFT-
ring if each nonzero ideal of D is a ¢-SFT-ideal. (Definitions related to the
t-operation will be reviewed in Section 1.2.) It is known that D is an SFT-ring
(resp., a t-SFT-ring) if and only if each prime ideal (resp., prime ¢-ideal) of D is
an SFT-ideal (resp., a t-SFT-ideal) [3, Proposition 2.2] (resp., [17, Proposition
2.1]). Hence, a t-SFT-ring contains an integral domain whose prime t¢-ideals are
of finite type (see [5, Section 5] for such an integral domain). A Mori domain
is an integral domain that satisfies the ascending chain condition on integral
v-ideals. Clearly, a Noetherian domain is a Mori domain, and a Mori domain
is a t-SFT-ring. It is well known that D is a Krull domain if and only if D is a
completely integrally closed Mori domain, if and only if D is a Mori Priifer v-
multiplication domain (PvMD) (cf. [19, Theorem 2.5]). Hence, a Krull domain
is a t-SFT PvMD. For more on basic properties of Krull domains, the reader
can be referred to [13, Sections 43 and 44].
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Let {X,} be a nonempty set of indeterminates over D, D[{X,}] be the
polynomial ring over D, and D[{X,}]1 be the first type power series ring
over D, ie., D[{X.}]1 = UD[X1,...,X,], where {X,...,X,} runs over
all finite subsets of {X,}; so if [{Xa}| < oo, then D[{X,}]1 = D[{X.}]
(cf. [13, Section 1] for the power series ring). It was shown in [1, The-
orem 3.7] that if D is an SFT Priifer domain, then D[{Xa}]1p_o is a
Krull domain. The purpose of this paper is to generalize [1, Theorem 3.7]
to t-SFT PvMDs. Let X!'(D) be the set of height-one prime ideals of D,
R = NpexipyDp, and ¢f (D[{Xa}]1) be the quotient field of D[{Xq}]:1.
In Section 2, we show that if D is a t-SFT PvMD in which each maximal ¢-
ideal of D contains a height-one prime ideal, then R is a Krull domain and
R[[{Xa}]]lR_{O} Naqf(D{Xa}t]1) = D{Xa}1p_{o}- We also prove that if D
is a t-SFT PoMD, then D[{Xa}]1p_(g is a Krull domain, and D[{Xa}]1 is a
PoMD if and only if D is a Krull domain. In Section 3, we show that D is a ¢-
SFT PuMD if and only if D[{X,}] is a t-SFT PvMD, if and only if D[{X,}|n,
is an SFT Priifer domain, where N, = {f € D[{Xa}] | ¢(f)» = D}. Hence, if
D is an SFT Priifer domain, then D[{X,}] is a t-SFT PuMD. We finally prove
that if K is the quotient field of D and X is an indeterminate over D, then
D+ XK[X]is a t-SFT PvMD if and only if D is a ¢t-SFT PvMD.

1.2. Definitions related to the t-operation

Let D be an integral domain with quotient field K. Let F(D) (resp., f(D))
be the set of nonzero (resp., nonzero finitely generated) fractional ideals of
D; so f(D) C F(D). For I € F(D), let 7' = {z € K | 2I C D}, then
I=! € F(D). The v-operation is defined by I, = (I=!)~! and the t-operation
isby It = J{F, | F € f(D)and F C I'}. Clearly, if [ € F(D),thenI C I C I,
and if [ is finitely generated, then I; = I,,. The v- and t-operation are examples
of the so-called star operations. For a review of star operations, the reader may
look up [13, Sections 32 and 34]. If x = v or ¢, then I is called a x-ideal if I = I,
and a x-ideal of finite type if I = B, for some B € f(D). A x-ideal of D is
called a mazimal *-ideal if it is maximal among proper integral x-ideals of D.
Let *-Max(D) be the set of all maximal -ideals of D. It is well known that
each proper integral t-ideal is contained in a maximal t-ideal; each maximal
t-ideal is a prime ideal; D = (\pc, pax(py Ppi and t-Max(D) # 0 when D is
not a field even though v-Max(D) can be empty as in the case of a rank-one
non-discrete valuation domain D. An overring of D means a ring between D
and K. We say that an overring R of D is t-linked over D if I, = D implies
(IR), = R for all T € f(D). Tt is known that R is t-linked over D if and only
if (Q N D), C D for each prime t-ideal @ of R [9, Proposition 2.1].

