NOTES ON CLOSED HYPERSURFACES IN A RIEMANNIAN SPACE WITH CERTAIN DIFFERENTIAL EQUATION

By U-Hang Ki

1. Introduction

Let M be an n-dimensional oritentable Riemannian manifold covered by a system of coordinate neighbourhoods $\left(\xi^{h}\right)$ and $g_{j i}, \nabla_{i}, K_{k j i h}, K_{j i}$, and K, the positive definite fundamental tensor, the operator of covariant differentiation with respect to Christoffel symbols $\left\{\begin{array}{c}h \\ j i\end{array}\right\}$ formed with $g_{j i}$, the curvature tensor, the Ricci tensor, and the curvature scalar of M respectively, where here and in the following the indices h, i, j, \cdots run over the range $1,2, \cdots, n$. Recently K. Yano [1] proved

THEOREM. Let M be an orientable Riemannian manifold of dimension n which admits a non-constant scalar field v such that

$$
\nabla_{j} \nabla_{i} v=f(v) g_{j i},
$$

where f is a differentiable function of v and S a closed orientable hypersurface in M such that
(i) its first mean curvature is constant,
(ii) $\left[K_{j i}+(n-1) f^{\prime}(v) g_{j i} C^{j} C^{i} \geqslant 0\right.$ on S, where C^{h} is the unit normal to S,
(iii) the inner product $C^{i} \nabla_{i} v$ has fixed sign on S.

Then every point of S is umbilical.
To obtain a generalization of avobe theorem, we assume in this paper the existence of a non-constant scalar function which satisfies similar partial differential equation. While, under an arbitrary conformal transformation $\bar{g}_{j k}=v^{2} g_{j k}$ any geodesic circle will be transformed into a geodesic circle if and only if the function v satisfies the relation

$$
\begin{array}{ll}
& \nabla_{j} \nabla_{i} v=\sigma g_{j i}+v_{j} v_{i} \\
\text { where } & v_{j}=\frac{\partial \log v}{\partial \xi^{j}}
\end{array}
$$

and such a conformal transformation will be called concircular [4].

2. Formulas in M admitting any Scalar Field

We consider a closed orientable hypersurface S in a Riemannian manifold M whose local parametric equations are

$$
\xi^{h}=\xi^{h}\left(\eta^{a}\right),
$$

η^{a} being parameters on S, where here and in the following the indices a, b, c, \cdots run over the range $1,2, \cdots, n-1$.

If we put

$$
B_{b}^{h}=\partial_{b} \xi^{h}, \quad \partial_{b}=\partial / \eta^{b},
$$

then B_{b}^{h} are $n-1$ linearly independent vectors tangent to S and the first fundamental tensor of S is given by

$$
g_{c b}=g_{j i} B_{c}^{j} B_{b}{ }^{2} .
$$

We assume that $n-1$ vectors $B_{1}{ }^{h}, B_{2}{ }^{h}, \cdots, B_{n-1}{ }^{h}$ give the positive orientation on S and we denote by C^{h} the unit normal vector to S such that

$$
B_{1}{ }^{h}, B_{2}{ }^{h}, \cdots, B_{n-1}{ }^{h}, C^{h}
$$

give the positive orientation in M.
Denoting by ∇_{c} the operator of van der Waerden-Bortolotti covariant differentiation along S we have the following equations of Gauss and of Weingarten:

$$
\begin{align*}
& \nabla_{c} B_{b}{ }^{h}=h_{c b} C^{h}, \\
& \nabla_{c} c^{h}=-h_{c}{ }^{a} B_{a}^{h},
\end{align*}
$$

where $h_{c b}$ is the second fundamental tensor of S and $h_{c}{ }^{a}=h_{c b} g^{b a}$. We also obtain the equations of Gauss and those of Codazzi in the form

$$
\begin{aligned}
& K_{k j i h} B_{d}{ }^{k} B_{c}^{j} B_{b}{ }^{2} B_{a}^{h}=K_{d c b a}-\left(h_{d a} h_{c b}-h_{c a} h_{d b}\right), \\
& K_{k j i h} B_{d}^{k} B_{c}^{j} B_{b}{ }^{2} C^{h}=\nabla_{d} h_{c b}-\nabla_{c} h_{d b},
\end{aligned}
$$

where $K_{d c b a}$ is the curvature tensor of the hypersurface S. From the equations of Codazzi, we have, by a transvection with $g^{c b}$,

$$
K_{k h} B_{d}^{k} C^{h}=\nabla_{d} h_{c}^{c}-\nabla_{c} h_{d}{ }^{c}
$$

We now assume that the Riemannian manifold M admits a non-constant scalar field v such that

$$
\nabla_{j} v_{i}=f(v) g_{j i}+v_{j} v_{i}, \quad v_{i}=\nabla_{i} v
$$

where $f(v)$ is a differentiable function of v.
The condition (2.4) is a formal generalization of a concircular transformat-
ion in a Riemannian space. We shall call such a transformation a f-concircular transformation.

