A NOTE ON HYPERSURFACES OF ALMOST CONTACT MANIFOLDS

By Jin Suk Pak

1. Introduction.

In a recent paper [1], the authors consider a 2n-dimensional manifold M imbedded in almost contact manifold \tilde{M}^{2n+1} with fundamental affine collineation ϕ , fundamental vector field $\hat{\xi}$ and contact form η , and assume that for each $p \in M$ the vector field $\hat{\xi}$ does not belong to the tangent hyperplane of the hypersurface. This means that the vector field $\hat{\xi}$ can be taken as the "affine normal" to the hypersurface.

More recently [2], in the case which ξ is always tangent to M, it is known that there exists a vector field N playing the role of "affine normal" along the hypersurface.

In this paper, we consider the case where ξ is always tangent to M.

2. Hypersurfaces of almost contact manifolds.

Let $\tilde{M} = \tilde{M}^{2n+1}(\phi, \xi, \eta)$ be an almost contact manifold, and let $M = M^{2n}$ be a hypersurface imbedded in \tilde{M} . Throughout this paper, we assume that the vector field ξ is always tangent to M. Then it is known that a vector field N exists

along the hypersurface M such that

(2.1)
$$\phi N = -A, \ \eta(N) = 0$$

and $\phi X = fX + \alpha(X) \cdot N$

for some vector field A on M, (1, 1) type tensor field f and 1-form α .

Applying
$$\phi$$
 to the relation (2.1), we get

$$-X+\eta(X)\xi=f^2X+\alpha(fX)N-\alpha(X)A,$$

which shows that

(2.2)
$$f^2 = -I + \eta \otimes \hat{\xi} + \alpha \otimes A$$
,
 $f(\xi) = 0, \ \eta(A) = 0, \ \alpha(\hat{\xi}) = 0, \ \alpha(A) = 1.$
 $f(\xi) = 0, \ f(A) = 0, \ \eta(fX) = 0.$

for any $X \in \mathfrak{X}(M)$, where $\mathfrak{X}(M)$ is the set of all vector fields on M. Thus we

Manifolds, mapping, tensor fields and any geometric objects we discuss are assumed to be differentiable and of class C^{∞} .

162 Jin Suk Pak

have that, in an almost contact manifold \tilde{M} , a hypersurface M for the vector field ξ to be tangent to M admits $(f, \xi, A, \eta, \alpha, \lambda)$ —structure. Moreover, if we define a tensor field \tilde{f} as

(2.3) $\tilde{f}=f+\eta\otimes A$,

then we obtain

$$\tilde{f}^{2}(X) = f^{2}(X) + \eta(fX)A + \eta(X)f(A) + \eta(X)\eta(A)A = f^{2}(X),$$

that is, $\tilde{f}^2 = f^2$ on *M*. From which we have that

$$\tilde{f}^4(X) = -\tilde{f}^2(X)$$
 on M ,

by virtue of (2.2). Since \tilde{f} has the same rank at each point of M, we find that the tensor field \tilde{f} defined as (2.3) is a quartic structure in M.

.

On the other hand, for the same \tilde{f} we get

$$\tilde{f}^2 = -I + \eta \otimes \hat{\xi} + \alpha \otimes A$$
,
and $\eta(A) = 0$, $\alpha(\hat{\xi}) = 0$.

Hence we can see that the hypersurface M is to be globally framed.

Combining the above results.

THEOREM 1. The hypersurface M imbedded in almost contact manifold \tilde{M} in such a way that the vector field ξ is always tangent to M is a globally framed quartic manifold.

3. Hypersurfaces of Sasakian manifolds.

Let $\tilde{M} = \tilde{M}^{2n+1}(\phi, \xi, \eta, \tilde{g})$ be an almost contact manifold, and let \tilde{V} be the Riemannian connection of \tilde{g} . For $X, X \in \mathcal{X}(M)$, we get

- (3.1) $\widetilde{\nabla}_X Y = \nabla_X Y + h(X,Y)N,$
- (3.2) $\widetilde{\nabla}_X N = -HX + w(X)N,$

where $\nabla_X Y$ and -HX are the tangential parts (with respect to N) of $\widetilde{\nabla}_X Y$ and $\widetilde{\nabla}_X N$, respectively, to M. We can see that $\nabla : (X, Y) \rightarrow \nabla_X Y$ is a symmetric connection on M, h is symmetric, and is called the second fundamental form of M (with respect to N).

