
Bull. Korean Math. Soc. 56 (2019), No. 4, pp. 993–1006

https://doi.org/10.4134/BKMS.b180759

pISSN: 1015-8634 / eISSN: 2234-3016

ON REVERSIBILITY RELATED TO IDEMPOTENTS
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Abstract. This article concerns a ring property which preserves the re-

versibility of elements at nonzero idempotents. A ring R shall be said
to be quasi-reversible if 0 6= ab ∈ I(R) for a, b ∈ R implies ba ∈ I(R),

where I(R) is the set of all idempotents in R. We investigate the quasi-

reversibility of 2 by 2 full and upper triangular matrix rings over various
kinds of reversible rings, concluding that the quasi-reversibility is a proper

generalization of the reversibility. It is shown that the quasi-reversibility

does not pass to polynomial rings. The structure of Abelian rings is also
observed in relation with reversibility and quasi-reversibility.

1. Quasi-reversible rings

Throughout every ring is an associative ring with identity unless otherwise
stated. Let R be a ring. Use I(R), N∗(R), N(R), and J(R) to denote the set of
all idempotents, the upper nilradical (i.e., the sum of all nil ideals), the set of all
nilpotent elements, and the Jacobson radical in R, respectively. Note N∗(R) ⊆
N(R). Write I(R)′ = {e ∈ I(R) | e 6= 0}. Z(R) denotes the center of R. The
polynomial ring with an indeterminate x over R is denoted by R[x]. Z and Zn

denote the ring of integers and the ring of integers modulo n, respectively. Let
n ≥ 2. Denote the n by n full (resp., upper triangular) matrix ring over R by
Matn(R) (resp., Tn(R)), and Dn(R) = {(aij) ∈ Tn(R) | a11 = · · · = ann}. Use
Eij for the matrix with (i, j)-entry 1 and zeros elsewhere, and In denotes the
identity matrix in Matn(R).

Following Cohn [4], a ring R (possibly without identity) is called reversible
if ab = 0 for a, b ∈ R implies ba = 0. Anderson and Camillo [1] used the
term ZC2 for the reversibility. A ring (possibly without identity) is usually
said to be reduced if it has no nonzero nilpotent elements. Many commutative
rings are not reduced (e.g., Znl for n, l ≥ 2), and there exist many noncom-
mutative reduced rings (e.g., direct products of noncommutative domains). It
is easily checked that the class of reversible rings contains commutative rings
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and reduced rings. A ring (possibly without identity) is called Abelian if every
idempotent is central. It is simple to check that reversible rings are Abelian. A
ring R is usually called directly finite (or Dedekind finite) if ab = 1 for a, b ∈ R
implies ba = 1. Abelian rings are clearly directly finite.

Lemma 1.1. (1) A ring R is reversible if and only if ab ∈ I(R) for a, b ∈ R
implies ba ∈ I(R) if and only if ab ∈ I(R) for a, b ∈ R implies ab = ba.

(2) Let R be a reversible ring and suppose that AB ∈ I(T2(R))′ for A =

( a1 a3
0 a2

), B =
(
b1 b3
0 b2

)
∈ T2(R). Then b1a1(b1a3 + b3a2)b2a2 = 0, and(
b1a1 (b1a3 + b3a2)(b1a1 + b2a2)

0 b2a2

)
,(

b1a1 b1a1(b1a3 + b3a2)
0 b2a2

)
,(

b1a1 (b1a3 + b3a2)b2a2
0 b2a2

)
∈ I(T2(R))′.

(3) Let R be a ring with I(R) = {0, 1}. If AB ∈ I(D2(R))′ for A,B ∈
D2(R), then AB = I2 = BA.

Proof. (1) is obtained from [8, Proposition 1.4 and Corollary 1.5].
(2) From 0 6= AB ∈ I(T2(R)), we have that 0 6= a1b1 ∈ I(R) or 0 6= a2b2 ∈

I(R). By (1), a1b1 = b1a1 and a2b2 = b2a2. Set e = a1b1 and f = a2b2. We
use freely the fact that reversible rings are Abelian.

From (AB)2 = AB, we get

a1b3 + a3b2 = (a1b3 + a3b2)e+ (a1b3 + a3b2)f

and

(a1b3 + a3b2)e = (a1b3 + a3b2)(1− f),

(a1b3 + a3b2)f = (a1b3 + a3b2)(1− e),
e(a1b3 + a3b2)f = 0.

Next from e(a1b3 + a3b2)f = 0, we obtain

(∗) a1b1a1b3a2b2 + a1b1a3b2a2b2 = 0.