An I € F(D) is said to be t-invertible if (II=1); = D, while D is a Priifer
v-multiplication domain (PvMD) if each nonzero finitely generated ideal of D is
t-invertible. It is well known that D is a PuMD if and only if Dp is a valuation
domain for each maximal ¢-ideal P of D [16, Theorem 3.2]; hence D is a Priifer
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domain if and only if D is a PuMD whose maximal ideals are t-ideals. Also,
it is clear that an invertible ideal is a t-ideal, and hence every nonzero finitely
generated ideal of a Priifer domain is a t-ideal; so t-SF'T Priifer domains <
SFT Priifer domains. Let X be an indeterminate over D and D[X] be the
polynomial ring over D. An upper to zero in D[X] is a nonzero prime ideal
Q@ of D[X] such that @ N D = (0). We say that D is a UMT-domain if each
upper to zero in D[X] is a maximal ¢-ideal of D[X]. It is well known that D is
an integrally closed UMT-domain if and only if D is a PuMD [15, Proposition
3.2].

2. Power series rings over a t-SFT PvMD

Let D be an integral domain with quotient field K. In this section, we show
that if D is a t-SFT PoMD, then D[{Xa}]1p_yq; is a Krull domain (Theorem
9). This is a generalization of Anderson-Kang-Park’s result [1, Theorem 3.7]
that if D is an SFT Priifer domain, then D[{Xa}]1p_qy is a Krull domain.
Many of the techniques for the proofs of Theorem 9(3) and Lemma 8(2) are
borrowed from [1] and [4, Lemma 3.3] respectively, and the proofs of Proposition
2 and the (2)-(3) of Proposition 6 are similar to those of the counterparts in

[1].
For a polynomial f € D[{Xa}], let ¢(f) denote the ideal of D generated
by the coefficients of f; for an ideal A of D[{X,}], ¢(A) denotes the ideal

Yopeaclf) of Dy and Ny ={f € D{Xa}] [ c(f)v = D}.

Lemma 1. (1) {P{Xua}In, | P € t-Max(D)} is the set of maximal ideals
of DI{Xa) ..
(2) The following statements are equivalent.
(a) D is a PuMD.
(b) D[{Xa}] is a PuMD.
(¢) D{Xu.}]N, is a Prifer domain.
(d) Every ideal A of D[{Xa}]|n, is extended from D, i.e.,
A = ID{X,}]n, for some ideal I of D. In this case, I can be
chosen so that I is finitely generated when A is finitely generated.
(3) D is a UMT-domain if and only if every prime ideal of D[{Xa}]nN, is
extended from D.

Proof. (1) and (2) [16, Proposition 2.1, Theorems 3.1 and 3.7]. Also, note
that if 0 # f € D[{X,}], then ¢(f) is t-invertible, and hence fD[{X,}|n, =
c(f)D{Xa}]n, [16, Theorem 2.12]. Thus, if A = (f1,..., fn)D{Xa}N,,
where 0 # f; € D[{Xa}], then I = >, ¢(f;) is finitely generated and
A= ID[{XY]n,.

(3) Note that D is a UMT-domain if and only if Dp is a quasi-Priifer domain
for each prime t¢-ideal P of D, i.e., if @ is a prime ideal of Dp[{X,}] with
Q C PDp[{X,}], then Q = (QNDp)[{Xa}] [7, Lemma 2.1 and Corollary 2.4].
Thus, D is a UMT-domain if and only if for each prime t-ideal P of D, if @Q is



450 GYU WHAN CHANG

a prime ideal of D[{X,}] with Q@ C P[{X,}], then @ = (Q N D)[{X4}], if and
only if every prime ideal of D[{X,}]|n, is extended from D by (1). (See [15,
Theorem 3.1] for one indeterminate.) O

v

An element d € D is said to be Archimedean if (|, d"D = (0) and d is
non-Archimedean or bounded if d is not Archimedean, i.e., ()~ d"D # (0). We
say that D is Archimedean (resp., anti-Archimedean) if each nonzero element
of D is Archimedean (resp., bounded). Recall from [1, Proposition 2.1] that if
D is anti-Archimedean, then every nonzero prime ideal of D has infinite height
(or equivalently, D has no height-one prime ideal).

Proposition 2 (cf. [1, Theorem 2.15)). D[{X,}|n, is an anti-Archimedean

v

domain if and only if D is an anti-Archimedean UMT-domain.

Proof. (=) If D is not a UMT-domain, there is an upper to zero @ in D[X]
that is not a maximal t-ideal, where X € {X,}; so @ C P[X] for some max-
imal ¢-ideal P of D [15, Theorem 1.4]. Hence, QD[{Xn}]n, € P{Xa}ln, ©
D{Xu}n, and ht(QD[{ X }n,) = ht(QD[{ X }]) = t@ = 1, a contradiction
because an anti-Archimedean domain has no height-one prime ideals. Thus, D
is a UMT-domain. Next, if 0 # a € D, then (), a"D[X]|y, # (0). Hence
if0# f e, a"D[X]y,, then, for each integer n > 1, f = % for some
gn € Ny and h, € D{Xa}]; so c(f) € c(f)o = (c(fle(gn))o = c(fgn)o =
a"c(hy)y € a™D. Thus, (0) # c(f) C,—, a"D.