We put

$$
v^{h}=B_{a}^{h} v^{a}+\alpha C^{h}
$$

on the hypersurface S. From (2•4) we obtain by transvection with $B_{c}{ }^{j} B_{b}{ }^{\text {b }}$

$$
\nabla_{c} v_{b}=f(v) g_{c b}+\alpha h_{c b}+v_{b} v_{c},
$$

from which

$$
\Delta v=(n-1) f(v)+\alpha h_{c}^{c}+v^{a} v_{a}
$$

where Δ is the Laplacian operator on $S: \Delta=g^{c b} \nabla_{c} \nabla_{b}$.
From (2.4), we also obtain by transvection with $B_{b}^{j} C^{i}$

$$
\begin{equation*}
\nabla_{b} \alpha=-h_{b}{ }^{a} v_{a}+\alpha v_{b} \tag{2.8}
\end{equation*}
$$

On the other hand, substituting (2.4) into the Ricci identity

$$
\nabla_{k} \nabla_{j} v_{i}-\nabla_{j} \nabla_{k} v_{i}=-K_{k j i}{ }^{h} v_{h}
$$

we find that

$$
-K_{k j i}{ }^{h} v_{h}=f^{\prime}(v)\left(v_{k} g_{j i}-v_{j} g_{k i}\right)+f(v)\left(g_{k i} v_{j}-g_{j i} v_{k}\right),
$$

from which

$$
K_{i j} v^{j}=-(n-1)\left(f^{\prime}(v)-f(v)\right) v_{i,}
$$

and consequently

$$
K_{j i} v^{j} C^{2}=-(n-1) \alpha\left(f^{\prime}(v)-f(v)\right),
$$

which can also be written as

$$
K_{j i}\left(B_{c}^{j} v^{c}+\alpha C^{\jmath}\right) C^{t}=-(n-1) \alpha\left(f^{\prime}(v)-f(v)\right),
$$

or, by virtue of (2.3),

$$
\left(\nabla_{c} h_{b}^{b}-\nabla_{b} h_{c}^{b}\right) v^{c}+\alpha K_{j i} C^{j} C^{i}=-(n-1) \alpha\left(f^{\prime}(v)-f(v)\right),
$$

that is

$$
\begin{align*}
& \alpha K_{j i} C^{j} C^{i}+(n-1)\left(f^{\prime}(v)-f(v)\right) \alpha+v^{c} \nabla_{c} h_{b}^{b}-\nabla_{b}\left(h_{c}^{b} v^{c}\right)+h_{c b} v^{b} v^{c} \tag{2.9}\\
& +f(v) h_{b}^{b}+\alpha h_{c}^{b} h_{b}^{c}=0
\end{align*}
$$

by virtue of (2.6).
We now assume that the hypersurface S is closed and the first mean curvature of S is constant.
Applying Green's theorem to (2.7) and (2.9), we obtain

$$
\begin{equation*}
(n-1) \int_{s} f(v) d S+\int_{s} \alpha h_{c}^{c} d S+\int_{s} v^{a} v_{a} d S=0 \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{s}\left[\alpha K_{j i} C^{j} C^{i}+(n-1) \alpha\left(f^{\prime}(v)-f(v)\right)+f(v) h_{b}^{b}+\alpha h_{c}^{b} h_{b}^{c}+h_{c b} v^{c} v^{b}\right] d S=0 \tag{2.11}
\end{equation*}
$$

respectively, where $d S$ denotes the surface element of S.
Eliminating $\int_{s} f(v) d s$ from these two equations, we find that
(2.12) $\int_{s}\left[\alpha\left(K_{j i}+(n-1) \alpha\left(f^{\prime}(v)-f(v)\right)+a\left(h^{c b}-\frac{1}{n-1} h_{t}{ }^{t} g^{c b}\right)\left(h_{c b}-\frac{1}{n-1} h_{s}^{s} g_{c b}\right)\right.\right.$

$$
\left.+\left(h_{c b}-\frac{1}{n-1} h_{t}^{t} g_{c b}\right) v^{c} v^{b}\right] d S=0
$$

On the other hand, from(2.6) and(2.8) we have

$$
\begin{aligned}
& \nabla_{c} \nabla_{b} \alpha=-\left(\nabla_{c} h_{b a}\right) v^{a}-h_{b a}\left(\alpha h_{c}^{a}+v_{c} v^{a}+f(v) \delta_{c}^{a}\right) \\
& +\left(-h_{c a} v^{a}+\alpha v_{c}\right) v_{b}+\alpha\left(\alpha h_{c b}+v_{c} v_{b}+f(v) g_{c b}\right),
\end{aligned}
$$

from which
(2.13) $\Delta \alpha=-\nabla_{c}\left(v^{a} h_{a}^{c}\right)-h_{a v^{a}} v^{b}+\alpha^{2} h_{c}^{c}+2 \alpha v^{a} v_{a}+f(v)(n-1) \alpha$.

