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REMARKS ON A GOLDBACH PROPERTY

Sun Ju Jang

Abstract. In this paper, we study Noetherian Boolean rings. We
show that if R is a Noetherian Boolean ring, then R is finite and
R ≃ (Z2)n for some integer n ≥ 1. If R is a Noetherian ring, then

R/J is a Noetherian Boolean ring, where J is the intersection of all
ideals I of R with |R/I| = 2. Thus R/J is finite, and hence the set
of ideals I of R with |R/I| = 2 is finite. We also give a short proof of
Hayes’s result : For every polynomial f(x) ∈ Z[x] of degree n ≥ 1,

there are irreducible polynomials g(x) and h(x), each of degree n,
such that g(x) + h(x) = f(x).

All rings are assumed to be commutative rings with identity. We
use the term dimension of R, denoted dimR, to refer to the Krull
dimension of R. A ring R is called von Neumann regular if for each x
in R, there exists y in R such that x = xyx. It is well known that R is
von Neumann regular if and only if R is zero-dimensional and reduced
if and only if RP is a field for each P ∈ Spec(R) if and only if each
ideal of R is a radical ideal if and only if each principal ideal of R is
idempotent [4, Theorem 3.1]. In particular, dimR = 0 if and only if
R/nil(R) is von Neumann regular (where nil(R) is the nilradical of
R) if and only if a power of each principal ideal of R is idempotent
- that is, if and only if, for each x ∈ R, there exists n(x) ∈ Z+ and
y ∈ R such that xn(x) = yxn(x)+1 [4, Theorem 3.4]. The class of von
Neumann regular rings is closed under taking homomorphic images,
quotient rings, and arbitrary products [4, Result 3.2].

R is called a Boolean ring if every element is idempotent. It is well
known that R is a Boolean ring if and only if RM is isomorphic to Z2 for
each maximal ideal M of R. A Boolean ring is a von Neumann regular
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ring with x = x1x. It is known that R/nil(R) is Boolean if and only if
dimR = 0 and for each maximal ideal M of R, R/M ≃ Z2 if and only
if given x ∈ R, there exists a natural number n with xn(1 + x)n = 0
[1, Theorem 5].

In this paper, we study Noetherian Boolean rings. We show that
if R is a Noetherian Boolean ring, then R is finite and R ≃ (Z2)

n

for some integer n ≥ 1. If R is a Noetherian ring, then R/J is a
Noetherian Boolean ring, where J is the intersection of all ideals of
I2 = {I | I is an ideal of R and |R/I| = 2}. Thus R/J is finite, and
hence the set I2 is finite. We also give a short proof of Hayes’s result
using Chinese Remainder Theorem for rings.

For future reference, we include a result from [4, Theorem 3.1(4)].

Lemma 1. If R is a Boolean ring, then M2 = M for each ideal M
of R.

Proof. If x ∈ M , then x = x2 ∈ M2. Hence M ⊆ M2, and thus
M = M2. �

Let I and J be ideals of R. Recall that I and J are comaximal if
I + J = R. Suppose that I and J are comaximal. Then there exist
a ∈ I and b ∈ J such that a + b = 1. For any integer m,n(≥ 1),
1 = (a+ b)m+n and (a+ b)m+n ∈ Im+Jn; so Im+Jn = R, and hence
Im and Jn are also comaximal [7, Lemma 4].

For future reference, we include the Chinese Remainder Theorem
[3, Section 7.6].

Lemma 2. (Chinese Remainder Theorem) Let I1, I2, ..., In be ideals
of R. The map R → R/I1×R/I2×· · ·×R/In defined by r 7→ (r+I1, r+
I2, ..., r+ In) is a ring homomorphism with kernel I1 ∩ I2 ∩ · · · ∩ In. If
each ideals Ii, Ij (i ̸= j) are comaximal, then the map is surjective and
I1∩I2∩· · ·∩In = I1I2 · · · In, so R/(I1I2 · · · In) ≃ R/(I1∩I2∩· · ·∩In) ≃
R/I1 ×R/I2 × · · · ×R/In.

If R is a finite Boolean ring, then R ≃ Z2 × Z2 × · · · × Z2 (c.f. [3,
Exercise 2, p. 267]). We next show that a Noetherian Boolean ring R
is finite with R ≃ (Z2)

n for some integer n ≥ 1.

Theorem 3. Let R be a Boolean ring.
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(1) R is zero-dimensional reduced and for each maximal ideal M of
R, R/M ≃ Z2.

(2) If R is Noetherian, then R is a finite ring with R ≃ (Z2)
n for

some integer n ≥ 1.

Proof. (1) Suppose that dimR > 0. Then there are primes P ( M .
Let x ∈ M − P . Then x = x2, and so x(x− 1) = 0 ∈ P . Since x /∈ P ,
we have x − 1 ∈ P ⊆ M . But x ∈ M , so 1 ∈ M , a contradiction.
Clearly nil(R) = {0}. Let M be a maximal ideal of R. Then R/M is
a field and a Boolean ring; so R/M ≃ Z2.