(<) Let @ be a prime ideal of D[{X,}|n,. Then @ = P[{X,}|n, for some
prime ideal P of D by Lemma 1(3). So if 0 # d € P C @Q, then (0) #
N,—,d"D C(,~,d"D[{Xs}|n,, and hence @ contains a bounded element d.
Thus, D[{X,}]n, is an anti-Archimedean domain [1, Proposition 2.8]. O

Let R be a commutative ring with identity, and let I be an ideal of R. It is
known that if every prime ideal of R minimal over I is the radical of a finitely
generated ideal, then there are only a finite number of prime ideals minimal
over I [14, Theorem 1.6], which was generalized by Chang as follows.

Lemma 3 ([6, Lemma 2.1]). Let I be an integral t-ideal of D. If every prime
ideal of D minimal over I is the radical of a t-ideal of finite type, there are only
finitely many prime ideals of D minimal over I.

If D is a t-SFT-ring, then every prime t-ideal of D is the radical of a t-ideal
of finite type, and hence by Lemma 3, each t-ideal of D has only finitely many
minimal prime ideals.

Corollary 4 (cf. [1, Proposition 2.3)). If D is a t-SFT PvMD, then the
following statements are equivalent.

(1) D is an anti-Archimedean domain.

(2) XYD)=0.

(3) D{Xa}]n, is an anti-Archimedean domain.
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Proof. (1) = (2) [1, Proposition 2.1].

(2) = (1) Let a be a nonzero nonunit of D. Then, by Lemma 3, aD has
only finitely many minimal prime ideals Q1, ..., @, and since aD is a t-ideal,
each @; is a t-ideal. Since X'(D) = 0, each Q; contains a nonzero prime
ideal P;; so a € Q; — P;. Let M € t-Max(D), n > 1 be an integer, and
I =P nNn---NP,. If a®Dy = Dy, then IDy; C Dy = a™Dyys. Next, if
a"DM g D]\/[, then ID]\/] = PiD]\/[ g a”DM g QiD]\/I g MDM g DM for
some i, where the first equality follows because P;Dy = Dy for P; # P;.
Hence, a"D = ﬂMet_Max(D) a"Dy D ﬂMet_Max(D) IDy; D I, and therefore
N, a"D 21 #(0).

(1) < (3) This follows directly from Proposition 2 because a PoMD is an
integrally closed UMT-domain. O

We next show that if D is a t-SFT PvMD, there are t-SF'T PoMDs D; and
Dy such that D = D; N Dy, X'(D;1) = 0, and each maximal t-ideal of Do
contains a height-one prime ideal. We begin with the following lemma.

Lemma 5. Let D be a PvMD and {P} U {Px\}x be a family of prime t-ideals
of D. Then Dp 2 (), Dp, if and only if each finitely generated ideal contained
in P is contained in some Pj.

Proof. Let X be an indeterminate over D and N, = {f € D[X] | ¢(f), = D}.
Then D[X]y, is a Priifer domain by Lemma 1(2) and {P[X]n, } U {P\[X]n,}
is a family of prime ideals of D[X]x,. Thus, D[X]px] 2 (), D[X]p,[x] if and
only if each finitely generated ideal contained in P[X]y, is contained in some
Py[X]n, [13, Ex. 16 on p. 332]. Also, note that each ideal A of D[X]|n, is
of the form I[X]y, for some ideal I of D, and in this case, I can be chosen
so that T is finitely generated when A is finitely generated by Lemma 1(2).
Hence, each finitely generated ideal contained in P is contained in some Pj if
and only if each finitely generated ideal contained in P[X]y, is contained in
some Py[X]y,. Thus, it suffices to show that D[X]px] 2 () D[X]p,x] &
Dp 2, Dp,.

