• Title/Summary/Keyword: I-graph

Search Result 326, Processing Time 0.023 seconds

ALL GENERALIZED PETERSEN GRAPHS ARE UNIT-DISTANCE GRAPHS

  • Zitnik, Arjana;Horvat, Boris;Pisanski, Tomaz
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.475-491
    • /
    • 2012
  • In 1950 a class of generalized Petersen graphs was introduced by Coxeter and around 1970 popularized by Frucht, Graver and Watkins. The family of $I$-graphs mentioned in 1988 by Bouwer et al. represents a slight further albeit important generalization of the renowned Petersen graph. We show that each $I$-graph $I(n,j,k)$ admits a unit-distance representation in the Euclidean plane. This implies that each generalized Petersen graph admits a unit-distance representation in the Euclidean plane. In particular, we show that every $I$-graph $I(n,j,k)$ has an isomorphic $I$-graph that admits a unit-distance representation in the Euclidean plane with a $n$-fold rotational symmetry, with the exception of the families $I(n,j,j)$ and $I(12m,m,5m)$, $m{\geq}1$. We also provide unit-distance representations for these graphs.

Improving the I/O Performance of Disk-Based Graph Engine by Graph Ordering (디스크 기반 그래프 엔진의 입출력 성능 향상을 위한 그래프 오더링)

  • Lim, Keunhak;Kim, Junghyun;Lee, Eunjae;Seo, Jiwon
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.40-45
    • /
    • 2018
  • With the advent of big data and social networks, large-scale graph processing becomes popular research topic. Recently, an optimization technique called Gorder has been proposed to improve the performance of in-memory graph processing. This technique improves performance by optimizing the graph layout on memory to have better cache locality. However, since it is designed for in-memory graph processing systems, the technique is not suitable for disk-based graph engines; also the cost for applying the technique is significantly high. To solve the problem, we propose a new graph ordering called I/O Order. I/O Order considers the characteristics of I/O accesses for SSDs and HDDs to improve the performance of disk-based graph engine. In addition, the algorithmic complexity of I/O Order is simple compared to Gorder, hence it is cheaper to apply I/O Ordering. I/O order reduces the cost of pre-processing up to 9.6 times compared to that of Gorder's, still its performance is 2 times higher compared to the Random in low-locality graph algorithms.

HAMILTONIANS IN STEINHAUS GRAPHS

  • Lim, Dae-Keun;Kim, Hye-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1137-1145
    • /
    • 1996
  • A Steinhaus graph is a labelled graph whose adjacency matrix $A = (a_{i,j})$ has the Steinhaus property : $a_{i,j} + a{i,j+1} \equiv a_{i+1,j+1} (mod 2)$. We consider random Steinhaus graphs with n labelled vertices in which edges are chosen independently and with probability $\frac{1}{2}$. We prove that almost all Steinhaus graphs are Hamiltonian like as in random graph theory.

  • PDF

An Ideal-based Extended Zero-divisor Graph on Rings

  • Ashraf, Mohammad;Kumar, Mohit
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.595-613
    • /
    • 2022
  • Let R be a commutative ring with identity and let I be a proper ideal of R. In this paper, we study the ideal based extended zero-divisor graph 𝚪'I (R) and prove that 𝚪'I (R) is connected with diameter at most two and if 𝚪'I (R) contains a cycle, then girth is at most four girth at most four. Furthermore, we study affinity the connection between the ideal based extended zero-divisor graph 𝚪'I (R) and the ideal-based zero-divisor graph 𝚪I (R) associated with the ideal I of R. Among the other things, for a radical ideal of a ring R, we show that the ideal-based extended zero-divisor graph 𝚪'I (R) is identical to the ideal-based zero-divisor graph 𝚪I (R) if and only if R has exactly two minimal prime-ideals which contain I.

TOTAL IDENTITY-SUMMAND GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO A CO-IDEAL

  • Atani, Shahabaddin Ebrahimi;Hesari, Saboura Dolati Pish;Khoramdel, Mehdi
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.159-176
    • /
    • 2015
  • Let R be a semiring, I a strong co-ideal of R and S(I) the set of all elements of R which are not prime to I. In this paper we investigate some interesting properties of S(I) and introduce the total identity-summand graph of a semiring R with respect to a co-ideal I. It is the graph with all elements of R as vertices and for distinct x, $y{\in}R$, the vertices x and y are adjacent if and only if $xy{\in}S(I)$.

