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HAMILTONIANS IN STEINHAUS GRAPHS

DAEKEUN LIM AND HYE Kyung Kim*

ABSTRACT. A Steinhaus graph is a labelled graph whose adjacency ma-
trix A = (as,;) has the Steinhaus property: a;; + @i ;11 = @i41,541
(mod 2). We consider random Steinhaus graphs w th n labelled vertices
in which edges are chosen independently and with probability —é— We
prove that almost all Steinhaus graphs are Hamiltonian like as in ran-
dom graph theory.

1. Introduction

Since its introduction by Erdés and Rényi ([9]), the theory of random
graphs has been greatly developed and many properties of a random
graph have been studied in detail [1], [3], [11] and [13] etc. One of
the important questions Erd8s and Rényi [9] raised in their fundamen-
tal paper on the evolution of random graphs is that “is almost every
graph Hamiltonian?”. A breakthrough was achieved by Pésa [15] and
Korshunov [10]. They prove that for some constant ¢, almost every
labelled graph with n vertices and at least cnlogn edges is Hamilton-
ian. On the other hand, it would be useful to have a criterion by which
to decide whether a specific graph behaves like a random graph, that
1s, has the property (of almost every graph) that interests us. Such a
criterion gives the concepts of pseudo-random graphs ([8]) and quasi-
random graphs ([18]) which is a special type of pseudo-random graphs.
In [18], Thomason shows that a (p, «)-jumbled graph behaves like a ran-
dom graph with edge probability p. A Steinhaus graph of order n is
a labelled graph whose adjacency matrix has the Steinhaus property:
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a;; + aij41 = aip1 ;41 (mod 2). In fact, the adjacency matrix is com-
pletely determined by the first row in the matrix. Thus there are 2™~!
distinct Steinhaus graphs of order n. Now, we state the model in random
graph theory. The theory of the random graphs which grew from the
paper of Erdos and Rényi ([9]) is a striking example of the use of the
probabilistic method in mathematics. We consider the sample space 2,
consisting of all lablled graphs of order n. For each positive integer n
and number p = p(n) with 0 < p < 1, the probability of a graph G € 2,
with m edges is given by P(G) = p™(1 — p)(g)"m. Let () be a property
of graphs and consider the set A4,, of graphs of order n that possess prop-
erty Q. If P(A,)) — 1 as n — oc then we say thar almost every graph
has property Q. A graph G is said to be (p,a)-jumnbled if p.a are real
numbers satisfying 0 < p < 1 < « and if every induced subgraph S of G

satisfies s
| S
e
1

where e(S) is the number of edges in S. In particular, a (3,0(n?)) graph
G of order n is called a quasi-random graph. More precisely, for each
subset S of G of order n, e(S) = 1|5|*+0(n?). In this paper, we consider
the sample €, as the set of all Steinhaus graphs of order n, which is one
of important models in random Steinhaus graph theory. The properties
of random Steinhaus graphs and random generalized Steinhaus graphs
have been investigated by Brand and many other authors in ([4], [5]. [6]).

< «lS

N

2. Hamilton cycles

Many theorems on Hamiltonian require a degres condition (see [2]).
But not many graphs satisfy the degree conditions. For example, in [13]
we see that almost all graphs G do not satisfy the condition that for
every pair of nonadjacent vertices u and v, d(u) + d(v) > n. Also some
theorems on Hamilton graphs require an edge condition ([14]). But not
many graphs satisfy the edge conditions. For examnple, it is clear that
almost all graphs G do not satisfy the condition that the number of edges
of G is at least [(—'L)z("i) +3]. Therefore, it is natural to consider that
if we combine an edge condition (sometimes, called a global condition)
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with a degree condition then a graph satisfying both conditions may
be Hamiltonian. From the definition of a quasi-random graph G with
n vertices, we find a good global condition which we use through this
paper. In [8], they showed that quasi-random graphs give the following
property: all but o(n) vertices of G have degree %(1 + o(1))n. In this
case we say that G 1s almost-regular. Note that the above property does
not imply quasi-random property ([8]). Thus we conclude that a quasi-
random graph has a good global condition but does not have a good
degree condition. From now we assume that the probability of an edge
1

is 3. In [6] and [13], we can find that almost every Steinhaus graph

satisfies the desired global and degree conditions
THEOREM 2.1. ([6]) Almost all Steinhaus graphs are quasi-random.
THEOREM 2.2. ([6], [13]) Let ¢ > 0. Then almost all Steinhaus
graphs satisfy
%(1 —en <dv) < %(1 +en

for all of their vertices v.