(2) Suppose that R is Noetherian. Then since, each ideal of R
contains a product of prime ideals of R [3, Corollary 22, p. 685],
we have (0) = P1

r1P2
r2 · · ·Pn

rn . By Lemma 1, each Pi
ri = Pi; so

(0) = P1P2 · · ·Pn and P1, P2, ..., Pn are distinct. Since the ideals Pi

and Pj with i ̸= j are comaximal, the map R → R/P1 × R/P2 · · · ×
R/Pn, r 7→ (r + P1, r + P2, ..., r + Pn) is an epimorphism with kernel
P1 ∩ P2 ∩ · · · ∩ Pn = P1P2 · · ·Pn = {0} by Lemma 2. Hence R ≃
R/{0} ≃ R/P1 × R/P2 × · · · × R/Pn. Now, each R/Pi ≃ Z2 by (1).
Hence R ≃ (Z2)

n for some integer n ≥ 1. �

Corollary 4. (c.f., [7, Lemma 7], [9, Proposition 13]) Let R be a
ring and let

I2 = {I | I is an ideal of R and |R/I| = 2}.

Let J be the intersection of all ideals in I2. Then R/J is a Boolean
ring. Moreover, if R is Noetherian, then R/J is a finite ring with
|R/J | = 2n for some integer n ≥ 1 and I2 is finite.

Proof. Let x ∈ R. For each I ∈ I2, we have x2 − x ∈ I. Thus for
each x ∈ R, x2 − x ∈

∩
{I|I ∈ I2} = J . Therefore R/J is a Boolean

ring. In particular, if R is Noetherian, then R/J is Noetherian, and so
by Theorem 3, R/J is a finite ring with |R/J | = 2n for some integer
n ≥ 1. Hence {I/J ||R/I| = 2} is finite. Since the map I → I/J is
injective, I2 is finite. �

Let R be a Noetherian ring and let In = {Ia}a∈Λ, where |R/Ia| = n.
Define J =

∩
a∈Λ Ia. Then R/J can be imbedded in

∏
a∈Λ(R/Ia).

Then R/J is zero-dimensional Noetherian and hence Artinian. Hence
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J =
∩
Ia has a finite subintersections, soR/J is imbedded in

∏k
i=1(R/Iai),

a ring of cardinality nk. Therefore R/J is finite and hence {Ia/J}a∈Λ

is finite. Since the map Ia → Ia/J is injective, In = {Ia}a∈Λ is finite
[5, Result 3].

D. Hayes [6] was the first to observe and prove the following poly-
nomial analogue of the celebrated Goldbach conjecture:

Theorem 5. For every polynomial f(x) ∈ Z[x] of degree n ≥ 1,
there are irreducible polynomials g(x) and h(x), each of degree n, such
that g(x) + h(x) = f(x).

To prove Theorem 5, Hayes used the following [6, Lemma]: if p and
q are distinct odd primes, then there exist integers c and d such that
pc + qd = 1, p - c, and q - d. Also, Hayes pointed out that more
general theorem whenever R is a principal ideal domain with infinitely
many maximal ideals. In [7], P. Pollack showed the case that R is
a Noetherian domain with infinitely many maximal ideals: Suppose
that R is an integral domain which is Noetherian and has infinitely
many maximal ideals. Then every element of R[x] of degree n ≥ 1
can be written as the sum of two irreducibles of degree n. He used
distinct maximal ideals P and Q such that (1) P 2 ̸= P and Q2 ̸= Q,
(2) |R/P |, |R/Q| > 2 [7, Theorem 5]. Noetherian condition guarantees
that I2 = {I | I is an ideal of R and |R/I| = 2} is finite by Corollary
4, and if M is maximal, then M2 ̸= M [7, Lemma 6]. Also, in [8], F.
Saidak gives a short proof of Hayes’s result.

In order to prove Theorem 5, we recall the remarkable criterion of
Eisenstein [2].

Lemma 6. (Eisenstein’s criterion) If, in the integral polynomial
a0x

n + a1x
n−1 + · · · + an, all of the coefficients except a0 are divis-

ible by a prime p, but an is not divisible by p2, then the polynomial is
irreducible.

Proof of Theorem 5. Write f(x) = m0x
n + m1x

n−1 + · · · + mn.
Choose distinct odd primes p and q which do not divide either of m0

and mn. Let R = Z, pR = P , and qR = Q. Since P and Q are
comaximal, P 2 and Q2 are also comaximal. Therefore the two maps
R → R/P × R/Q, r 7→ (r + P, r + Q) and R → R/P 2 × R/Q2,
r 7→ (r + P 2, r + Q2) are surjective homomorphisms by Lemma 2.
Choose α /∈ P and β /∈ Q. Let a0 be a preimage of (α+P,m0−β+Q)
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under R → R/P ×R/Q. Set b0 = m0 − a0. Then a0 /∈ P and b0 /∈ Q.
Also, for i (0 < i < n), let ai be a preimage of (0 + P,mi +Q) under
R → R/P ×R/Q. Set bi = mi − ai. Then ai ∈ P and bi ∈ Q. Finally,
let an be a preimage of (p+P 2,mn−q+Q2) under R → R/P 2×R/Q2.
Set bn = mn−an. Then we have an ∈ P, an /∈ P 2, bn ∈ Q, and bn /∈ Q2.
If g(x) = a0x

n+ a1x
n−1+ · · ·+ an and if h(x) = b0x

n+ b1x
n−1+ · · ·+

bn, then f(x) = g(x) + h(x). Lemma 6 says that g(x) and h(x) are
irreducible polynomials. �

Remark 7. (cf. [6, Theorem 1]) As the same notation above, Hayes
choose an

′ and bn
′ such that pan

′ + qbn
′ = mn, but p - an′ and q - bn′

by [6, Lemma]. Set an = pan
′ and bn = qbn

′. Then mn = an + bn,
p|an, p2 - an, q|bn, and q2 - bn.
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