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ALL GENERALIZED PETERSEN GRAPHS ARE

UNIT-DISTANCE GRAPHS

Arjana Žitnik, Boris Horvat, and Tomaž Pisanski

Abstract. In 1950 a class of generalized Petersen graphs was introduced

by Coxeter and around 1970 popularized by Frucht, Graver and Watkins.
The family of I-graphs mentioned in 1988 by Bouwer et al. represents

a slight further albeit important generalization of the renowned Petersen
graph. We show that each I-graph I(n, j, k) admits a unit-distance rep-

resentation in the Euclidean plane. This implies that each generalized

Petersen graph admits a unit-distance representation in the Euclidean
plane. In particular, we show that every I-graph I(n, j, k) has an isomor-

phic I-graph that admits a unit-distance representation in the Euclidean

plane with a n-fold rotational symmetry, with the exception of the fam-
ilies I(n, j, j) and I(12m,m, 5m), m ≥ 1. We also provide unit-distance

representations for these graphs.

1. Introduction

I-graphs were introduced in the Foster census [5] and form a natural gen-
eralization of the generalized Petersen graphs introduced by Coxeter [8] and
named by Watkins [26]. This well-known family of graphs has been extensively
studied [1, 10, 18, 20, 22, 25].

Let n ≥ 3 and j, k be such that 1 ≤ j, k < n and j, k 6= n/2. The I-
graph I(n, j, k) is a graph with vertex set

V (I(n, j, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}

and edge set

E(I(n, j, k)) = {uiui+j , uivi, vivi+k; i = 0, . . . , n− 1},

where the subscripts are to be read modulo n. Clearly, the I-graph I(n, 1, k)
is a generalized Petersen graph; we denote it also by G(n, k).
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In this paper we are interested in a special kind of drawings of graphs where
all edges have the same length. Such a drawing of a graph G is called a unit-
distance representation of G; see, for instance, [7, 6, 9, 11, 13, 19, 21, 23].

Erdős, Hararay and Tutte [9] proposed a natural geometrical definition of
the dimension of a graph G and have shown that the well-known Petersen
graph of Figure 1(a) can be drawn in the Euclidean plane in such a way, that
vertices are mapped to distinct points in the plane and edges to line segments
of length one. They proposed a non-degenerate unit-distance representation of
the Petersen graph with rotational symmetry in the Euclidean plane that can
be seen in Figure 1(b). Their representation respects a rotational symmetry of
the Petersen graph, and their drawing is obtained from the standard drawing
of the Petersen graph by suitably scaling the inner pentagram and rotating
it against the outer pentagon, in such a way that the edges connecting the
pentagram with the pentagon become of length one. We call this procedure a
twist.
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Figure 1. The well-known Petersen graph G(5, 2) (a) can be
represented with unit distances with respect to a rotational
symmetry (b).

This idea was used by S. W. Golomb [24] to draw the well-known Golomb
graph, a 4-chromatic unit-distance graph with ten vertices, which can be seen
in Figure 2. The twist was used again by Buckley and Harary in [6], while
considering wheel graphs.

Unit-distance drawings of the Petersen graph were studied in another con-
text, too. In [15] Horvat and Pisanski considered the vertex-degenerate unit-
distance representations of the Petersen graph in the Euclidean plane; namely,
drawings that respect unit edge lengths but may map two or more vertices
into the same point. The vertices of the Petersen graph G(5, 2) in Figure 1(a)
can be properly vertex-colored with three colors in such a way, that vertices
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Figure 2. The Golomb graph can be realized with unit-
distances using a twist on the inner triangle.

{1, 7, 9} are colored with the first color, {4, 5, 6, 8} with the second one and ver-
tices {2, 3, 10} with the third one. This implies that the Petersen graph can be
drawn in such a way that the vertices of each color class are mapped to a vertex
of an equilateral triangle with side one. Since all generalized Petersen graphs
are three colorable, this means that each generalized Petersen graph admits a
vertex-degenerate unit-distance representation in the Euclidean plane.