Multiplying the equality (∗) b1 on the left and a2 on the right, we obtain

0 = b1(a1b1a1b3a2b2 + a1b1a3b2a2b2)a2

= b1a1b1a1b3a2b2a2 + b1a1b1a3b2a2b2a2

= (b1a1)(b1a1)b3a2(b2a2) + (b1a1)b1a3b2(a2b2)a2

= (a1b1)b3a2(b2a2) + (b1a1)b1a3(a2b2)(b2a2)

= (b1a1)b3a2(a2b2) + (b1a1)b1a3(a2b2)

= (b1a1)(b1a3 + b3a2)(a2b2)

= e(b1a3 + b3a2)f.
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This result gives us(
b1a1 (b1a3 + b3a2)(b1a1 + b2a2)

0 b2a2

)
,(

b1a1 b1a1(b1a3 + b3a2)
0 b2a2

)
,(

b1a1 (b1a3 + b3a2)b2a2
0 b2a2

)
∈ I(T2(R))′.

(3) Let R be a ring with I(R) = {0, 1}. Then R is Abelian, and so
I(D2(R)) = {0, I2} by help of [6, Lemma 2]. Hence D2(R) is also Abelian.
Suppose that AB ∈ I(D2(R))′ for A,B ∈ D2(R). Then AB = I2, and so
BA = I2 because D2(R) is directly finite. Thus AB = BA. �

We next consider the following notion, based on Lemma 1.1(1).

Definition 1.2. A ring R (possibly without identity) is quasi-reversible pro-
vided that if ab ∈ I(R)′ for a, b ∈ R, then ba ∈ I(R).

By Lemma 1.1(3), every ring R with I(R) = {0, 1} is quasi-reversible. Re-
versible rings are quasi-reversible by Lemma 1.1(1), but not conversely by Theo-
rem 1.4 to follow. Recall that reversible rings are Abelian. But quasi-reversible
rings need not be Abelian by Theorem 1.4 to follow.

Lemma 1.3. (1) A ring R is quasi-reversible if and only if ab ∈ I(R)′ for
a, b ∈ R implies ba ∈ I(R)′.

(2) The class of quasi-reversible rings is closed under subrings (with or with-
out identity).

Proof. (1) It suffices to show the necessity. Let R be a quasi-reversible ring
and suppose that ab ∈ I(R)′ for a, b ∈ R. Then ba ∈ I(R). Assume ba = 0.
Then ab = abab = 0, contrary to ab 6= 0. So ba ∈ I(R)′.

(2) Let R be a quasi-reversible ring and S be a subring (possibly without
identity) of R. Suppose ab ∈ I(S)′ for a, b ∈ S. Note I(S) = I(R) ∩ S and
I(S)′ = I(R)′ ∩ S. Since R is quasi-reversible, ba ∈ I(R). But ba ∈ S and
ba ∈ I(S) follows. �

Following Marks [13], a ring R is called NI if N(R) = N∗(R). It is obvious
that a ring R is NI if and only ifN(R) forms an ideal of R if and only if R/N∗(R)
is reduced. If a ring R is NI, then R is directly finite by [7, Proposition 2.7(1)].
Reversible rings are easily shown to be NI. We use these facts freely.

Theorem 1.4. A ring R is a reversible ring with I(R) = {0, 1} if and only
if T2(R) is a quasi-reversible ring.

Proof. Suppose that R is a reversible ring with I(R) = {0, 1}. From I(R) =
{0, 1}, we get

I(T2(R)) =

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 r
0 0

)
,

(
0 s
0 1

)
| r, s ∈ R

}
,
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through a simple computation. Suppose that AB ∈ I(T2(R))′ for A = ( a1 a3
0 a2

),

B =
(
b1 b3
0 b2

)
∈ T2(R). Then a1b1 = 1 or a2b2 = 1. If AB = I2 (i.e., a1b1 = 1,

a2b2 = 1, and a1b3 + a3b2 = 0), then BA = I2 because T2(R) is NI and so
directly finite. So, consider the cases of (a1b1 = 1, a2b2 = 0) and (a1b1 = 0,

a2b2 = 1). Note that BA =
(
b1a1 b1a3+b3a2

0 b2a2

)
.

Assume a1b1 = 1 and a2b2 = 0. Then b1a1 = a1b1 = 1 and b2a2 = a2b2 = 0
by Lemma 1.1(1). This yields

BA =

(
1 b1a3 + b3a2
0 0

)
=

(
b1a1 b1a1(b1a3 + b3a2)

0 b2a2

)
∈ I(T2(R))′.

Assume a1b1 = 0 and a2b2 = 1. Then b1a1 = a1b1 = 0 and b2a2 = a2b2 = 1
by Lemma 1.1(1). This yields

BA =

(
0 b1a3 + b3a2
0 1

)
=

(
b1a1 (b1a3 + b3a2)b2a2

0 b2a2

)
∈ I(T2(R))′.