If h=0 on M, then M is called to be totally geodesic. Let g be the induced metric: $g = \tilde{g}/M$. In general, the connection ∇ is not the Levi-Civita connection of g. Using (3.1) and (3.2), we obtain

(3.3) $(\nabla_X g)(Y, Z) = h(X, Y)g(N, Z) + h(X, Z)g(Y, N)$ Suppose that ∇ is the Levi-Civita connection of the induced metric g, then we find

 $2g(\nabla_X Y, Z) = X \cdot g(Y, Z) + Y \cdot g(X, Z) - Z \cdot g(X, Y) + g([X, Y], Z)$

A Note on Hypersurface of Almost Contact Manifolds

163

+
$$g([Z, X], Y) + g(X, [Z, Y])$$

= $2\tilde{g}(\nabla_X Y + h(X, Y)N, Z).$

From which we have

 $h(X,Y)\tilde{g}(N,Z)=0,$ (3.4)for any $X, Y, Z \in \mathcal{X}(M)$. Since N is an affine normal, we find from (3.3) and (3.4) the following:

THEOREM 2. In order that the connection ∇ of the hypersurface M imbedded in almost contact manifold \tilde{M} in such a way that the vector field ξ is always tangent to M is a Riemannian connection of $g = \tilde{g}/M$, it is necessary and sufficient that M is totally geodesic.

Now, we assume that $\tilde{M} = \tilde{M}^{2n+1}(\phi, \xi, \eta, \tilde{g})$ is a Sasakian manifold; that is, the following holds good:

 $(\widetilde{V}_{II}\phi)V = \eta(V)U - \widetilde{g}(U,V)\xi, U,V \in \mathscr{X}(\widetilde{M}),$ (3.5)where $\mathscr{X}(\tilde{M})$ is the set of all vector fields on \tilde{M} . It is well known that (3.5) implies

(3.6) $\widetilde{\nabla}_{II}\hat{\xi} = \phi U$

Suppose M is totally geodesic, then (3.6) implies $\alpha(X)=0$ for any X. Thus we have immediately the following:

THEOREM 3. There are no totally geodesic hypersurfaces imbedded in a Sasakian manifold \tilde{M} in such a way that the vector field ξ is always tangent to M.

Summing up theorem 2 and 3, we obtain

THEOREM 4. The induced connection ∇ of the hypersurface M imbedded in a Sasakian manifold \tilde{M} in such a way that the vector field ξ is always tangent to M cannot be a Riemannian connection of $g = \tilde{g}/M$.

4. Hypersurfaces of affinely cosymplectic manifold.

We assume that $\tilde{M} = \tilde{M}^{2n+1}(\phi, \xi, \eta)$ is affinely cosymplectic; an almost contact manifold $\tilde{M}^{2n+1}(\phi,\xi,\eta)$ with a symmetric affine connection \tilde{V} satisfies $\tilde{\nabla}\phi=0, \ \tilde{\nabla}\eta=0.$

Then we have

(4.1) $(\nabla_X \eta) Y = 0, X, Y \in \mathcal{X}(M),$ $\widetilde{\nabla}_X \phi Y = f(\nabla_X Y) + \alpha(\nabla_X Y)N - h(X, Y)A, X, Y \in \mathcal{X}(M).$ (4.2)On the other hand

Jin Suk Pak 164

(4,3)
$$\widetilde{\nabla}_X \phi Y = (\nabla_X f) Y + f(\nabla_X Y) + h(X, fY) N - \alpha(Y) H X + \alpha(Y) \omega(X) N + (\nabla_X \alpha Y) N.$$

Comparing (4.2) and (4.3), we get

(4.4) $(\nabla_X f)Y = \alpha(Y)HX - h(X, Y)A,$ $(\nabla_X \alpha)Y = -h(X, fY) - \alpha(Y)\omega(X).$ (4.5)Moreover, we find from (4,1), (4.4) and (4.5)

(4.6)
$$[f,f](X,Y)+d\eta(X,Y)\xi+d\alpha(X,Y)A$$
$$=\alpha(Y)HfX-\alpha(X)HfY+\alpha(X)fHY-\alpha(Y)fHX$$
$$+(\alpha\wedge\omega)(X,Y)A$$

Now we assume that M is to be totally flat, then HX=0.

Thus we find from (4.6) the following:

THEOREM 5. Suppose that the hypersurface M imbedded in an affinely cosymplectic manifold \tilde{M} in such a way that the vector field ξ is always tangent to M is to be totally flat. Then the necessary and sufficient condition in order that $(f,\xi,A,\eta,$ α, λ)—structure is normal is $\alpha \wedge \omega = 0$ on M.

Kyungpook University

REFERENCE

[1] Samuel I. Goldberg and Kentaro Yano, Noninvariant hypersurfaces of almost contact manifolds. Kodai Math. Sem. Rep. 22(1970), 199-218.

[2] —, Polynomial structure on manifolds. J. Math. Soc. Japan 22(1970), 25-34.