In this paper we study non-vertex-degenerate unit-distance representations
in the plane of the generalized Petersen graphs. If we apply a twist to obtain
unit-distance representations of a generalized Petersen graph, we do not get
very far. Namely, only 13 of them, including the Petersen graph, can be drawn
in this way. Figure 3 depicts the other 12 generalized Petersen graphs, that have
a unit-distance realization in the Euclidean plane obtained by twist: G(6, 2),
G(7, 2), G(7, 3), G(8, 2), G(8, 3), G(9, 2), G(9, 3), G(9, 4), G(10, 2), G(10, 3),
G(11, 2) and G(12, 2). The graph G(10, 4) on Figure 4, left, is not one of
the 13. However, it is isomorphic to the I-graph I(10, 2, 3) that admits a
unit-distance representation with rotational symmetry, see Figure 4, right. It
turns out that there are many such cases. For this reason we study the unit-
distance representations of generalized Petersen graphs in the broader context
of I-graphs.

In this paper we show that for most I-graphs we have either a unit-distance
representation obtained by using the twist or an isomorph that can be drawn in
such a way. The only other connected examples are I(12, 1, 5) and the prisms.
We provide a unit-distance representation for I(12, 1, 5) which does not use
the twist while unit-distance representations for prisms were found in [16]. In
the case of disconnected I-graphs that do not have rotational unit-distance
representation we draw each copy separately. Thus, the main result of the
paper is the following theorem.

Theorem 1. Each I-graph has a non-vertex degenerate unit-distance repre-
sentation in the plane.



478 ARJANA ŽITNIK, BORIS HORVAT, AND TOMAŽ PISANSKI

Figure 3. Apart from the Petersen graph G(5, 2), only twelve
generalized Petersen graphs can be drawn as unit-distance
graphs in the plane, using the twist.

The most of the paper is devoted to the proof of Theorem 1. We need three
important tools for achieving this end:

• unit-distance representations with rotational symmetry of I-graphs;
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(a) (b)

Figure 4. The generalized Petersen graph G(10, 4) (a) and
I-graph I(10, 2, 3) (b) are isomorphic. The former cannot be
realized with unit-distances using the twist, while the second
one can.

• existence of admissible isomorphs of an I-graph;
• finding unit-distance representations for sporadic cases.

2. Unit-distance representations with rotational symmetry of
I-graphs

Let G be a graph and let ρ : V (G) → R2 be a representation of vertices
of G in the Euclidean plane such that every edge of G is represented as a
line segment between its end vertices. The representations of two edges may
cross in the interior point. If two or more vertices of G are mapped into a
single point in R2, i.e., the representation ρ is not injective on vertices, the
representation is called vertex-degenerate. If there is an edge e = uv and a
vertex w 6= u, v of G such that ρ(w) belongs to the line segment with endpoints
ρ(u) and ρ(v), we call ρ vertex-edge-degenerate. A representation is called a
unit-distance representation, if uv ∈ E(G) implies that the distance between
ρ(u) and ρ(v) in R2 is one. In addition, we require that the representation is
non-vertex-degenerate.

We focus our attention to I-graphs admitting non-vertex-degenerate repre-
sentations with rotational symmetry. In particular, for an I-graph I(n, j, k)
we place the vertices equidistantly on two concentric rims such that vertices
ui are placed on one rim and vertices vi on the other one, see Figure 5. Let
R be the radius of the first rim and let r be the radius of the second rim. Let
φ be the offset angle of the second rim with respect to the (fixed) first rim;

namely, φ := ∠ ρ(u0)~0 ρ(v0), where the point ~0 is the center of both rims and
the second rim is rotated in the counterclockwise direction according to the
fixed first rim. The three parameters R, r and φ determine the representation
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uniquely up to isometries of both rims. Edges between the two rims are called
spokes.