Therefore T2(R) is quasi-reversible.
Conversely suppose that T2(R) is quasi-reversible. Let ab ∈ I(R) for a, b ∈

R. Consider matrices

A =

(
a 0
0 1

)
and B =

(
b 0
0 1

)
in T2(R). Then ab ∈ I(R) implies 0 6= AB = ( ab 0

0 1 ) ∈ I(T2(R)). Since T2(R)
is quasi-reversible, BA = ( ba 0

0 1 ) ∈ I(T2(R)). This yields ba ∈ I(R). Thus R is
reversible by Lemma 1.1(1).

(Another proof) Let ab = 0 for a, b ∈ R. Consider matrices

A =

(
a 0
0 1

)
and B =

(
b 0
0 1

)
in T2(R). Then 0 6= AB = ( 0 0

0 1 ) ∈ I(T2(R)). Since T2(R) is quasi-invertible,
BA = ( ba 0

0 1 ) ∈ I(T2(R)). This implies (ba)2 = ba, but ab = 0 yields ba =
baba = 0. Thus R is reversible.

Next assume on the contrary that there exists e2 = e ∈ R with e /∈ {0, 1}.
Consider two matrices

C =

(
e 1
0 0

)
and D =

(
1 0
0 e

)
in T2(R). Then

0 6= CD =

(
e e
0 0

)
∈ I(T2(R)) but DC =

(
e 1
0 0

)
/∈ I(T2(R)),

contrary to T2(R) being quasi-reversible. Thus I(R) = {0, 1}. �

The existence of a reversible ring R, such that I(R) = {0, 1} and R is not
reduced, illuminates Theorem 1.4. Let R be a domain and consider D2(R).
Then D2(R) is reversible by [11, Proposition 1.6], and I(D2(R)) = {0, I2}.
D2(R) is clearly not reduced.
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Theorem 1.4 yields the following results.

Corollary 1.5. (1) If R is a domain, then T2(R) is quasi-reversible.
(2) Let R be a (quasi-)reversible ring such that I(R) contains {0, 1} properly,

and n ≥ 2. Then Matn(R) and Tn(R) need not be quasi-reversible.

Proof. (1) is an immediate consequence of Theorem 1.4.
(2) By Theorem 1.4, T2(R) is not quasi-reversible, and thus Matn(R) and

Tn(R) need not be quasi-reversible for n ≥ 2, by Lemma 1.3(2). �

Considering Theorem 1.4 and Corollary 1.5, it is natural to ask whether
T2(R) is quasi-reversible over a reduced ring R. But the answer is negative by
the following. Furthermore this illuminates Lemma 1.1(2).

Example 1.6. (1) Let R0 be a domain and R = R0×R0. Then R is a reduced
ring but not a domain, and I(R) = {(0, 0), (1, 0), (0, 1), (1, 1)}. Then T2(R) is
not quasi-reversible by Theorem 1.4.

(2) Note that the ring R in (1) is reversible with {0, 1} ( I(R), hence T2(R)

is not a quasi-reversible ring by Theorem 1.4. Moreover, for A =
(

(1,0) (1,1)
(0,0) (0,0)

)
and B =

(
(1,1) (1,1)
(0,0) (1,0)

)
∈ T2(R), we have AB ∈ I(T2(R)) and BA /∈ I(T2(R)).

The arguments in the following illuminate Theorem 1.4.

Example 1.7. Theorem 1.4 is not valid for Tn(R) with n ≥ 3. Let R be any

ring and consider T3(R). Let A =
(

0 1 0
0 1 0
0 0 1

)
and B =

(
1 1 1
0 1 1
0 0 0

)
in T3(R). Then

AB =
(

0 1 1
0 1 1
0 0 0

)
∈ I(T3(A)). But BA =

(
0 2 1
0 1 1
0 0 0

)
/∈ I(T3(R)). This argument

can be applicable to the case of n ≥ 4. Thus Tn(R) cannot be quasi-reversible
when n ≥ 3.

In the following we see another kind of quasi-reversible rings in the class of
simple Artinian rings.

Theorem 1.8. Mat2(Z2) is quasi-reversible.

Proof. Let R = Mat2(Z2). Then I(R) = {0, I2, E11, E22, ( 1 1
0 0 ) , ( 1 0

1 0 ) , ( 0 1
0 1 ) ,

( 0 0
1 1 )} by [12, Lemma 1.3]. Suppose that AB ∈ I(R)′ for A = ( a1 a2

a3 a4
), B =(

b1 b2
b3 b4

)
∈ R. We proceed our argument, case by case.

Assume AB = I2. Since R is Artinian, R is directly finite and so AB = I2
implies BA = I2.

Assume AB = E11. Then a1b1 + a2b3 = 1, a1b2 + a2b4 = 0, a3b1 + a4b3 =
0, a3b2+a4b4 = 0. From a1b1+a2b3 = 1, we have the cases of (a1b1 = 1, a2b3 =
0) and (a1b1 = 0, a2b3 = 1).