In this paper, we present two proofs that almost all Steinhaus graphs
are Hamiltonian. The first proof follows from a result in [18] and the
second proof follows the standard method in the theory of random graphs
(2], [16]) with the above theorems. Let us give the first proof. Let G be
a quasi-random and Steinhaus graph with n vertices. Let S be a subset
of G. Then we have

o(S) = ISP +oln?)

and

()~ 5('5) = 3151+ otn®) = ol

If |S] < o(n) then

e(5) = 50("5 )| = o) < st

By combining both cases, we show that the graph G is (-— o(n))-jumbled.
Thus almost all Steinhaus graphs are (%,o( ))-jumbled. Since almost
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all the Steinhaus graphs G satisfy the degree condition in Theorem 2.2,
6(G) 2 (14 o(1))% where 6(G) is the minimum degree of G. This gives
the first proof by the following theorem.

THEROEM 2.3. ([18]) Let G be a (p, a)-jumbled graph, and P be a
path in G of length | > 0 and 6(G) be the mininum degree of G. If
6(G) > 6ap™! + I, then G has a Hamilton cycle containing P.

Now we give the second proof. Let G = (V, E) be a Steinhaus graph
with n vertices. Also, assume that G is a quasi-random graph with the
degree condition in Theorem 2.2. Let zy be a vertex in G. Let S be a
longest zg-path in G, that is a path beginning at zo: S = xgr;... 7%,
Then the neighbor of x4, I'(xk), is contained in {z¢,x,... ,zk—1} since
otherwise S could be continued to a longer path. If 24 is adjacent to z;,
0<j<k-1,then S = zor,...2;T4xk_1...Tj. 1s another longest
zo-path. We call S’ a simple transform of S. Let L be the set of end
vertices (different from zg) of transforms of S and put N = {z; € §:
zjy€Lorzjy € L} and R=V — NUL. We are now ready to state
Pésa’s lemima.

THEROEM 2.4. ([2], [15]) The graph G has no i.-R edges.

COROLLARY 2.5. If |L| < n/3 then there are disjoint sets of size |L|
and n — 3|L| + 1, that are joined by no edges of G.

PROOF. Consider L and R in Theorem 2.4. Then we have
IRl=n—|NUL|>2n=2|l| >n-3|l|+1.
Choose any subset W of R such that the size of W isn—3|L|+1. O

Let U and W be two subsets of G. Then from Theorems 2.1 and 2.2
by applying the quasi-random property to the subsets U, W, U U W,
U—W and W — U, we get the following corollaries.

COROLLARY 2.6. Let k be the number of edges between U and G—W.
Then k is given by

1
k= SIUIW = U+ o(n?).
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COROLLARY 2.7. [UUT(U)| > (1 + o(n))n.
Now we give a simple lemma for Theorem 2.190.

LEaaM 2.8. Let 0 < v < 1/3 be a constant. Then for almost all
Steinhaus graphs G, if U is a subset of G and |U| < 4n then

U UT(U)| > 3|U].

PROOF. Suppose that there is a quasi-random Steinhaus graph G
with n vertices such that

UUT(U)| < 3|U|

for some 5 and some subset U of G and |U| < yn. Let W be the
complement of U UT(U). Denote a, b and ¢ by the size of subsets U,
I'(U) — U and W respectively. By Corollary 2.6, (1 + o(1))% < a. Also,
& = o(n?) by Corollary 2.5. Since ¢ < yn and a + b < 3a, we have
¢ > (1 — 3v)n. Thus we have

we

ac
2

~

2
=

o(n?) =

(1+0(1))(1 - 3v).

—
NS

This gives a contradiction for all n large enough. O

Let G = (V, E) be a Steinhaus graph with n vertices which is quasi-
random. Denote D, by the number of pairs (X, Y) of disjoint subsets of
U such that [X|=1t, |Y| = n— 3t and G has no X — Y edges. In fact,
Corollary 2.5 provides an example of D;. The following corollary comes
from Lemma 2.8.

COROLLARY 2.9. Let D = {G,: Dy = 0 for every t,1 <t < yn},
where 0 < v < 1 is a constant. If D is the complement of D in G then
P(D) = o(1).

