• Title/Summary/Keyword: Hypersurfaces

Search Result 292, Processing Time 0.02 seconds

HYPERSURFACES IN THE UNIT SPHERE WITH SOME CURVATURE CONDITIONS

  • Park, Joon-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.641-648
    • /
    • 1994
  • Let M be a minimally immersed closed hypersurface in $S^{n+1}$, II the second fundamental form and $S = \Vert II \Vert^2$. It is well known that if $0 \leq S \leq n$, then $S \equiv 0$ or $S \equiv n$ and totally geodesic hypersheres and Clifford tori are the only possible minimal hypersurfaces with $S \equiv 0$ or $S \equiv n$ ([6], [2]). From these results, Chern suggested some questions on the study of compact minimal hypersurfaces on the sphere with S =constant: what are the next possible values of S to n, and does in the ambient sphere\ulcorner By the way, S is defined extrinsically but, in fact, it is an intrinsic invariant for the minimal hypersurface, i.e., S = n(n-1) - R, where R is the scalar, curvature of M. Some partial answers have been obtained for dim M = 3: Assuming $M^3 \subset S^4$ is closed and minimal with S =constant, de Almeida and Brito [1] proved that if $R \geq 0$ (or equivalently $S \leq 6$), then S = 0, 3 or 6, Peng and Terng ([5]) proved that if M has 3 distint principal curvatures, then S = 6, and in [3] Chang showed that if there exists a point which has two distinct principal curvatures, then S = 3. Hence the problem for dim M = 3 is completely done. For higher dimensional cases, not much has been known and these problems seem to be very hard without imposing some more conditions on M.

  • PDF

SPACE CURVES SATISFYING $\Delta$H = AH

  • Kim, Dong-Soo;Chung, Hei-Sun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.193-200
    • /
    • 1994
  • Let x : $M^{n}$ .rarw. $E^{m}$ be an isometric immersion of a manifold $M^{n}$ into the Euclidean space $E^{m}$ and .DELTA. the Laplacian of $M^{n}$ defined by -div.omicron.grad. The family of such immersions satisfying the condition .DELTA.x = .lambda.x, .lambda..mem.R, is characterized by a well known result ot Takahashi (8]): they are either minimal in $E^{m}$ or minimal in some Euclidean hypersphere. As a generalization of Takahashi's result, many authors ([3,6,7]) studied the hypersurfaces $M^{n}$ in $E^{n+1}$ satisfying .DELTA.x = Ax + b, where A is a square matrix and b is a vector in $E^{n+1}$, and they proved independently that such hypersurfaces are either minimal in $E^{n+1}$ or hyperspheres or spherical cylinders. Since .DELTA.x = -nH, the submanifolds mentioned above satisfy .DELTA.H = .lambda.H or .DELTA.H = AH, where H is the mean curvature vector field of M. And the family of hypersurfaces satisfying .DELTA.H = .lambda.H was explored for some cases in [4]. In this paper, we classify space curves x : R .rarw. $E^{3}$ satisfying .DELTA.x = Ax + b or .DELTA.H = AH, and find conditions for such curves to be equivalent.alent.alent.

  • PDF

INTRODUCTION OF T -HARMONIC MAPS

  • Mehran Aminian
    • The Pure and Applied Mathematics
    • /
    • v.30 no.2
    • /
    • pp.109-129
    • /
    • 2023
  • In this paper, we introduce a second order linear differential operator T□: C (M) → C (M) as a natural generalization of Cheng-Yau operator, [8], where T is a (1, 1)-tensor on Riemannian manifold (M, h), and then we show on compact Riemannian manifolds, divT = divTt, and if divT = 0, and f be a smooth function on M, the condition T□ f = 0 implies that f is constant. Hereafter, we introduce T-energy functionals and by deriving variations of these functionals, we define T-harmonic maps between Riemannian manifolds, which is a generalization of Lk-harmonic maps introduced in [3]. Also we have studied fT-harmonic maps for conformal immersions and as application of it, we consider fLk-harmonic hypersurfaces in space forms, and after that we classify complete fL1-harmonic surfaces, some fLk-harmonic isoparametric hypersurfaces, fLk-harmonic weakly convex hypersurfaces, and we show that there exists no compact fLk-harmonic hypersurface either in the Euclidean space or in the hyperbolic space or in the Euclidean hemisphere. As well, some properties and examples of these definitions are given.