Browse > Article
http://dx.doi.org/10.4134/BKMS.b180094

ON CLEAN AND NIL CLEAN ELEMENTS IN SKEW T.U.P. MONOID RINGS  

Hashemi, Ebrahim (Faculty of Mathematical Sciences Shahrood University of Technology)
Yazdanfar, Marzieh (Faculty of Mathematical Sciences Shahrood University of Technology)
Publication Information
Bulletin of the Korean Mathematical Society / v.56, no.1, 2019 , pp. 57-71 More about this Journal
Abstract
Let R be an associative ring with identity, M a t.u.p. monoid with only one unit and ${\omega}:M{\rightarrow}End(R)$ a monoid homomorphism. Let R be a reversible, M-compatible ring and ${\alpha}=a_1g_1+{\cdots}+a_ng_n$ a non-zero element in skew monoid ring $R{\ast}M$. It is proved that if there exists a non-zero element ${\beta}=b_1h_1+{\cdots}+b_mh_m$ in $R{\ast}M$ with ${\alpha}{\beta}=c$ is a constant, then there exist $1{\leq}i_0{\leq}n$, $1{\leq}j_0{\leq}m$ such that $g_{i_0}=e=h_{j_0}$ and $a_{i_0}b_{j_0}=c$ and there exist elements a, $0{\neq}r$ in R with ${\alpha}r=ca$. As a consequence, it is proved that ${\alpha}{\in}R*M$ is unit if and only if there exists $1{\leq}i_0{\leq}n$ such that $g_{i_0}=e$, $a_{i_0}$ is unit and aj is nilpotent for each $j{\neq}i_0$, where R is a reversible or right duo ring. Furthermore, we determine the relation between clean and nil clean elements of R and those elements in skew monoid ring $R{\ast}M$, where R is a reversible or right duo ring.
Keywords
skew monoid rings; idempotent elements; unit elements; clean elements; nil clean elements;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 W. K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J. 46 (2004), no. 2, 227-236.   DOI
2 P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141.   DOI
3 J. Okninski, Semigroup Algebras, Monographs and Textbooks in Pure and Applied Mathematics, 138, Marcel Dekker, Inc., New York, 1991.
4 G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60 (1974).   DOI
5 A. Strojnowski, A note on u.p. groups, Comm. Algebra 8 (1980), no. 3, 231-234.   DOI
6 M. Habibi and R. Manaviyat, A generalization of nil-Armendariz rings, J. Algebra Appl. 12 (2013), no. 6, 1350001, 30 pp.   DOI
7 E. Hashemi, Compatible ideals and radicals of Ore extensions, New York J. Math. 12 (2006), 349-356.
8 E. Hashemi, McCoy rings relative to a monoid, Comm. Algebra 38 (2010), no. 3, 1075-1083.   DOI
9 E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207-224.   DOI
10 O. A. S. Karamzadeh, On constant products of polynomials, Int. J. Math. Edu. Sci. Technol. 18 (1987), 627-629.
11 T. Kosan, Z. Wang, and Y. Zhou, Nil-clean and strongly nil-clean rings, J. Pure Appl. Algebra 220 (2016), no. 2, 633-646.   DOI
12 J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
13 T. Y. Lam, A First Course in Noncommutative Rings, second edition, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 2001.
14 Z. Liu, Armendariz rings relative to a monoid, Comm. Algebra 33 (2005), no. 3, 649-661.   DOI
15 G. Marks, R. Mazurek, and M. Ziembowski, A new class of unique product monoids with applications to ring theory, Semigroup Forum 78 (2009), no. 2, 210-225.
16 A. J. Diesl, Nil clean rings, J. Algebra 383 (2013), 197-211.   DOI
17 R. Mohammadi, A. Moussavi, and M. Zahiri, On annihilations of ideals in skew monoid rings, J. Korean Math. Soc. 53 (2016), no. 2, 381-401.   DOI
18 W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278.   DOI
19 D. D. Anderson and V. P. Camillo, Commutative rings whose elements are a sum of a unit and idempotent, Comm. Algebra 30 (2002), no. 7, 3327-3336.   DOI
20 A. Alhevaz and D. Kiani, McCoy property of skew Laurent polynomials and power series rings, J. Algebra Appl. 13 (2014), no. 2, 1350083, 23 pp.   DOI
21 G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, in Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993.
22 G. F. Birkenmeier and J. K. Park, Triangular matrix representations of ring extensions, J. Algebra 265 (2003), no. 2, 457-477.   DOI
23 W. Chen, Units in polynomial rings over 2-primal rings, Southeast Asian Bull. Math. 30 (2006), no. 6, 1049-1053.
24 W. Chen, On constant products of elements in skew polynomial rings, Bull. Iranian Math. Soc. 41 (2015), no. 2, 453-462.
25 W. Chen and S. Cui, On weakly semicommutative rings, Commun. Math. Res. 27 (2011), no. 2, 179-192.
26 J. S. Cheon and J.-A. Kim, Prime radicals in up-monoid rings, Bull. Korean Math. Soc. 49 (2012), no. 3, 511-515.   DOI