• Title/Summary/Keyword: I-ring

Search Result 970, Processing Time 0.023 seconds

SYMMETRICITY AND REVERSIBILITY FROM THE PERSPECTIVE OF NILPOTENTS

  • Harmanci, Abdullah;Kose, Handan;Ungor, Burcu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.209-227
    • /
    • 2021
  • In this paper, we deal with the question that what kind of properties does a ring gain when it satisfies symmetricity or reversibility by the way of nilpotent elements? By the motivation of this question, we approach to symmetric and reversible property of rings via nilpotents. For symmetricity, we call a ring R middle right-(resp. left-)nil symmetric (mr-nil (resp. ml-nil) symmetric, for short) if abc = 0 implies acb = 0 (resp. bac = 0) for a, c ∈ R and b ∈ nil(R) where nil(R) is the set of all nilpotent elements of R. It is proved that mr-nil symmetric rings are abelian and so directly finite. We show that the class of mr-nil symmetric rings strictly lies between the classes of symmetric rings and weak right nil-symmetric rings. For reversibility, we introduce left (resp. right) N-reversible ideal I of a ring R if for any a ∈ nil(R), b ∈ R, being ab ∈ I implies ba ∈ I (resp. b ∈ nil(R), a ∈ R, being ab ∈ I implies ba ∈ I). A ring R is called left (resp. right) N-reversible if the zero ideal is left (resp. right) N-reversible. Left N-reversibility is a generalization of mr-nil symmetricity. We exactly determine the place of the class of left N-reversible rings which is placed between the classes of reversible rings and CNZ rings. We also obtain that every left N-reversible ring is nil-Armendariz. It is observed that the polynomial ring over a left N-reversible Armendariz ring is also left N-reversible.

ON REVERSIBILITY RELATED TO IDEMPOTENTS

  • Jung, Da Woon;Lee, Chang Ik;Lee, Yang;Park, Sangwon;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.993-1006
    • /
    • 2019
  • This article concerns a ring property which preserves the reversibility of elements at nonzero idempotents. A ring R shall be said to be quasi-reversible if $0{\neq}ab{\in}I(R)$ for a, $b{\in}R$ implies $ba{\in}I(R)$, where I(R) is the set of all idempotents in R. We investigate the quasi-reversibility of 2 by 2 full and upper triangular matrix rings over various kinds of reversible rings, concluding that the quasi-reversibility is a proper generalization of the reversibility. It is shown that the quasi-reversibility does not pass to polynomial rings. The structure of Abelian rings is also observed in relation with reversibility and quasi-reversibility.

RINGS OVER WHICH POLYNOMIAL RINGS ARE ARMENDARIZ AND REVERSIBLE

  • Ahn, Jung Ho;Choi, Min Jeong;Choi, Si Ra;Jeong, Won Seok;Kim, Jung Soo;Lee, Jeong Yeol;Lee, Soon Ji;Lee, Young Sun;Noh, Dong Hyun;Noh, Yu Seung;Park, Gyeong Hyeon;Lee, Chang Ik;Lee, Yang
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.273-284
    • /
    • 2012
  • A ring R is called reversibly Armendariz if $b_ja_i=0$ for all $i$, $j$ whenever $f(x)g(x)=0$ for two polynomials $f(x)=\sum_{i=0}^{m}a_ix^i,\;g(x)=\sum_{j=0}^{n}b_jx^j$ over R. It is proved that a ring R is reversibly Armendariz if and only if its polynomial ring is reversibly Armendariz if and only if its Laurent polynomial ring is reversibly Armendariz. Relations between reversibly Armendariz rings and related ring properties are examined in this note, observing the structures of many examples concerned. Various kinds of reversibly Armendariz rings are provided in the process. Especially it is shown to be possible to construct reversibly Armendariz rings from given any Armendariz rings.

m-PRIMARY m-FULL IDEALS

  • Woo, Tae Whan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.799-809
    • /
    • 2013
  • An ideal I of a local ring (R, m, k) is said to be m-full if there exists an element $x{\in}m$ such that Im : x = I. An ideal I of a local ring R is said to have the Rees property if ${\mu}$(I) > ${\mu}$(J) for any ideal J containing I. We study properties of m-full ideals and we characterize m-primary m-full ideals in terms of the minimal number of generators of the ideals. In particular, for a m-primary ideal I of a 2-dimensional regular local ring (R, m, k), we will show that the following conditions are equivalent. 1. I is m-full 2. I has the Rees property 3. ${\mu}$(I)=o(I)+1 In this paper, let (R, m, k) be a commutative Noetherian local ring with infinite residue field k = R/m.

ON CLEAN AND NIL CLEAN ELEMENTS IN SKEW T.U.P. MONOID RINGS

  • Hashemi, Ebrahim;Yazdanfar, Marzieh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.57-71
    • /
    • 2019
  • Let R be an associative ring with identity, M a t.u.p. monoid with only one unit and ${\omega}:M{\rightarrow}End(R)$ a monoid homomorphism. Let R be a reversible, M-compatible ring and ${\alpha}=a_1g_1+{\cdots}+a_ng_n$ a non-zero element in skew monoid ring $R{\ast}M$. It is proved that if there exists a non-zero element ${\beta}=b_1h_1+{\cdots}+b_mh_m$ in $R{\ast}M$ with ${\alpha}{\beta}=c$ is a constant, then there exist $1{\leq}i_0{\leq}n$, $1{\leq}j_0{\leq}m$ such that $g_{i_0}=e=h_{j_0}$ and $a_{i_0}b_{j_0}=c$ and there exist elements a, $0{\neq}r$ in R with ${\alpha}r=ca$. As a consequence, it is proved that ${\alpha}{\in}R*M$ is unit if and only if there exists $1{\leq}i_0{\leq}n$ such that $g_{i_0}=e$, $a_{i_0}$ is unit and aj is nilpotent for each $j{\neq}i_0$, where R is a reversible or right duo ring. Furthermore, we determine the relation between clean and nil clean elements of R and those elements in skew monoid ring $R{\ast}M$, where R is a reversible or right duo ring.