The inner angle ∠ ρ(u0)~0 ρ(ui) of the regular n-gon is clearly equal to 2iπ/n.
We now define the representation with rotational symmetry ρ of the I-graph I(n,
j, k) by fixing the coordinates:

ρ(ui) = (R cos (2iπ/n) , R sin (2iπ/n)) , i = 0, 1, . . . , n− 1,(1)

ρ(vi) = (r cos (φ+ 2iπ/n) , r sin (φ+ 2iπ/n)) , i = 0, 1, . . . , n− 1,(2)

where, in order for such a representation to be unit-distance, we have to have:

R =
1

2 sin (jπ/n)
, r =

1

2 sin (kπ/n)
(3)

and

0 ≤ |R− r| ≤ 1.(4)

Since j 6= 0 and j 6= n/2, it holds 0 < sin (jπ/n) < 1; similar observation
is true for k. In particular min{r,R} > 1/2. The offset angle φ can be easily

calculated from the triangle ρ(u0)~0 ρ(v0) by the law of cosines

R2 + r2 − 2Rr cos(φ) = 1.(5)
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Figure 5. The part of the representation with the rotational
symmetry with notation that will be widely used in this paper.
We denote αj = 2jπ/n and αk = 2kπ/n. Thick lines represent
the unit-distance representations of graph edges.

Clearly, a unit-distance representation with rotational symmetry of the I-
graph is vertex-degenerate if and only if the left inequality in (4) holds:

0 = |R− r|.(6)

This fact can be expressed by the parameters of the I-graph.
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Proposition 2. Let ρ be a unit-distance representation with rotational sym-
metry of the I-graph I(n, j, k). The representation ρ is vertex-degenerate if and
only if j = k.

Proof. If j 6= k it follows that R 6= r, which, in turn, implies that the represen-
tation with rotational symmetry ρ maps vertices of I(n, j, k) to distinct points
of R2 and ρ is not vertex-degenerate.

If j = k, then R = r and all the vertices are mapped to points on the same
circle. For every point on a circle there exist at most two points on the same
circle that are at distance one. Since every vertex has three neighbors, (at
least) two of them must map to the same point and ρ is vertex-degenerate. �

Let us summarize these findings into the following theorem.

Theorem 3. An graph I(n, j, k) admits a unit-distance representation with
rotational symmetry if and only if

(7) 0 ≤
∣∣∣∣ 1

2 sin (jπ/n)
− 1

2 sin (kπ/n)

∣∣∣∣ ≤ 1.

Furthermore, this representation is vertex-degenerate if and only if j = k, or
equivalently

(8) 0 =

∣∣∣∣ 1

2 sin (jπ/n)
− 1

2 sin (kπ/n)

∣∣∣∣ .
Note that (7) is obtained from (4) by applying (3) and similarly (8) is ob-

tained from (6).
We say that an I-graph I(n, j, k) is admissible if its parameters satisfy in-

equality (7) and do not satisfy equality (8), otherwise it is called inadmissible.
Similarly, a triple (n, j, k) is admissible if the I-graph I(n, j, k) is admissible.
Unfortunately, there are infinitely many I-graphs that do not meet the con-
ditions of Theorem 3, the smallest example being I(10, 1, 4) alias generalized
Petersen graph G(10, 4). In the next section, the question which I-graphs have
admissible isomorphs will be studied.

The following result shows that we can get quite a large range of admissible
I-graphs.

Lemma 4. A graph I(n, j, k) admits a unit-distance representation with rota-
tional symmetry that is not vertex-degenerate if j, k ∈ [n9 ,

8n
9 ].

Proof. If j ∈ [n9 ,
8n
9 ], sin (jπ/n) ≥ sin (π/9) > 0 and since j 6= n

2 , we also have
sin (jπ/n) < sin (π/2) = 1. The same holds for k. Thus∣∣∣∣ 1

2 sin (jπ/n)
− 1

2 sin (kπ/n)

∣∣∣∣ ≤ 1

2 sin (π/9)
− 1

2 sin (π/2)
≤ 1

and the assertion follows by Theorem 3. �
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We call a graph I(n, j, k) or a triple (n, j, k) strongly admissible if j, k ∈
[n9 ,

8n
9 ]. Similarly, we call a pair (n, j) strongly admissible if j ∈ [n9 ,

8n
9 ]. The

smallest admissible I-graph that is not strongly admissible is the renowned
Desargues graph I(10, 1, 3). Thus, the condition of Lemma 4 is not a necessary
condition for an I-graph to be admissible.