Now we give the second proof.

THEROEM 2.10. Almost all Steinhaus graphs contain a Hamiltonian
path. More precisely, if « and y are arbitrary distinct vertices, then
almost every Steinhaus graph contains a Hamiltcn path from z to y.
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PROO¥F. Since almost all Steinhaus graphs are quasi-random, we can
assume that the Steinhaus graphs are quasi-randoin. Let us introduce
the following notations for certain events whose general element is de-

noted by G.

e Let D be the collection of all Steinhaus graphs such that Dy =0
for every t, where 1 <t < nand 0 < ¥ < %

o Let E(W,z) be the collection of all Steinhaus graphs G such that
the induced subgraph G[W] of G has a path of maximal length
whose end vertex is joined to z.

o Let E(W,z{w) be the collection of all Steinhaus graphs G such
that the induced subgraph G{W] has a w-path of maximal length
among the w-paths whose end vertex is joined to z.

o Let F(r) be the collection of all Steinhaus graphs G such that
every path of maximal length in G contains x.

o Let H(W) be the collection of all Steinhaus graphs & such that
the induced subgraph G[W] of G has a Hamilton path.

o Let H{x,y) be the collection of all Steinhaus graphs G such that
G has a Hamilton z-y path.

o The complement of an event A is A.

Note that by Corollary 2.9 we have
P(D)=1—-P(D) =o(1).

Let |W| = n—2 or n — 1 and let us estimate the probability of the
event D N E(W,z) and P(D N E(W,z)) where z is not in W. Let G €
Dn E(VV, r) and consider a path S = xgx; ...z of maximal length in
G[W]. (By introducing an ordering in W, we can easily achieve that S
is determined by G[W].) Let L = L(G[W]) be the set of end vertices of
the transforms of the zy-path S and let R be as in Theorem 2.4 (applied
to G|W]). Recall that |R| > |W| + 1 — 3|L| and there is no L-R edge,
sono L-RU {z} edge either. Since G € D and |RU {z}| > n — 3|L|, we
find that |L| > yn. As L is independently of the edges incident with x,
we have

P(DNE(W,z)) < P(G € Dand ¢ is not joined to L(G[W])) < (=)™,
A similar argument shows that

P(DNE(W,z|w) < (

“ylm]
< 2)
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provided [W|=n—-2orn—1 2z € W and z ¢ W. Note that F(z) C
E(‘/ - {.I}, {l‘}), S0

P(H(V))=P(U zev_F—(T))
<P (DﬂUxev )+P )

> P(DNF(x))+ P(D)
eV

IA

<nP(DNE(V —{z},z) + P(D)

1
<n(5)P™ 4 o(1).

This proves that almost every Steinhaus graph has a Hamilton path.
Now let z and y be distinct vertices and put W =V — {z,y}. By the
first part

g i
P(H(W)) < 2n(5)0™ +o(2).
Since H(z,y) > H(W) N E(W,y) N E(W,zly) we have

P(H(z,y)) < P(H(W)) + P(D VE(W,y)) + P(D 0 E(W,z|y)) + P(D)
1 1

Zyln Zylbn)

2) K +2(2) 4 o(1).

It shows that almost all Steinhaus graphs contain a Hamilton path from
ztoy. O

COROLLARY 2.11. Almost all Steinhaus grapias are Hamiltonian.

PROOF. Let ¢ > 0 be given. Choose k such that (3)* < 5. Let
H([n,1]) be the collection of all Steinhaus graph: with n Vertlceb which
have a Hamilton path from the vertex 1 to the vortex ¢ and A([n,]) be
the collection of all Steinhaus graphs such that the vertex 1 is adjacent
to the vertex 7 for 2 < 1 < n. Then by Theorem 2.10 there exists ng > k

such that
€

H([n,i))>1— ok
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for all n < ng and 2 <4 < k. Therefore, we have

k k k
) ) £ 1
PV H( ) 0 (VAW > 1= o - 5
im=2 1=2 =2
—1-¢

for all n > ng. It shows that almost all Steinhaus graphs are Hamilton-
lan. [

We close by mentioning a Hamiltonian connected property on Stein-
haus graphs. While almost all graphs are Hamiltonian connected ([2]),
it is still not known that almost all Steinhaus graphs are Hamiltonian
connected.
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