Claim 1. If Pg is a prime t-ideal of D and 0 # f € D[X], then %DPL; (X) =
C(f)_ll)pL3 (X), where DPB (X) = DPg [X]PBDPB [X] = D[X]PB[X]

Proof. fDp(X)=cs(f)Dp,(X)=c(f)Dp,(X),where cs(f)=c(f)Dp,, because
Dp, is a valuation domain. Note that ¢(f) is finitely generated; so (¢(f)Dp,) ™!
— (/)" Dp,. Hence, (c(£)Dp, (X)) = ca(f)" ' Dpy(X) = e(f) D, (X)
[16, Proposition 2.2], and since ¢(f)c(f) ™t € P, (¢(f)Dp, (X)) (c(f)Dp, (X))~ "
= (c(f)e(f) 1 )Dp,(X) = Dp,(X). Thus, fDp,(X) = c(f)Dp,(X) implies
%DPL% (X) = C(f)_lDPﬁ (X)

Claim 2. D[X]p[X] D) ﬂ)\ D[X]PA[X] ~ Dp D) ﬂ)\ Dp)\.

Proof. (=) N\ Dp, = (M\Dp(X))NK C Dp(X)NK = Dp. (<) Let
% € Ny Dp (X) = N, D[X]p,[x], where 0 # f,g € D[X]. Then %DPX(X) C
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X) for all A, and hence c(g)c(f)~t C (c(g)e(f) ™ )Dp, (X) = 4Dp, (X) C

< (clg)e
) by Claim 1. Thus, c¢(g)c(f)™' € (Ny Dpy (X)) N K =N, Dp, € Dp.

So 4 € $Dp(X) = (c(g)e(f)™ HWDp(X) C Dp(A X) by Claim 1. Therefore,

m/\DP)\(X)gDP(X)‘ O

DPA(
(X

An overring R of D is said to be t-flat over D if Ry = Dpynp for each
maximal t-ideal M of R. Clearly, a t-flat overring of D is t-linked over D.
Moreover, if D is a PoMD, then each t-linked overring of D is t-flat over D [18,
Proposition 2.10].

Proposition 6 (cf. [1, Lemma 3.5]). Let D be a t-SFT PvMD, A be a
nonempty set of prime t-ideals of D, and R = (\pc, Dp.

(1) Ris a t-SFT PuMD.

(2) If no P € A contains a height-one prime ideal, then no prime t-ideal
of R contains a height-one prime ideal.

(3) If each P € A contains a height-one prime ideal, then each prime t-ideal
of R contains a height-one prime ideal.

Proof. (1) Note that R is t-linked over D [16, Theorem 3.8]; so R is a PuMD
[16, Corollary 3.9] that is ¢-flat over D [18, Proposition 2.10]. Thus, R is a
t-SFT PvMD [17, Proposition 2.3].

For (2) and (3), let M be a prime t-ideal of R, and put M N D = P. Then
R is a PvMD by (1), and since R is t-linked over D, P is a t-ideal of D. Thus,
Ry = Dp is a valuation domain and Dp = Ry 2 ﬂQeA Dg. Since D is a

t-SFT ring, there is a nonzero finitely generated ideal I of D such that P = /T.
Hence, by Lemma 5, I C P’ for some P’ € A, and thus P = /I C P'.

(2) If M contains a height-one prime ideal Qg, then QoND C MND =P C
P’, and since Dp = Ry, ht(Qo N D) = 1. Hence, P’ € A contains a height-one
prime ideal Qo N D, a contradiction.

(3) Let Py be a height-one prime ideal of D contained in P’. Then, since Dp-
is a valuation domain and P C P’, we have Py = PyDp.ND C PDp-ND = P.
Thus, Dp = Rj; implies that M contains a height-one prime ideal. O

Let A be a set of prime ideals of D, and for convenience, we let ()poy Dp =
K when A = ). Then, by Corollary 4 and Proposition 6, we have:

Corollary 7. Let D be a t-SFT PvMD, Ay be the set of maximal t-ideals of
D that contain no height-one prime ideal, Ao be the set of maximal t-ideals of
D that contain a height-one prime ideal, and put D; = ﬂPeAi Dp fori=1,2.

(1) Dy and Dy are t-SFT PvMDs such that Dy N Ds = D,

(2) XY(Dy) =0; so Dy is anti-Archimedean, and

(3) each prime t-ideal of Do contains a height-one prime ideal.

Clearly, X!(D) = 0 if and only if every prime ideal of D has infinite height,
and if D is a Krull domain, then t-Max(D) = X*(D). We recall that if Dy and
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Dy are Krull domains that are subrings of a field L, then Dy N Dy is a Krull
domain [13, Corollary 44.10].

Lemma 8. Let D be a t-SFT PvMD in which each mazximal t-ideal contains a
height-one prime ideal, R = (\pex1(py Dp, and qf (D[{Xa}]1) be the quotient
field of D[{Xa}]1-

(1) R is a Krull domain.

() RHXaHin_j0) N0/ (DHXa ) = DHXaHipgo)-
(3) D[[{Xa}]]lD_{O} is a Krull domain.