REMARKS ON A GOLDBACH PROPERTY

  • Jang, Sun Ju
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.403-407
    • /
    • 2011
  • In this paper, we study Noetherian Boolean rings. We show that if R is a Noetherian Boolean ring, then R is finite and $R{\simeq}(\mathbb{Z}_2)^n$ for some integer $n{\geq}1$. If R is a Noetherian ring, then R/J is a Noetherian Boolean ring, where J is the intersection of all ideals I of R with |R/I| = 2. Thus R/J is finite, and hence the set of ideals I of R with |R/I| = 2 is finite. We also give a short proof of Hayes's result : For every polynomial $f(x){\in}\mathbb{Z}[x]$ of degree $n{\geq}1$, there are irreducible polynomials $g(x)$ and $h(x)$, each of degree $n$, such that $g(x)+h(x)=f(x)$.

THE STRUCTURE OF SEMIPERFECT RINGS

  • Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.425-433
    • /
    • 2008
  • Let R be a ring with identity $1_R$ and let U(R) denote the group of all units of R. A ring R is called locally finite if every finite subset in it generates a finite semi group multiplicatively. In this paper, some results are obtained as follows: (1) for any semilocal (hence semiperfect) ring R, U(R) is a finite (resp. locally finite) group if and only if R is a finite (resp. locally finite) ring; U(R) is a locally finite group if and only if U$(M_n(R))$ is a locally finite group where $M_n(R)$ is the full matrix ring of $n{\times}n$ matrices over R for any positive integer n; in addition, if $2=1_R+1_R$ is a unit in R, then U(R) is an abelian group if and only if R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set of all idempotents in R, is commuting, then $R/J\cong\oplus_{i=1}^mD_i$ where each $D_i$ is a division ring for some positive integer m and |E(R)|=$2^m$; in addition, if 2=$1_R+1_R$ is a unit in R, then every idempotent is central.

The Number and Type of Microorganisms on the Ring Finger after Handwashing (반지착용이 손씻기 후의 미생물 수와 유형에 미치는 영향)

  • Jeong Ihn-Sook
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.5 no.1
    • /
    • pp.143-154
    • /
    • 1998
  • Background : There have been very few studies conducted on the number and type of microorganisms that remain on the ring finger after handwashing. This study was performed to investigate whether there were changes and differences in the type and number of microorganisms on the ring finger before and after handwashing. Method : The subjects of the study were 15 MICU and SICU staff nurses who were wearing rings. I swabbed two different fingers of the same hand with cotton balls. One finger which had a ring and the other with no ring. I swabbed the fingers of each subject three times(before handwashing, after handwashing with soap, and after handwashing with bethadine solution). After storing them for 48 hours in an incubator, I sent them to the laboratory and recorded the culture results. Results : There was no difference in the type of microorganism, but a major difference in the number of the microorganisms that existed on the finger ring. The results showed that there were much more microorganisms on the ring fingers than on the fingers that did not have rings both before and after handwashing. This tendency was consistent regardless of the handwashing agent. I therefore recommend that all nursing staff who work in general nursing units, as well as nurses who work in the ICU, remove their rings when taking care of the patients.

  • PDF

ON RADICALLY-SYMMETRIC IDEALS

  • Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.339-348
    • /
    • 2011
  • A ring R is called symmetric, if abc = 0 implies acb = 0 for a, b, c ${\in}$ R. An ideal I of a ring R is called symmetric (resp. radically-symmetric) if R=I (resp. R/$\sqrt{I}$) is a symmetric ring. We first show that symmetric ideals and ideals which have the insertion of factors property are radically-symmetric. We next show that if R is a semicommutative ring, then $T_n$(R) and R[x]=($x^n$) are radically-symmetric, where ($x^n$) is the ideal of R[x] generated by $x^n$. Also we give some examples of radically-symmetric ideals which are not symmetric. Connections between symmetric ideals of R and related ideals of some ring extensions are also shown. In particular we show that if R is a symmetric (or semicommutative) (${\alpha}$, ${\delta}$)-compatible ring, then R[x; ${\alpha}$, ${\delta}$] is a radically-symmetric ring. As a corollary we obtain a generalization of [13].

ON NONNIL-m-FORMALLY NOETHERIAN RINGS

  • Abdelamir Dabbabi;Ahmed Maatallah
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.611-622
    • /
    • 2024
  • The purpose of this paper is to introduce a new class of rings containing the class of m-formally Noetherian rings and contained in the class of nonnil-SFT rings introduced and investigated by Benhissi and Dabbabi in 2023 [4]. Let A be a commutative ring with a unit. The ring A is said to be nonnil-m-formally Noetherian, where m ≥ 1 is an integer, if for each increasing sequence of nonnil ideals (In)n≥0 of A the (increasing) sequence (∑i1+⋯+im=nIi1Ii2⋯Iim)n≥0 is stationnary. We investigate the nonnil-m-formally Noetherian variant of some well known theorems on Noetherian and m-formally Noetherian rings. Also we study the transfer of this property to the trivial extension and the amalgamation algebra along an ideal. Among other results, it is shown that A is a nonnil-m-formally Noetherian ring if and only if the m-power of each nonnil radical ideal is finitely generated. Also, we prove that a flat overring of a nonnil-m-formally Noetherian ring is a nonnil-m-formally Noetherian. In addition, several characterizations are given. We establish some other results concerning m-formally Noetherian rings.