3. Existence of admissible isomorphs of I-graphs

A natural strategy for proving that an I-graph I(n, j, k) is a unit-distance
graph would be to either prove that I(n, j, k) is admissible or to prove that it
has an admissible isomorph. Therefore checking isomorphisms of I-graphs is
important. The following result, recently proven in [17], see also [4], determines
the collection of isomorphs of a given I-graph.

Theorem 5. Given two I-graphs I(n, j, k) and I(n, j1, k1), they are isomorphic
if and only if there exists an integer a, relatively prime to n, such that either
{j1, k1} = {aj mod n, ak mod n} or {j1, k1} = {aj mod n,−ak mod n}.

The following result shows that a vast majority of I-graphs have strongly
admissible isomorphs. Only two sporadic families remain which have to be
addressed by methods that are not using the twist.

Theorem 6. Let n, j, k be positive integers such that 1 ≤ j < k < n/2 and
the triple (n, j, k) is not of the form (12m,m, 5m), where m ∈ N. Then there
exists an integer a ∈ Z∗n such that the triple (n, aj, ak) is admissible.

Before we prove Theorem 6 we first need some technical lemmas. Lemma
10 shows that in most cases we can find strongly admissible equivalents. In
its proof we use the fact from Lemma 9, namely many pairs have sufficiently
many strongly admissible equivalents. Its proof relies on the following number-
theoretical lemma. By ϕ we denote the Euler totient function.

Lemma 7. Let n ≥ 3 be an integer and n 6∈ {10, 12}. Then

(9) |Z∗n ∩ [1, dn/9e − 1]| < ϕ(n)/4.

Proof. Let n = pk1
1 p

k2
2 · · · p

kt
t be the prime factorization of n. Using the

inclusion-exclusion principle, we can calculate the number of positive integers
less than n that are coprime to n as

ϕ(n) = n− 1−
t∑

i=1

(
n

pi
− 1

)
+

∑
i,j:1≤i<j≤t

(
n

pipj
− 1

)

−
∑

i,j,`:1≤i<j<`≤t

(
n

pipjp`
− 1

)
+ · · ·+ (−1)t

(
n

p1p2 · · · pt
− 1

)
.
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Denote by x the number of positive integers less than n/9 that are coprime to
n. Then

x =

⌈
n

9

⌉
− 1−

t∑
i=1

(⌈
n

9pi

⌉
− 1

)
+

∑
i,j:1≤i<j≤t

(⌈
n

9pipj

⌉
− 1

)

−
∑

i,j,`:1≤i<j<`≤t

(⌈
n

9pipjp`

⌉
− 1

)
+ · · ·+ (−1)t

(⌈
n

9p1p2 · · · pt

⌉
− 1

)
.

To show that x does not differ too much from ϕ(n)/9, we simply subtract the
above expressions. Note that for any integer a, the number da/9e is greater
than a/9 by at most 8/9.∣∣∣∣ϕ(n)

9
− x
∣∣∣∣ =

∣∣∣∣n9 − 1

9
−
⌈
n

9

⌉
+ 1−

t∑
i=1

(
n

9pi
− 1

9
−
⌈
n

9pi

⌉
+ 1

)
+

∑
i,j:1≤i<j≤t

(
n

9pipj
− 1

9
−
⌈

n

9pipj

⌉
+ 1

)

−
∑

i,j,`:1≤i<j<`≤t

(
n

9pipjp`
− 1

9
−
⌈

n

9pipjp`

⌉
+ 1

)

+ · · ·+ (−1)t
(

n

9p1p2 · · · pt
− 1

9
−
⌈

n

9p1p2 · · · pt

⌉
+ 1

)∣∣∣∣
≤ 8

9
+

t∑
i=1

8

9
+

∑
i,j:1≤i<j≤t

8

9
+

∑
i,j,`:1≤i<j<`≤t

8

9
+ · · ·+ 8

9

=
8

9

(
1 +

(
t

1

)
+

(
t

2

)
+ · · ·+

(
t

t

))
=

8

9
2t.