Proof. (1) If P € X'(D), then P is a t-ideal, and hence P> C A, C P for
some finitely generated ideal A of D [17, Proposition 2.6]. Hence, (PDp)? =
P?Dp C A,Dp = (ADp), = ADp C PDp, where the third equality follows
because A is t-invertible and the fourth equality is because Dp is a valuation
domain. Thus, if ADp = PDp, then PDp is principal, and hence Dp is a rank-
one DVR. If ADp C PDp, then (PDp)2 C PDp, and so PDp is principal.
Thus, Dp is a rank-one DVR.

Let a € D be a nonzero nonunit, and let @ be a prime ideal of D minimal
over aD. Then Q is a t-ideal, and so Q = \/A; for some finitely generated
ideal A. Hence, there are only finitely many prime ideals minimal over aD
by Lemma 3, and thus there are only finitely many prime ideals in X*!(D)
containing a. This means that the intersection R = (p x1(p) Dp is locally
finite. Thus, R = ﬂPeXl(D) Dp is a Krull domain.

(2) The containment (D) is clear. For the reverse containment, note that if

u € R{Xa}]1 g0y N af (DI{Xa}]1), then
u € R[X1, ..., Xp]lr—qoy Ngf(D[X1, ..., X4])
for some X1,..., X, € {X,}; so it suffices to show that
R[Xy,..., Xulr—0) Naf(D[X1, ..., X,]) € D[X1, ..., Xal oy

For convenience, let T[X1,..., Xx] = T[X4] for an integral domain 7" and an
integer k > 1, £(X1,...,Xk) = &(Xy) for any £(X1,...,Xy) € T[Xk], K, be
the quotient field of D[X,], and X (D) = A.

Let F(A) be the family of finite subsets of A. For A = {P,,,...,P..} €
F(A), let & denote the set of t-invertible ideals A of D such that ([]_; Pa,): C
Ay CDbut AZ P,, fori=1,...,r (hence, A ¢ P for all P € X'(D) because
[Ii_; Pa, € A). If A € &), then

Pai 2 (H Pai)t = (((H Pai)A_l)A)t and (H Pai)A_l cD.
i=1 i=1 i=1
But, since A € P,, for i = 1,...,r, we have ([[\_, Pa,)A™* C;_; Pa,. Note
that (Pa, 4+ Pa,): = D for i # j; so (\;_y Pa, = (ITi_; Pa,)t, and therefore
(ITi—; Pai)t = ((IT—; Pa;)A™Y)s. In particular, if Ay, A> € Gy, then Aj A, is
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t-invertible,

T T T

(A1 A2); 2 (J] Pa)ArAz) = (I ] Pa) A5 AT A Ag)e = ([ Pai)es

i=1 i=1 i=1

and A1 Ay ¢ P, fori=1,...,r;s0 A1 Ay € &). Hence, &, is a multiplicatively
closed set of ideals of D. Thus, if we let Dy = Dg, (:={{ € K | {£A C D for
some A € G,}), then Dy is t-linked over D [16, Lemma 3.10], Dy is a t-SFT
PuMD by the proof of Proposition 6(1), and (D : Dy) = {z € K | «aDy C
D} contains [[i_; P,, (for if © € Dy, then zA C D for some 4 € &), and
since [[i_; Pa; € As, we have z([]_; Po;) C z4; = (zA), C D). Thus,
D[[Xn]]Df{O} = D/\[[Xn]]Dr{o} = DA[[X’G]]Df{O}‘

Let 6 = Uycra) Ga- If A1, Ay € 6, then A; € 6, for some A; € F(A).
Note that Ay U Xy € F(A) and A; € Gy un,; 50 A1 A € Sy,un, € 6. Thus, &
is a multiplicatively closed set of ideals of D and Dg = U)\G}-(A) D.

Claim 1. R = Dg.

Proof. (2)If x € Dg, then x € Dy for some A € F(A), and so A C D for some
A € &,. Note that A ¢ P for all P € X'(D); so z € xDp = ADp C Dp.
Thus, € Npexi(pyPp = R. (S) Let y € R. Since D C De, we assume
that y ¢ D. Hence, if we let Ay, = {r € D | ry € D}, then A, ¢ P for all
P e XYD), A, € D, and A, is a t-invertible t-ideal of D because D is a
PoMD. Since D is a t-SFT-ring, by Lemma 3, there are only a finite number of
prime ideals of D minimal over A,, say, Q1,...,Q%. By assumption and Dy,
being a valuation domain, each @; contains a unique prime ideal of X!(D),
and hence there are finitely many (distinct) prime ideals P, ..., P, in X1(D)
that are contained in some @;. Let I = [[I, P, and M € ¢-Max(D). If
Q; € M for some j, then IDy € AyDas € QjDy € Dy because Ay ¢ P, for
i=1,...,m. Next, if @i € M for i =1,...,k, then IDyy C Dy = AyDpy.
Hence, I; = ﬂ]Met—Max(D) IDy C ﬂ]Met—Max(D) AyDy = (Ay)e = Ay [16,
Theorem 3.5], and since 4, ¢ P for all P € X*(D), we have I; C A,. Thus,
A=A{Pi,....,P,} € F(A), A, € 6,, and yA, C D. Thus, y € D) C Dg.