Consider the case of a1b1 = 1, a2b3 = 0. Then a1 = 1 = b1; and a2 = 0 or
b3 = 0. Let a2 = 0. Then we get b2 = 0 from 0 = a1b2 + a2b4 = a1b2 = b2. So
0 = a3b2 + a4b4 = a4b4. These results provide us with

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
1 0

b3 + b4a3 0

)
∈ I(R).
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Let b3 = 0. Then we get a3 = 0 from 0 = a3b1 + a4b3 = a3b1. So 0 =
a3b2 + a4b4 = a4b4. These results provide us with

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
1 a2 + b2a4
0 0

)
∈ I(R).

Consider the case of a1b1 = 0, a2b3 = 1. Then a2 = 1 = b3; and a1 = 0 or
b1 = 0. Let a1 = 0. Then we get b4 = 0 from 0 = a1b2 + a2b4 = a2b4 = b4. So
0 = a3b2 + a4b4 = a3b2. These results provide us with

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
0 b1 + b2a4
0 1

)
∈ I(R).

Let b1 = 0. Then we get a4 = 0 from 0 = a3b1 + a4b3 = a4b3 = a4. So
0 = a3b2 + a4b4 = a3b2. These results provide us with

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
0 0

a1 + b4a3 1

)
∈ I(R).

Thus BA ∈ I(R) in any case when AB = E11.
The argument for the case of AB = E22 is similar to one of AB = E11.
Assume AB = ( 1 1

0 0 ). Then a1b1+a2b3 = 1, a1b2+a2b4 = 1, a3b1+a4b3 = 0,
a3b2 + a4b4 = 0. From a1b1 + a2b3 = 1, a1b2 + a2b4 = 1, we have the cases
of (a1b1 = 1, a2b3 = 0, a1b2 = 1, a2b4 = 0), (a1b1 = 1, a2b3 = 0, a1b2 = 0,
a2b4 = 1), (a1b1 = 0, a2b3 = 1, a1b2 = 1, a2b4 = 0), and (a1b1 = 0, a2b3 = 1,
a1b2 = 0, a2b4 = 1).

Consider the case of a1b1 = 1, a2b3 = 0, a1b2 = 1, a2b4 = 0. Then a1 = b1 =
b2 = 1. From a2b3 = 0, a2b4 = 0, we have the cases of (a2 = 0) and (a2 = 1,
b3 = 0 = b4).

Let a2 = 0. From a3b1 +a4b3 = 0, a3b2 +a4b4 = 0, we get a3 = a4b3 = a4b4.
If a3 = 1, then b3 = a4 = b4 = 1 and hence

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
0 1
0 1

)
∈ I(R).

If a3 = 0, then a4b3 = a4b4 = 0. Here if a4 = 1, then b3 = 0 = b4; hence

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
1 1
0 0

)
∈ I(R).

Here if a4 = 0, then

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
1 0
b3 0

)
∈ I(R).

Let a2 = 1. Then b3 = 0 = b4, and so 0 = a3b1 + a4b3 = a3. These yield

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
1 1 + a4
0 0

)
∈ I(R).

Consider the case of a1b1 = 1, a2b3 = 0, a1b2 = 0, a2b4 = 1. Then a1 =
b1 = a2 = b4 = 1. From a2b3 = 0, a1b2 = 0, we get b3 = 0 = b2. Hence
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0 = a3b1 + a4b3 = a3 and 0 = a3b2 + a4b4 = a4b4. These yield

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
1 1
0 0

)
∈ I(R).

The arguments for the cases of (a1b1 = 0, a2b3 = 1, a1b2 = 1, a2b4 = 0)
and (a1b1 = 0, a2b3 = 1, a1b2 = 0, a2b4 = 1) are similar to the preceding ones.
Thus BA ∈ I(R) in any case when AB = ( 1 1

0 0 ).
Assume AB = ( 1 0

1 0 ). Then a1b1+a2b3 = 1, a1b2+a2b4 = 0, a3b1+a4b3 = 1,
a3b2 + a4b4 = 0. From a1b1 + a2b3 = 1, a3b1 + a4b3 = 1, we have the cases
of (a1b1 = 1, a2b3 = 0, a3b1 = 1, a4b3 = 0), (a1b1 = 1, a2b3 = 0, a3b1 = 0,
a4b3 = 1), (a1b1 = 0, a2b3 = 1, a3b1 = 1, a4b3 = 0), and (a1b1 = 0, a2b3 = 1,
a1b2 = 0, a4b3 = 1).