We now show that x < ϕ(n)/4 if n 6∈ {10, 12}. If t = 1, then ϕ(n)/9 − x =
n/9−dn/9e−n/(9p1) + dn/(9p1)e and there are three cases to consider. If n is
divisible by 9p1, then n is also divisible by 9 and x = ϕ(n)/9. If n is divisible
by 9, but it is not divisible by 9p1, then x = ϕ(n)/9− 1. In the last case where
n is not divisible by 9, we also have x = ϕ(n)/9. In any case, x < ϕ(n)/4.

If t ≥ 2, then one can verify that ϕ(n) > 7 · 2t except when n is one of
the numbers from Table 1. For any n from this table it is easy verify that
x < ϕ(n)/4 if n 6∈ {10, 12}. For other numbers with t ≥ 2 we consider two
cases. If x ≤ ϕ(n)/9, then also x < ϕ(n)/4. Otherwise

x− ϕ(n)

9
≤ 8

9
2t <

8

9
· ϕ(n)

7

and

x <
ϕ(n)

9
+

8

63
ϕ(n) =

15

63
ϕ(n) <

ϕ(n)

4
.

This completes the proof. �
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Table 1. Positive integers with t distinct prime factors having
ϕ(n) < 7 · 2t.

n ϕ(n) x
2 · 3 2 0
22 · 3 4 1
23 · 3 8 1
24 · 3 16 2
2 · 32 6 1
22 · 32 12 1
23 · 32 24 3
2 · 33 18 2
2 · 5 4 1
22 · 5 8 1
23 · 5 16 2
2 · 52 20 2
2 · 7 6 1
22 · 7 12 2
23 · 7 24 3
2 · 11 10 1
22 · 11 20 2
2 · 13 12 1

t = 2 : 7 · 2t = 28,

n ϕ(n) x
22 · 13 24 3
2 · 17 16 2
2 · 19 18 2
2 · 23 22 3
3 · 5 8 1
32 · 5 24 3
3 · 7 12 2
3 · 11 20 2
3 · 13 24 3
5 · 7 24 3
2 · 3 · 5 8 1
22 · 3 · 5 16 1
23 · 3 · 5 32 4
2 · 32 · 5 24 2
22 · 32 · 5 48 6
2 · 3 · 52 40 4
2 · 3 · 7 12 1
22 · 3 · 7 24 2

t = 3: 7 · 2t = 56,

n ϕ(n) x
23 · 3 · 7 48 5
2 · 32 · 7 36 4
2 · 3 · 11 20 3
22 · 3 · 11 40 4
2 · 3 · 13 24 3
22 · 3 · 13 48 5
2 · 3 · 17 32 4
2 · 3 · 19 36 4
2 · 3 · 23 44 5
2 · 5 · 7 24 2
22 · 5 · 7 48 5
2 · 5 · 11 40 4
2 · 5 · 13 48 5
3 · 5 · 7 48 5
2 · 3 · 5 · 7 48 6
22 · 3 · 5 · 7 96 11
2 · 3 · 5 · 11 80 8
2 · 3 · 5 · 13 96 11

t = 4: 7 · 2t = 112.

Remark 8. Note that for n ∈ {10, 12} we have the equality in (9). Namely,
in this case ϕ(n)/4 = 1 and there exists exactly one element from Z∗n that is
smaller than n/9.

Lemma 9. Let n and k be positive integers such that 1 ≤ k < n/2. Let
A = {ak; a ∈ Z∗n} be a multiset. If n/ gcd(n, k) ∈ {10, 12}, then exactly ϕ(n)/4
of the elements of A belong to the interval [1, dn/9e−1]. Otherwise strictly less
than ϕ(n)/4 of the elements of A belong to the interval [1, dn/9e − 1].