Claim 2. R[X,]|N K, = U)\E}-(A) Di\[X.].

Proof. (2) This follows because R = J,c 5y Dx by Claim 1 and Dx[Xn] €
D[X,]p—f0y € K, for each A € F(A). (C) Let {&}{2, be a subset of R, and
suppose that there exist 0 # d € D and positive integers {m;}$2; such that
dmi&; € D. If dD = D, then &; € D, so we assume dD C D. Hence, by Lemma
3, there are only finitely many prime ideals P,,,..., P, in X!(D) that are
contained in some minimal prime ideals of dD (cf. the proof of Claim 1). Let
A=A{P,,,..., Py} and A¢, = {a € D | a§; € D}. Clearly, Ag, is a t-invertible
t-ideal and A¢, & P, for j =1,...,r. Let p € [[j_, Pa, and M € t-Max(D).
If d ¢ M, then p§; € Dy If d € M, then P,; € M for some j, whence p; €
pR - Paijaj = Pa]. D]V[ g_ D]V[. HeIlCe, p&i S ﬂMEt—Max(D) D]V[ =D. Thus,
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(ITj=; Poy)t & (Ag,)e = Ag,, and so &; € Dy. By induction, we can easily show
that if k > 0 is an integer, {&(Xx)}52, is a subset of R[X], {m;}$2, is a set of
positive integers, and 0 # d(Xy) € D[X}] such that d(Xj)™ & (Xk) € D[Xk],
then {&;(Xk)}2, C Da[Xk] for some A € F(A) (see the proof of [4, Lemma
3.3]).

Let £(X,) = L5 € R[X,] N K, where 0 # f(X,),g(X,) € D[X,], and
write £(X,) = Yoo &(Xn—1)X) and g(X,) = Yoy di(Xp—1)X). We may
assume that do(X,—1) # 0, then

o0

EX)9(Xn) =D (Y &i(Xno1)dj(Xno1))XE € D[X,].

k=0 i+j=k

Hence, do(X 1)1 -&(X,—1) € D[X,,—1] for alli > 0, and thus {&;(X,,_1)} C
D\ [X,—1] for some A € F(A) by the above paragraph. Thus, £(X,,) € DA[X,].

Finally, note that R[X,]r—{0} = R[Xn]p—{oy; s0 if u(Xy) € R[Xn]r—{0y N
K, then there is 0 # d € D such that d - u(X,) € R[X,] N K,, and hence,
by Claim 2, d - u(X,,) € D\[X,] for some A € F(A). Therefore, u(X,) €
D[[Xn]]Df{O} since D,\[[Xn]] g D)\[[Xn]]Df{O} = D[[Xn]]Df{O}-

(3) Since R is a Krull domain, R[{X,}]: is a Krull domain [12, Theo-
rem 2.1] and R[[{Xa}]]lR,{o} is a Krull domain [13, Corollary 43.6]. Clearly,
af(D[{Xa}]1) is a Krull domain, and thus D[{Xa}]1p_ (o) is @ Krull domain
by (2) and [13, Corollary 44.10]. O

We are now ready to prove the main result of this paper for which we let
Npexi(py Dp = K when XYD)=0.

Theorem 9. If D is a t-SFT PvMD, then
(1) R =Npex1(p)Dp is a Krull domain,
(2) D is a Krull domain if and only if X'(D) = t-Max(D), and
(3) Dl{Xa}1p_toy is a Krull domain.

Proof. (1) If X}(D) =0, then R = K, and hence R is a Krull domain, whence
we assume that X!(D) # (). However, this can be proved by an argument
similar to the proof of Lemma 8(1).

(2) It is well known that if D is a Krull domain, then X! (D) = t-Max(D).
For the converse, note that if X!(D) = t-Max(D), then D = Npexipy) Pp =
R. Thus, by (1), D is a Krull domain.