Consider the case of a1b1 = 1, a2b3 = 0, a3b1 = 1, a4b3 = 0. Then a1 =
b1 = a3 = 1. From a2b3 = 0, a4b3 = 0, we have the cases of (b3 = 0) and
(a2 = 0 = a4, b3 = 1).

Let b3 = 0. From a1b2 + a2b4 = 0, a3b2 + a4b4 = 0, we get b2 = a2b4 = a4b4.
If b2 = 1, then a2 = a4 = b4 = 1 and hence

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
0 0
a3 1

)
∈ I(R).

If b2 = 0, then a2b4 = a4b4 = 0. Here if b4 = 1, then a2 = 0 = a4; hence

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
1 0
a3 0

)
∈ I(R).

Here if b4 = 0, then

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
1 a2
0 0

)
∈ I(R).

Let b3 = 1. Then a2 = 0 = a4, and so 0 = a1b2 + a2b4 = b2. These yield

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
1 0

1 + b4 0

)
∈ I(R).

Consider the case of a1b1 = 1, a2b3 = 0, a3b1 = 0, a4b3 = 1. Then a1 =
b1 = a4 = b3 = 1. From a2b3 = 0, a3b1 = 0, we get a2 = 0 = a3. Hence
0 = a1b2 + a2b4 = b2 and 0 = a3b2 + a4b4 = a4b4. These yield

BA =

(
b1a1 + b2a3 b1a2 + b2a4
b3a1 + b4a3 b3a2 + b4a4

)
=

(
1 0
1 0

)
∈ I(R).

The arguments for the cases of (a1b1 = 0, a2b3 = 1, a3b1 = 1, a4b3 = 0)
and (a1b1 = 0, a2b3 = 1, a1b2 = 0, a4b3 = 1) are similar to the preceding ones.
Thus BA ∈ I(R) in any case when AB = ( 1 0

1 0 ).
Next, we can obtain similar arguments for the cases of AB = ( 0 1

0 1 ) and
AB = ( 0 0

1 1 ) to ones above. Therefore Mat2(Z2) is quasi-reversible. �
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Mat2(Z2) is simple Artinian. So, considering Theorem 1.8, one may ask nat-
urally whether semisimple Artinian rings are quasi-reversible. But the answer
is negative by the following.

Example 1.9. (1) Let K be a division ring and R = K×K. Since Mat2(R) is
isomorphic to Mat2(K)×Mat2(K), Mat2(R) is semisimple Artinian. Consider
next T2(R). Then T2(R) is not quasi-reversible by Theorem 1.4 (see Example
1.6(1) for more details). So Mat2(R) is not quasi-reversible by Lemma 1.3(2).

(2) Let K = Z2 in (1). Then Mat2(Z2) is quasi-reversible by Theorem 1.8.
But Mat2(Z2) ×Mat2(Z2) is not quasi-reversible by the argument in (1). So
the class of quasi-reversible rings is not closed under direct products.

However we do not know of any example of a field K over which Mat2(K) is
not quasi-reversible. Considering Theorem 1.4, it is also natural to ask whether
Mat2(R) quasi-reversible over a reversible ring R with I(R) = {0, 1}. So we
raise the next questions.

Question. (1) Let K be a field. Is Mat2(K) quasi-reversible?
(2) Let R be a reversible ring with I(R) = {0, 1}. Is Mat2(R) quasi-

reversible?
By help of the argument in Example 2.4(2) to follow, we can conclude that

the quasi-reversibility does not pass to polynomial rings.

Example 1.10. Let R1 be a reduced ring and R2 be the reversible ring R in
Example 2.1 to follow. Set R3 = R1×R2. Then R3 is clearly reversible (hence
quasi-reversible by Lemma 1.1(1)). Consider R3[x]. Since R[x] is not reversible,
based on the argument in [11, Example 2.1], we take f(x) =

∑m
i=0 αix

i, g(x) =∑n
j=0 βjx

j ∈ R2[x] such that f(x)g(x) = 0 but g(x)f(x) 6= 0, where we can let
m = n by using zero coefficients if necessary. Next consider two polynomials

a(x) = (1, α0) +

m∑
i=1

(0, αi)x
i and b(x) = (1, β0) +

m∑
j=1

(0, βj)x
j

in R3[x]. Then a(x)b(x) = (1, 0) ∈ I(R3[x])′. But

b(x)a(x) = ((1, β0) +

m∑
j=1

(0, βj)x
j)((1, α0) +

m∑
i=1

(0, αi)x
i) = (1, 0) + c(x)

for some 0 6= c(x) =
∑l

k=1(0, γk)xk ∈ R3[x] by the argument in [11, Example
2.1]. Here assume b(x)a(x) ∈ I(R3[x]). Then we have

(1, 0) + c(x) = b(x)a(x) = b(x)a(x)b(x)a(x)

= (1, 0)b(x)a(x) = (1, 0)[(1, 0) +

l∑
k=1

(0, γk)xk] = (1, 0),

a contradiction. Therefore R3[x] is not quasi-reversible.