Proof. Denote nk = gcd(n, k). Then n and k can be written as products
n = n′nk and k = k′nk where gcd(n′, k′) = 1. First we calculate the multiplicity
of an arbitrary element ak of A. For this purpose we check for which numbers
b ∈ Zn we have ak ≡ bk (mod n). This congruence is satisfied if and only if
ak′ ≡ bk′ (mod n′) which is true if and only if a ≡ b (mod n′) since n′ and k′

are coprime. Then we can write b = a + tn′, where 0 ≤ t < nk. The number
b is coprime to n if and only if t is divisible by every prime that divides n
and does not divide n′. There are ϕ(n)/ϕ(n′) possible choices for t and thus
also ϕ(n)/ϕ(n′) choices for b. It follows that the multiplicity of ak in A is
ϕ(n)/ϕ(n′). Moreover, the mapping f : ak 7→ ak′ maps distinct elements of A
to distinct elements of Z∗n′ .
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Take an element x ∈ Z∗n′ . By the above comments there exists an a ∈ Z∗n
such that x = ak′. Therefore f(nkx) = x. Thus every element x from Z∗n′

corresponds to ϕ(n)/ϕ(n′) copies of nkx from A. Moreover, x < n′/9 if and
only if nkx < n′nk/9 = n/9. Since

ϕ(n′)

4
· ϕ(n)

ϕ(n′)
=
ϕ(n)

4
,

exactly ϕ(n)/4 of elements from A are smaller than n/9 if n′ ∈ {10, 12} and
otherwise strictly less than ϕ(n)/4 elements from Z∗n are smaller than n/9 by
Lemma 7 and Remark 8. �

Lemma 10. Let n, j, k be positive integers such that 1 ≤ j, k < n/2. Denote
m = gcd(n, j, k), nj = gcd(n, j)/m, nk = gcd(n, k)/m and n′ = n/(mnjnk).
If n′nj 6∈ {10, 12} or n′nk 6∈ {10, 12}, then there exists an a ∈ Z∗n such that
aj ∈ [n/9, 8n/9] and ak ∈ [n/9, 8n/9].

Proof. Denote by A the multiset {ak; a ∈ Z∗n} and by B the multiset {aj; a ∈
Z∗n}. If n′nk 6∈ {10, 12}, then strictly less than ϕ(n)/4 of the elements of
A belong to the interval [1, dn/9e − 1] by Lemma 9. Since aj = −(−a)j ≡
n− (−a)j (mod n), also less than ϕ(n)/4 elements of A belong to the interval
[b8n/9c+1, n−1]. It follows that more than ϕ(n)/2 of elements of A belong to
the interval [n/9, 8n/9]. If n′nk ∈ {10, 12}, then exactly ϕ(n)/2 of elements of A
belong to the interval [n/9, 8n/9]. Similarly, if n′nk 6∈ {10, 12}, then more than
ϕ(n)/2 elements of B belong to the interval [n/9, 8n/9] and if n′nk ∈ {10, 12},
exactly ϕ(n)/2 elements of B belong to the interval [n/9, 8n/9]. Thus, if not
both n′nj and n′nk belong to {10, 12}, it is not possible to have ϕ(n) pairs
(aj, ak) such that at least one of aj or ak does not belong to the interval
[n/9, 8n/9]. Therefore there must exist an a ∈ Z∗n such that both aj and ak
belong to the interval [n/9, 8n/9]. �

Proof of Theorem 6. Denote m = gcd(n, j, k), nj = gcd(n, j)/m, nk = gcd(n,
k)/m, n′ = n/(mnjnk), j′ = j/(mnj) and k′ = k/(mnk). Note that gcd(nj , nk)
= 1 and gcd(n′, j′) = gcd(n′, k′) = gcd(j′, nk) = gcd(k′, nj) = 1.

If n′nj 6∈ {10, 12} or n′nk 6∈ {10, 12}, then there exists an a ∈ Z∗n such that
aj ∈ [n/9, 8n/9] and ak ∈ [n/9, 8n/9] by Lemma 10. Following Lemma 4, the
triple (n, aj, ak) is admissible.

Otherwise there are three cases to consider. If n′nj = n′nk = 10, then
n′ = 10 and nj = nk = 1 since nj and nk are coprime. Since also j′ and k′ are
coprime to n′, the only possible triples are of the form (10m,m, 3m), which are
admissible by Theorem 3.

We use the same reasoning in the case n′nj = n′nk = 12 to obtain possible
triples of the form (12m,m,m) or (12m,m, 5m), which we do not consider in
this theorem.