(3) Let A; and D; for ¢ = 1,2 be as in Corollary 7. Note that if A; = ), then
D;[{Xa}]1 = K[{Xa}]1 is a Krull domain; so we assume that A; # 0 for i =
1,2. Then Dy is anti-Archimedean by Corollary 7, and thus D1 [{Xa}]1p, (03
is a Krull domain [1, Corollary 3.4]. Next, note that Da[{Xa}1p, (o) is a
Krull domain by Corollary 7(3) and Lemma 8(3), and

D[[{Xa}]]lD—{o} = Dl[[{Xa}]]lD—{o} N D2[[{Xa}]]1D—{0}
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= Dl[[{Xa}]]lpl_{o} N DZ[[{Xa}]]lDQ—{op
where the second equality follows because D; and D3 are overrings of D. Thus,
D[{Xa}]1p_{o} is a Krull domain [13, Corollary 44.10]. O

The next theorem shows that D[{Xa}]1,_ (o, is a Krull domain but D[{Xa 1
is not a Krull domain when D is a t-SF'T PvMD but not a Krull domain.

Theorem 10. If D is a t-SFT PvMD, then D[{Xa}]1 is a PoMD if and only if D
is a Krull domain.

Proof. Assume that D is a t-SFT PvMD. Then each prime t-ideal of D is a v-ideal
[17, Proposition 2.10]; so if P is a prime t-ideal of D, then

(PD[{Xa ) = Pol[{Xa}] = P[{Xa}1,

and hence P[{Xa}]1 is a t-ideal. Hence, D[{Xa }]1p((x,yj, I8 @ valuation domain,

and therefore, D is a Krull domain [8, Theorem 3.3]. Conversely, if D is a Krull
domain, then D[{X4}]1 is a Krull domain, and thus a PuMD. O

3. Examples of t-SFT PvMDs

Let D be an integral domain with quotient field K, D[{X.}] be the polynomial
ring over D, and N, = {f € D[{Xa}] | ¢(f)» = D}.

Theorem 11. The following statements are equivalent for D.

(1) D is at-SFT PvMD.
(2) D{Xa}] is a t-SFT PuMD.
(3) D{Xa}]n, is an SET Prifer domain.

Proof. (1) = (2) By Lemma 1(2), D[{X.}] is a PvMD; so it suffices to show that
every prime t-ideal of D[{X,}] is a ¢t-SFT ideal [17, Proposition 2.1]. For this, let Q
be a prime t-ideal of D[{X}].

If ¢(Q)¢ € D, then QN N, = 0, and so Q@ = (Q N D)[{Xa}] by Lemma 1(2)
because D is a PuMD. Let I C P(:= @ N D) be a nonzero finitely generated ideal
and k > 1 be an integer such that a® € I, for all @ € P. If 0 # f € P[{X.}]
with ¢(f) = (a1, .,an), then f* € c(f)[{Xa}] € e(F)ol{Xa}] = ((H)*)ol{Xa}] =
(af,...,a")[{Xa}] € L[{Xa}] = (I[{Xa}]):, where the second and third equali-
ties are from [13, Corollary 28.3] and [2, Lemma 3.3] respectively because c(f) is
t-invertible. Thus, @ is a t-SFT ideal.

Next, assume ¢(Q)¢ = D. Then @ is a maximal t-ideal of D[{X,}] and QND = (0)
(cf. [11, Proposition 2.2]); so htQ = 1 (cf. [11, Lemma 2.3]). Since K[{X.}] is a
UFD, there is an f € @ such that QK[{Xa}] = fK[{Xa}]. Then Q = QK[{ X} N
D{Xa}] = fE[{Xa}] N D[{Xa}] = fe(f)"'[{Xa}], and so if 0 # d € c(f), then
dQ C fDl{Xa}]. Clearly, $Q C D[{Xa}], but §-f =d € Q'Q — Q. Hence
Q € QQ™', and since Q is a maximal t-ideal, (QQ™"); = D[{X4}], and so Q = A,
for some finitely generated ideal A C Q. Thus, @ is a t-SFT ideal.

(2) = (3) D{Xa}]n, is flat over D[{ X4 }], and thus D[{ X }]n, is a t--SFT PvMD.
Note that D[{ X« }]n, is a Priifer domain by Lemma 1(2); so every ideal of D[{ X4 }]n,
is a t-ideal. Thus, D[{Xa}]n, is an SFT Priifer domain.

(3) = (1) Let P be a prime t-ideal of D. Then P[{Xa.}|n, is a proper prime ideal
of D[{Xa}]n,, and hence by (3) and Lemma 1(2), there is a finitely generated ideal
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I C P and an integer & > 1 such that f* € I[{Xa}|n, for all f € P[{Xa}]n,. In
particular, if a € P, then o € I[{Xs}]n, N K = I} (cf. [16, Propositions 2.2(3) and
2.8(1)] for the equality). O

If {Xa}| = oo, then D[{X,}] is not an SFT-ring because ({X«}) is not an SFT-
ideal. However, since an SFT Priifer domain is a t-SFT PvMD, by Theorem 11, we
have:

Corollary 12. If D is an SFT Prifer domain, then D[{X.}] is a t-SFET PvMD.