ON REVERSIBILITY RELATED TO IDEMPOTENTS 1001

2. On a property of Abelian rings

In this section we study the structure of Abelian rings and NI rings. We
first find an equivalent condition to Abelian rings. The work in this section is
based on the structure of rings in the following example, and the fact that in
any ring R, ab ∈ I(R) for a, b ∈ R implies (ba)2 ∈ I(R).

Example 2.1. We refer to the construction in [11, Example 2.1]. Let A =
Z2〈a0, a1, a2, b0, b1, b2, c〉 be the free algebra generated by noncommuting inde-
terminates a0, a1, a2, b0, b1, b2, c over Z2; and set B = {f ∈ A | the constant
term of f is zero}. Next let I be the ideal of A generated by a0b0, a0b1 + a1b0,
a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2, b0a0, b0a1 + b1a0, b0a2 +
b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2, (a0 + a1 + a2)r(b0 + b1 + b2),
(b0 + b1 + b2)r(a0 + a1 + a2), and r1r2r3r4, where r, r1, r2, r3, r4 ∈ B. Set
R = A/I.
R is reversible but R[x] is not reversible by [11, Example 2.1]. Since R is

Abelian, every idempotent in R[x] is contained in R, i.e., I(R) = I(R[x]), by
[9, Lemma 8]. Moreover we claim I(R) = {0, 1}.

Let f ∈ I(R)′. We can write f = 1 + f0 with f0 ∈ B̄, noting B̄4 = 0, where
B̄ = B/I. Then 1 + f0 = (1 + f0)2 = 1 + 2f0 + f20 = 1 + f20 , and f0 = f20
follows. So f0 ∈ I(R). But f0 ∈ B̄ ⊆ N(R), entailing f0 = 0. This yields
f = 1 and therefore I(R) = {0, 1} = I(R[x]). Now let g(x)h(x) ∈ I(R[x])′

for g(x), h(x) ∈ R[x]. Then g(x)h(x) = 1 because I(R[x])′ = {1}. Notice that
R[x] is directly finite by help of [9, Lemma 8]. Thus we get h(x)g(x) = 1 from
g(x)h(x) = 1. Hence we now have h(x)g(x)h(x)g(x) = 1 = g(x)h(x).

The argument in Example 2.1 is extended to the general situation as follows.

Theorem 2.2. For a ring R the following conditions are equivalent:
(1) R is Abelian;
(2) If ab ∈ I(R)′ for a, b ∈ R, then (ba)2 = ab;
(3) If ab ∈ I(R) for a, b ∈ R, then (ba)2 = ab.

Proof. (1) ⇒ (2). Let R be an Abelian ring. Suppose ab ∈ I(R)′ for a, b ∈ R.
Then (ba)2 ∈ I(R). Since ab and (ba)2 are central in R, we have

(ba)2 = b(ab)a = b(ab)2a = b(ab)a(ab) = (ba)2ab = a(ba)2b = (ab)3 = ab.

(2) ⇒ (1). Suppose the condition (2). Assume on the contrary that there
exist e ∈ I(R)′ and a ∈ R such that ea(1− e) 6= 0. Then e+ ea(1− e) ∈ I(R)′

(for, if e+ ea(1− e) = 0, then 0 = (e+ ea(1− e))e = e, contrary to e 6= 0; and
clearly e+ea(1−e) ∈ I(R)). By the condition, e(1+a(1−e)) = e+ea(1−e) ∈
I(R)′ implies

e = e2 = [(1 + a(1− e))e][(1 + a(1− e))e] = e(1 + a(1− e)) = e+ ea(1− e),
entailing ea(1−e) = 0. This contradicts ea(1−e) 6= 0. Therefore R is Abelian.

(3) ⇒ (2) is obvious. (2) ⇒ (3) is obtained from that ab = 0 for a, b ∈ R
implies baba = 0 = ab. �
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In the proof of Theorem 2.2, note that ab ∈ I(R)′ implies ba 6= 0. It is easily
shown that reversible rings are Ableian. This fact is also obtained from Lemma
1.1(1) and Theorem 2.2. The polynomial ring R[x] in Example 2.1 is Abelian
but not reversible. As another example of Abelian ring that is not reversible,
consider R = Dn(A) for n ≥ 3 over any Abelian ring A. Then R is Abelian by
[6, Lemma 2]. However R is not reversible by [11, Example 1.5].

From Lemma 1.1(1) and Theorem 2.2, we can deduce the following.

Corollary 2.3. Let R be an Abelian ring but not reversible. Then there exist
a, b ∈ R such that ab ∈ I(R), (ba)2 = ab, and ba /∈ I(R).