The last case to consider is n′nj , n
′nk ∈ {10, 12} and n′nj 6= n′nk. Then

n′ = 2, nj = 5 and nk = 6 or n′ = 2, nj = 6 and nk = 5. Since j′ and k′ are both
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coprime to n′, gcd(j′, nk) = gcd(k′, nj) = 1 and 1 ≤ j < k < n/2, we obtain
possible triples of the form (60m, 5m, 6m), (60m, 5m, 18m), (60m, 6m, 25m)
and (60m, 18m, 25m). For any m ≥ 1, the triple (60m, 5m, 6m) is admissible
by Theorem 3. Taking a = 11, a = 41 and a = 7, respectively, the triples
(60m, a · 5m, a · 18m), (60m, a · 6m, a · 25m) and (60m, a · 18m, a · 25m) are also
admissible. �

4. Sporadic cases and proof of the main theorem

Let us observe special non-vertex-degenerate unit-distance representations
of the two families of I-graphs that are not covered by Theorem 6. To deal
with non-connected cases we use the following result from [4].

Proposition 11. Let n, j, k be positive integers such that 1 ≤ j, k < n and
j, k 6= n/2. The graph I(n, j, k) is connected if and only if gcd(n, j, k) =
1. If gcd(n, j, k) = d > 1, then the graph I(n, j, k) consists of d copies of
I(n/d, j/d, k/d).

Proposition 12. Let n ≥ 3 and j be positive integers such that 1 ≤ j < n
and j 6= n/2. The I-graph I(n, j, j) has a non-vertex-degenerate unit-distance
representation in the plane.

Proof. Let d = gcd(n, j). Observe, that an I-graph I(n, j, j) is a graph union of
d (n/d)-prisms. Each (n/d)-prism can be constructed as the Cartesian product
of the cycle Cn/d on n/d vertices and the complete graph on two vertices K2.
Following [16, Theorem 3.4], the graph I(n, j, j) has a non-vertex-degenerate
unit-distance realization in R2. �

Proposition 13. The I-graph I(12, 1, 5) has a unit-distance representation in
the plane that is not vertex-degenerate.

Proof. We construct a unit-distance representation ρ of I(12, 1, 5) by placing
its vertices on four concentric cycles as follows:

ρ(ui) = (R cos (iπ/6) , R sin (iπ/6)) , i = 0, 2, 4, 6, 8, 10,

ρ(ui) = (r cos (iπ/6) , r sin (iπ/6)) , i = 1, 3, 5, 7, 9, 11,

ρ(vi) = (L cos (iπ/6) , L sin (iπ/6)) , i = 0, 2, 4, 6, 8, 10,

ρ(vi) = (` cos (iπ/6) , ` sin (iπ/6)) , i = 1, 3, 5, 7, 9, 11.

In order for ρ to be unit-distance representation, we have the following rela-
tionships between the radii: L = R − 1, ` = r − 1, 1 = R2 + r2 − r R

√
3 and

1 = L2 +`2 +2` L
√

3; the latter two are obtained by using the law of cosines in
the triangles with vertices ρ(u0)~0 ρ(u1) and ρ(v0)~0 ρ(v5), respectively. This sys-

tem of equations has essentially a unique solution R =
(
6 + 7

√
3 +
√

15
)
/12 ≈

1.833, r =
(
6 + 7

√
3−
√

15
)
/12 ≈ 1.188, L = R− 1 and ` = r− 1, which gives

a unit-distance representation of I(12, 1, 5), seen on Figure 6, right. �
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Figure 6. The I-graph I(12, 1, 5) (a), drawn with unit dis-
tances in the Euclidean plane (b).

Remark 14. It is necessary to find a representation of the I-graph I(12, 1, 5)
without using the twist since I(12, 1, 5) has no admissible isomorph. Namely,
the set Z∗12 only has four members, 1, 5, 7 and 11. Therefore the only isomorphs
I(n, j, k) of I(12, 1, 5) have j ∈ {1, 11} and k ∈ {5, 7} or vice versa by Theorem
5. The radius of the circle determined by the parameters 1 and 11 equals

R =
√

2
−1+

√
3

while the parameters 5 and 7 determine the radius of r =
√

2
1+
√

3
.