Remark 13. 1t is well known that D is a PoMD if and only if D{X,}] is a PvMD,
and a PoMD is integrally closed. Hence, the (1) < (2) of Theorem 11 also follows
from [17, Corollary 2.14] that if D is integrally closed, D is a t-SFT-ring if and only if
D[{X4}] is a t-SFT-ring. Also, we use Theorem 11 to give other proofs of Corollary
4 and Theorem 9.

(1) Proof of Corollary 4. It suffices to show the implication (2) = (3). By Lemma
1(3), X (D[{Xa}]n,) = X' (D) = 0. Also, D[{X4,}]n, is an SFT Priifer domain by
Theorem 11, and therefore D[{Xa }]n, is an anti-Archimedean domain [1, Proposition
2.3].

(2) Proof of Theorem 9. If D is a t-SFT PuMD, then D[X]n, is an SFT Priifer
domain by Theorem 11, and hence (D[X]Nv)[[{Xa}]]lD[X]NU—{o} is a Krull domain

[1, Theorem 3.7]. Note that
(DIX]n )Xo 1 pixgy, — 10y N EHXa}]r = D{XaHipj0y-

(Forif € (D[X]Nu)[[{Xa}]]lp[x]]\,vf{o} NK[{Xa}1, then f€ € (D[X]n,)[{Xa}t1 N
K[{Xa}]1 for some 0 # f € D[X]n,. Hence, if w is one of the nonzero coefficients
of ¢, then fw € K N D[X]|n, = D, and thus f € D and f¢ € D[{Xa}]1. Therefore,
£ € D[{Xa}]1p_qoy-) Clearly, K[{Xa}]1 is a Krull domain. Thus, D[{Xa}]1p_ (0
is a Krull domain.

We end this paper with a theorem by which one can construct new ¢-SEF'T PvMDs
from old ones (e.g., Krull domains).

Theorem 14. Let T be an integral domain, M be a nonzero mazximal ideal of T,
o : T — T/M be the canonical homomorphism, D be a subring of T/M, and R =
@ Y(D). Then R is a t-SFT PvMD if and only if T /M is the quotient field of D, D
and T are t-SFT PvMDs, and Tyr is a valuation domain such that P? C P for all
nonzero prime ideals P of Ths.

Proof. The result follows from the facts that (i) R is a PoMD if and only if T/M
is the quotient field of D, D and T are PuvMDs, and T is a valuation domain [10,
Theorem 4.1]; (ii) R is a t-SFT ring if and only if D and T are ¢-SFT-rings [17,
Theorem 2.8]; (iii) if 7" is a t-SFT-ring, then T is a ¢t-SFT-ring [17, Proposition 2.3];
and (iv) a valuation domain V' is a t-SFT-ring if and only if V' is an SFT-ring, if and
only if P? C P for all nonzero prime ideals P of V (by the definitions). d

Corollary 15. Let X be an indeterminate over D, and let R = D + XK[X]|. Then
R is a t-SFT PvMD if and only if D is a t-SFT PvMD.

Proof. Let T = K[X] and M = XK[X]. Then T is a t-SFT PvMD, T/M = K is the
quotient field D, and Ths is a rank-one DVR. Thus, the result follows directly from
Theorem 14. O
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Example 16. Let D be a Krull domain with quotient field K, V = K[X] be the
power series ring over K, and R = D + XK[X].

(1) R is a t-SFT PvMD with a unique nonzero minimal prime ideal X K[X].

(2) R[{Xa }]]1R_{0} is a Krull domain, but R[{X}]: is not a PoMD.

(3) D is a Dedekind domain if and only if R is a Priifer domain.

Proof. (1) Note that V' = K[X] is a rank-one DVR; so V is a t-SFT PuMD. Thus,
by Theorem 14, R is a t-SFT PvMD. Also, X K[X] is contained in every nonzero
prime ideal of R, and hence X K[X] is a unique nonzero minimal prime ideal of R.

(2) By Theorem 9, R[{Xa }HlR—{o} is a Krull domain. Clearly, R is not a Krull
domain, and hence by Theorem 10, R[{Xa}]: is not a Krull domain.

(3) It is obvious that a Krull domain is a Priifer domain if and only if it is a
Dedekind domain. Thus, R is a Priifer domain if and only if D is a Priifer domain
[13, Exercise 13 on page 286], if and only if D is a Dedekind domain. a
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