The concepts of quasi-reversible and Abelian are independent of each other
as follows. It is easily shown that the class of Abelian rings is closed under
subrings and direct products. We use this fact freely.

Example 2.4. (1) Mat2(Z2) is quasi-reversible by Theorem 1.8. But it is
non-Abelian clearly.

(2) Let R1 be an Abelian ring, and R2 be an Abelian ring that is not re-
versible (see Example 2.1 for example). Set R = R1 ×R2. Let e ∈ I(R1)′ and
a, b ∈ R2 such that ab = 0 but ba 6= 0. Set f = (e, a) and g = (e, b) in R.
Then fg = (e, 0) ∈ I(R)′. But gf = (e, ba) and (gf)2 = (e, 0) 6= gf , entailing
gf /∈ I(R). Thus R is not quasi-reversible but R is Abelian.

Next we extend [8, Proposition 1.4 and Corollary 1.5] in the sprit of Theorem
2.2. Due to Bell [3], a ring R is said to be IFP if ab = 0 for a, b ∈ R implies
aRb = 0. It is easily checked that reversible rings are IFP, IFP rings are
Abelian, and IFP rings are NI. We use this fact freely.

Proposition 2.5. (1) A ring R is reversible if and only if ab ∈ I(R) for
a, b ∈ R implies bra = braab for all r ∈ R.

(2) A ring R is IFP if and only if ab ∈ I(R) for a, b ∈ R implies arb =
arb(ba)2 for all r ∈ R.

Proof. (1) Let R be a reversible ring and suppose that ab ∈ I(R) for a, b ∈ R.
Then ab = ba by Lemma 1.1(1). So, from ba = (ba)2, we get 0 = ba(1− ba) =
ba(1− ab). Since R is IFP, ba(1− ab) = 0 implies bra(1− ab) = 0 for all r ∈ R.
Thus bra = braab.

Conversely suppose that ab ∈ I(R) for a, b ∈ R implies bra = braab for
all r ∈ R. Letting r = 1 here, we get ba = baab. Assume ab = 0. Then
ba = baab = 0, and so R is reversible.

(2) Let R be an IFP ring and suppose that ab ∈ I(R) for a, b ∈ R. Then
ab = (ba)2 by Theorem 2.2. Since R is Abelian, we get furthermore ab =
baba = b(ab)aba = (ab)baba = ab(ba)2 and ab(1 − (ba)2) = 0. Since R is IFP,
we get arb(1− (ba)2) = 0 for all r ∈ R. Thus arb = arb(ba)2.

Conversely suppose that ab ∈ I(R) for a, b ∈ R implies arb = arb(ba)2 for
all r ∈ R. Assume ab = 0. Then arb = arb(ba)2 = arbb(ab)a = 0, and so R is
IFP. �
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By help of Proposition 2.5, we get a way to show that reversible rings are
IFP, through idempotents. Let R be a ring and suppose ab ∈ I(R) for a, b ∈ R.
Let R be reversible. Then ab = ba by Lemma 1.1(1); hence arb = arbba for
all r ∈ R by Proposition 2.5(1). Moreover arb = arbba implies arb = arb(ba)2

because ab = ba. Thus R is IFP by Proposition 2.5(2). By [11, Example 1.5],
D3(A) is IFP but not reversible when A is a reduced ring. Let R2 = D3(A)
and R1 be any IFP ring. Next set R = R1 × R2. Then R is clearly IFP. But
R is not quasi-reversible by Example 2.4(2). Thus the concepts of IFP and
quasi-reversible are independent of each other, considering the non-Abelian
quasi-reversible Mat2(Z2).

Following Neumann [15], a ring R is said to be regular if for each a ∈ R there
exists b ∈ R such that a = aba. Every regular ring R is clearly semiprimitive
(i.e., J(R) = 0). It is shown by [5, Theorem 1.1] that R is regular if and
only if every principal right (left) ideal of R is generated by an idempotent.
Furthermore we have the following equivalences by [5, Theorem 3.2] and the
fact of semiprime NI rings being reduced.

For a regular ring R, the following conditions are equivalent: (1) R is re-
duced; (2) R is reversible; (3) R is IFP; (4) R is NI; (5) R is Abelian.

However the quasi-reversibility need not be equivalent to the reversibility
when given rings are regular. Consider Mat2(Z2). Mat2(Z2) is regular by
[5, Theorem 1.7], but it is non-Abelian (hence not reversible).

Following McCoy [14], a ring R is said to be π-regular if for each a ∈ R there
exist a positive integer n = n(a) and b ∈ R such that an = anban. A regular
ring is clearly π-regular, but the converse need not hold as can be seen by
R = Un(A) (n ≥ 2) over a division ring A. The Jacobson radicals of π-regular
rings are nil by [10, Lemma 5].