Therefore for any choice of parameters of isomorphic I-graphs we have |R−r| =√
2. Hence, these graphs are all inadmissible by Theorem 3.

Proof of Theorem 1. The I-graphs I(n, j, j) have a unit-distance representa-
tion in the plane that is not vertex-degenerate by Proposition 12. The I-
graphs I(12m,m, 5m) or I(12m, 5m,m), where m ∈ N, have a unit-distance
representation in the plane by Proposition 11 and Proposition 13. For other
I-graphs the assertion follows by Theorem 5 and Theorem 6. �

5. Conclusion

Theorem 1 shows each I-graph has a unit-distance representation that is
not vertex-degenerate. Since each generalized Petersen graph is an I-graph, we
obtain the following important consequence.

Corollary 15. Each generalized Petersen graph admits a non-vertex-degener-
ate unit-distance representation in the plane.

Although this is a positive result, a word of caution is in place. Figure 7
depicts non-vertex-degenerate unit-distance representations of four I-graphs.
However, they are all vertex-edge-degenerate. The theory that we have de-
veloped does not prevent such degeneracies from happening. Observe that
vertex-edge-degenerate situations can occur only in two cases: firstly, when a



488 ARJANA ŽITNIK, BORIS HORVAT, AND TOMAŽ PISANSKI

Figure 7. Rotational unit-distance representations of I-
graphs I(9, 2, 4), I(12, 2, 5), I(30, 5, 9), I(30, 9, 14) are vertex-
edge-degenerate.

spoke contains a vertex of the inner rim and secondly, when an edge of the outer
rim contains a vertex of the inner rim. The following two propositions from [14]
provide necessary and sufficient conditions for checking whether a rotational
unit-distance representation of an I-graph is vertex-edge-degenerate.

Proposition 16. Let ρ be a unit-distance representation with rotational sym-
metry of an I-graph I(n, j, k) with r,R and φ as in (3) and (5). Suppose
j < k < n/2. Then a vertex of the inner rim lies on a spoke that connects the
inner and the outer rim if and only if

n

π
arcsin

(
1 + r2 −R2

2r

)
∈ N,

and ρ is vertex-edge-degenerate.

Proposition 17. Let ρ be a unit-distance representation with rotational sym-
metry of an I-graph I(n, j, k) with r,R and φ as in (3) and (5). Suppose

j < k < n/2. If
√

4R2 − 1/(2r) > 1, then a vertex of the inner rim does not
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lie on an edge of the outer rim. Otherwise let β = arccos
(√

4R2 − 1/(2r)
)

and
a vertex of the inner rim lies on an edge of the outer rim if and only if there
exists an a ∈ N such that

φ =
π

n
(j + 2 a)± β,

and ρ is vertex-edge-degenerate.

These propositions were used as a basis of a computer search for all admis-
sible I-graphs with a vertex-edge-degenerate unit-distance representation with
rotational symmetry up to 500 vertices. Only four distinct connected cases
were discovered, see Figure 7. However, all of them have admissible isomorphs
whose unit-distance representations are not vertex-edge degenerate. For exam-
ple, I(9, 2, 4) is isomorphic to I(9, 1, 4) which is admissible by Theorem 3 and
non-vertex-edge-degenerate by Proposition 16 and Proposition 17. Similarly,
I(12, 2, 5) is isomorphic to I(12, 1, 2), I(30, 5, 9) is isomorphic to I(30, 3, 5) and
I(30, 9, 14) is isomorphic to I(30, 3, 8).

Conjecture 1. Let ρ be a unit-distance representation with rotational symme-
try of an I-graph I(n, j, k) where j 6= k and gcd(n, j, k) = 1. If n > 30, then ρ
is not vertex-edge-degenerate.

If the edges in Figure 7 are extended into lines, objects resemble astral
configurations of Berman [2] and Grünbaum [12] or polycyclic configurations
of Boben and Pisanski [3]. Exploring these intriguing relationships between
unit-distance representations of graphs and geometric configurations may be a
challenging research project.
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