Minimum Cost Range Assignment for the Vertex Connectivity of Graphs (그래프의 정점 연결성에 대한 최소 범위 할당)

  • Kim, Jae-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2103-2108
    • /
    • 2017
  • For n points $p_i$ on the m-dimensional plane $R^m$ and a fixed range r, consider a set $T_i$ containing points the distances from $p_i$ of which are less than or equal to r. In case m=1, $T_i$ is an interval on a line, it is a circle on a plane when m=2. For the vertices corresponding to the sets $T_i$, there is an edge between the vertices if the two sets intersect. Then this graph is called an intersection graph G. For m=1 G is called a proper interval graph and for m=2, it is called an unit disk graph. In this paper, we are concerned in the intersection graph G(r) when r changes. In particular, we consider the problem to find the minimum r such that G(r)is connected. For this problem, we propose an O(n) algorithm for the proper interval graph and an $O(n^2{\log}\;n)$ algorithm for the unit disk graph. For the dynamic environment in which the points on a line are added or deleted, we give an O(log n) algorithm for the problem.

THE TOTAL GRAPH OF A COMMUTATIVE RING WITH RESPECT TO PROPER IDEALS

  • Abbasi, Ahmad;Habibi, Shokoofe
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.85-98
    • /
    • 2012
  • Let R be a commutative ring and I its proper ideal, let S(I) be the set of all elements of R that are not prime to I. Here we introduce and study the total graph of a commutative ring R with respect to proper ideal I, denoted by T(${\Gamma}_I(R)$). It is the (undirected) graph with all elements of R as vertices, and for distinct x, y ${\in}$ R, the vertices x and y are adjacent if and only if x + y ${\in}$ S(I). The total graph of a commutative ring, that denoted by T(${\Gamma}(R)$), is the graph where the vertices are all elements of R and where there is an undirected edge between two distinct vertices x and y if and only if x + y ${\in}$ Z(R) which is due to Anderson and Badawi [2]. In the case I = {0}, $T({\Gamma}_I(R))=T({\Gamma}(R))$; this is an important result on the definition.

THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Bakhtyiari, Moharram;Nikandish, Reza;Nikmehr, Mohammad Javad
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.417-429
    • /
    • 2015
  • Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are adjacent if and only if $I{\cap}Ann(J){\neq}\{0\}$ or $J{\cap}Ann(I){\neq}\{0\}$. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose annihilator ideal graphs are totally disconnected. Also, we study diameter, girth, clique number and chromatic number of this graph. Moreover, we study some relations between annihilator ideal graph and zero-divisor graph associated with R. Among other results, it is proved that for a Noetherian ring R if ${\Gamma}_{Ann}(R)$ is triangle free, then R is Gorenstein.

Efficient Shortest Path Techniques on a Summarized Graph based on the Relationships (관계기반 요약그래프에서 효율적인 최단경로 탐색기법)

  • Kim, Hyunwook;Seo, HoJin;Lee, Young-Koo
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.710-718
    • /
    • 2017
  • As graphs are becoming increasingly large, the costs for storing and managing data are increasing continuously. Shortest path discovery over a large graph requires long running time due to frequent disk I/Os and high complexity of the graph data. Recently, graph summarization techniques have been studied, which reduce the size of graph data and disk I/Os by representing highly dense subgraphs as a single super-node. Decompressing should be minimized for efficient shortest path discovery over the summarized graph. In this paper, we analyze the decompression performance of a summarized graph and propose an approximate technique that discovers the shortest path quickly with a minimum error ratio. We also propose an exact technique that efficiently discovered the shortest path by exploiting an index built on paths containing super-nodes. In our experiments, we showed that the proposed technique based on the summarized graph can reduce the running time by up to 70% compared with the existing techniques performed on the original graph.

AN iP2 EXTENDED STAR GRAPH AND ITS HARMONIOUS CHROMATIC NUMBER

  • P. MANSOOR;A. SADIQUALI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1193-1207
    • /
    • 2023
  • In this paper, we introduce an iP2 extension of a star graph Sn for n ≥ 2 and 1 ≤ i ≤ n - 1. Certain general properties satisfied by order, size, domination (or Roman) numbers γ (or γR) of an iP2 extended star graph are studied. Finally, we study how the parameters such as chromatic number and harmonious chromatic number are affected when an iP2 extension process acts on the star graphs.