Let R be an Abelian π-regular ring. Then R/J(R) is a regular ring with
J(R) = N∗(R) = N(R) by [2, Theorem 3], entailing that R/J(R) is reduced.
This implies that R is an NI ring. But R need not be a reversible ring, being
compared with the fact above for regular rings. Consider R = Dn(A) for n ≥ 3
over a division ring. Then R is Abelian by [6, Lemma 2] and clearly π-regular.
However R is not reversible by [11, Example 1.5]. For NI rings, we have the
following result related to idempotents.

Theorem 2.6. Let R be an NI ring and suppose ab ∈ I(R) for a, b ∈ R.
(1) {ab− (ba)n, ba− (ba)2, ab−ab(ba)l, ba− (ba)lab, ab−arbba, ba−braab} ⊆

N∗(R) for all r ∈ R, n ≥ 1, and l ≥ 2.
(2) {e ∈ I(R) | e− ab ∈ N∗(R) and e(ba)2 = (ba)2e} = {(ba)2}.

Proof. (1) Since R is NI, R̄ = R/N∗(R) is a reduced ring. Suppose ab ∈ I(R)
for a, b ∈ R. Then (ba)2 ∈ I(R) and (ba)2 = (ba)k for all k ≥ 3. By Lemma
1.1(1), we get āb̄ = b̄ā (i.e., ab − ba ∈ N∗(R)) because āb̄ ∈ I(R̄). Since
(b̄ā)2 = b̄ā, we have that ab − (ba)n ∈ N∗(R) for all n ≥ 1. From āb̄ = b̄ā, we
also obtain

āb̄(1−(b̄ā)2)= b̄ā(1−b̄ā) = 0 and 0= (1−(b̄ā)2)āb̄ = āb̄−(b̄ā)2āb̄ = b̄ā−(b̄ā)2āb̄,
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entailing ab− ab(ba)2, ba− (ba)2ab ∈ N∗(R). It then follows that ab− ab(ba)l,
ba− (ba)lab ∈ N∗(R) for all l ≥ 2.

Moreover, by Proposition 2.5(1), we obtain

āb̄ = ār̄b̄b̄ā and b̄ā = b̄r̄āāb̄

for all r ∈ R because reduced rings are reversible and āb̄ = b̄ā ∈ I(R̄). This
implies ab− arbba, ba− braab ∈ N∗(R) for all r ∈ R.

(2) Let e ∈ I(R) with e− ab ∈ N∗(R) and e(ba)2 = (ba)2e. Then

e(1− (ba)2) = 0 = (1− (ba)2)e.

From this result, we also obtain

(e− (ba)2)2 = e− 2e(ba)2 + (ba)2

and

(e− (ba)2)4 = [(e− 2e(ba)2) + (ba)2]2 = (e− 2e(ba)2) + (ba)2,

entailing (e − 2e(ba)2) + (ba)2 ∈ I(R). But e − (ba)2 = (e − ab) + (ab −
(ba)2) ∈ N∗(R) by (1), and (e− (ba)2)4 ∈ N∗(R) follows. Thus we must have
(e− 2e(ba)2) + (ba)2 = 0. Here (−e+ 2e(ba)2)2 = e and this yields

(ba)2 = ((ba)2)2 = (−e+ 2e(ba)2)2 = e. �

Assume that R is Abelian in Theorem 2.6. Then, by Theorem 2.2, we
can let e = ab and ab = e = (ba)2. But when R is not Abelian, this result
need not hold. As an example, consider the NI ring T2(R) in Example 1.6(1).

Recall AB =
(

(1,0) (2,0)
(0,0) (0,0)

)
∈ I(T2(R)), BA =

(
(1,0) (1,1)
(0,0) (0,0)

)
/∈ I(T2(R)), and

(BA)2 =
(

(1,0) (1,0)
(0,0) (0,0)

)
, where A =

(
(1,0) (1,1)
(0,0) (0,0)

)
and B =

(
(1,1) (1,1)
(0,0) (1,0)

)
. Here

e = (BA)2 =
(

(1,0) (1,0)
(0,0) (0,0)

)
6=
(

(1,0) (2,0)
(0,0) (0,0)

)
= AB.

Abelian π-regular rings are NI as mentioned above. The condition “π-
regular” is not superfluous here. To see this, we refer to the construction
of Smoktunowicz [16]. In fact, Smoktunowicz showed in [16, Corollary 13] that
there exists a nil algebra N over a countable field K such that N [x] is not nil.
Set R = K + N . Then R is a local ring with J(R) = N = N(R), entailing
I(R) = {0, 1}. This yields that R[x] is Abelian by [9, Lemma 8]. But R[x] is
not NI because N [x] is not nil (i.e., N∗(R[x]) ( N(R[x])). Clearly R[x] is not
π-regular.
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