Applying Green's theorem to (2-13) we find that
(2-14) $\quad \int_{s}\left[h_{c b} v^{b} v^{c}-\alpha^{2} h_{c}^{c}-2 \alpha v^{a} v_{a}-(n-1) \alpha f(v)\right] d S=0$.
From (2.10), (2-11) and (2.14) we have

$$
\begin{gather*}
\int_{s} \alpha\left[\left(K_{j i}+(n-1) f^{\prime}(v) g_{j i}\right) C^{j} C^{i}+\left(h^{c b}-\frac{1}{n-1} h_{t}^{t} g^{c b}\right)\left(h_{c b}-\frac{1}{n-1} h_{s}^{s} g_{c b}\right)\right] d S \\
\left.+\int_{s}\left[2 \alpha-\frac{1}{n-1} h_{c}^{c}\right) v^{a} v_{a}+\alpha^{2} h_{c}^{c}\right] d S=0 .
\end{gather*}
$$

3. Results

From (2.12) and (2.15) we have immediately the following
THEOREM 1. Let M be an orientable Riemannian manifold of dimension n which admits a proper f-concircular transformation and S a closed cyientable hypersurface in M such that
(i) its first mean curature is constant,
(ii) $K_{j i}+(n-1)\left(f^{\prime}(v)-f(v)\right) g_{j i} C^{j} C^{i} \geqq 0$ on S, where C^{h} is the unit normal to S,
(iii) $\left(h_{c b}-\frac{1}{n-1} h_{a}^{a} g_{c b}\right) v^{c} v^{b}, C^{i} \nabla_{i} v$ have the same fixed sign on S,
or (i) and (ii) $\left[K_{j i}+(n-1) f^{\prime}(v) g_{j i}\right] C^{j} C^{i} \geqq 0$ on S (iii) $C^{i} \nabla_{i} v \geqq \frac{1}{2(n-1)} h_{a}{ }^{a} \geqq 0$ on. S.

Then every points of S is umbilical.

THEOREM 2. Let M be an orientable Riemannian manifold of dimension n which admits a proper f-concircular transformation and S a closed orientable hypersurface in M such that
(i) its first mean curvature is constant,
(ii) $C^{i} \nabla_{i} v$ is positive on S,
(iii) $\left\{K_{j i}+\left[(n-1)\left(f^{\prime}(v)-f(v)\right)-\frac{1}{4 \alpha^{2}} v^{a} v_{a}\right] g_{j i}\right\} C^{j} C^{i} \geqq 0$ on S.

Then v^{h} is normal to S.

PROOF. From (2.10) and (2.11) we get

$$
\begin{gathered}
\int_{s} \alpha\left[K_{j i} C^{j} C^{i}+(n-1)\left(f^{\prime}(v)-f(v)\right)+h_{c}^{b} h_{b}{ }^{c}-\frac{1}{n-1} h_{c}^{c} h_{b}^{b}-\frac{1}{\alpha(n-1)} h_{c}^{c} v^{a} v_{a}\right. \\
\left.+\frac{1}{\alpha} h_{c b} v^{c} v^{b}\right] d s=0
\end{gathered}
$$

by virtue of $C^{i} \nabla_{i} v=\alpha$.
or

$$
\begin{aligned}
\int_{s} \alpha\left[\left(K_{j i}+\right.\right. & \left.\left\{(n-1)\left(f^{\prime}(v)-f(v)\right)-\frac{1}{4 \alpha^{2}}\right\} g_{j i}\right) C^{j} C^{d} \\
& \left.+\left(h^{c b}-\frac{1}{n-1}-h_{t}^{t} g^{c b}+\frac{1}{2 \alpha^{i}} v^{c} v^{b}\right)\left(h_{c b}-\frac{1}{n-1} h_{s}^{s} g_{c b}+\frac{1}{2 \alpha} v_{b}^{c} v_{c}^{b}\right)\right] d S=0
\end{aligned}
$$

Therefore $h_{c b}-\frac{1}{n-1} h_{t}^{t} g_{c b}+\frac{1}{2 \alpha} v_{b} v_{c}=0$. Hence $v_{c}=0$.
These complete the proof.

Kyungpook Uiniversity
Taegu, Korea

REFERENCES

[1] K. Yano, Note on hypersurfaces in a Riemannian manifold, Can. J. Math., Vol. 19, (1967) 439-446
[2] K. Yano, Differential geametry on compex and almost complex spaces, Pergamon press (1965)
[3] K. Yano, Closed hypersurfaces with constant mean curvature in a Riemannian manifold, J. Math. Soc. Japan, 17 (1965), 333-340.
[4] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. Math. Studies, 32 (1953) 31-33.
[5] Y. Katsurada, Generalized Minkowski formulas for closed hypersurface in a Riemann space, Annali di Mat., 57 (1962),283-294.

