# A NOTE ON HYPERSURFACES OF ALMOST CONTACT MANIFOLDS 

By Jin Suk Pak

## 1. Introduction.

In a recent paper [1], the authors consider a $2 n$-dimensional manifold $M$ imbedded in almost contact manifold $\tilde{M}^{2 n+1}$ with fundamental affine collineation $\phi$, fundamental vector field $\xi$ and contact form $\eta$, and assume that for each $p \in M$ the vector field $\xi$ does not belong to the tangent hyperplane of the hypersurface. This means that the vector field $\xi$ can be taken as the "affine normal" to the hypersurface.

More recently [2], in the case which $\xi$ is always tangent to $M$, it is known that there exists a vector field $N$ playing the role of "affine normal" along the hypersurface.

In this paper, we consider the case where $\xi$ is always tangent to $M$.

## 2. Hypersurfaces of almost contact manifolds.

Let $\tilde{M}=\tilde{M}^{2 n+1}(\phi, \xi, \eta)$ be an almost contact manifold, and let $M=M^{2 n}$ be a hypersurface imbedded in $\tilde{M}$. Throughout this paper, we assume that the vector field $\xi$ is always tangent to $M$. Then it is known that a vector field $N$ exists. along the hypersurface $M$ such that

$$
\begin{align*}
& \quad \phi N=-A, \quad \eta(N)=0  \tag{2.1}\\
& \text { and } \phi X=f X+\alpha(X) \cdot N
\end{align*}
$$

for some vector field $A$ on $M,(1,1)$ type tensor field $f$ and 1-form $\alpha$.
Applying $\phi$ to the relation (2.1), we get

$$
-X+\eta(X) \xi=f^{2} X+\alpha(f X) N-\alpha(X) A
$$

which shows that

$$
\begin{align*}
& f^{2}=-I+\eta \otimes \xi+\alpha \otimes A \\
& \alpha(f X)=0, \quad \eta(A)=0, \quad \alpha(\xi)=0, \quad \alpha(A)=1  \tag{2.2}\\
& f(\xi)=0, \quad f(A)=0, \quad \eta(f X)=0
\end{align*}
$$

for any $X \in \mathscr{X}(M)$, where $\mathscr{X}(M)$ is the set of all vector fields on $M$. Thus we-

[^0]have that, in an almost contact manifold $\tilde{M}$, a hypersurface $M$ for the vector field $\xi$ to be tangent to $M$ admits ( $f, \xi, A, \eta, \alpha, \lambda$ )-structure.

Moreover, if we define a tensor field $\tilde{f}$ as

$$
\begin{equation*}
\tilde{f}=f+\eta \otimes A, \tag{2.3}
\end{equation*}
$$

then we obtain

$$
\tilde{f}^{2}(X)=f^{2}(X)+\eta(f X) A+\eta(X) f(A)+\eta(X) \eta(A) A=f^{2}(X)
$$

that is, $\tilde{f}^{2}=f^{2}$ on $M$. From which we have that

$$
\tilde{f}^{4}(X)=-\tilde{f}^{2}(X) \quad \text { on } M,
$$

by virtue of (2.2). Since $\tilde{f}$ has the same rank at each point of $M$, we find that the tensor field $\tilde{f}$ defined as (2.3) is a quartic structure in $M$.

On the other hand, for the same $\tilde{f}$ we get

$$
\begin{aligned}
& \tilde{f}^{2}=-I+\eta \otimes \xi+\alpha \otimes A, \\
& \text { and } \eta(A)=0, \quad \alpha(\xi)=0 .
\end{aligned}
$$

Hence we can see that the hypersurface $M$ is to be globally framed.
Combining the above results.
THEOREM 1. The hypersurface $M$ imbedded in almost contact manifold $\tilde{M}$ in such a way that the vector field $\xi$ is always tangent to $M$ is a globally framed quartic manifold.

## 3. Hypersurfaces of Sasakian manifolds.

Let $\tilde{M}=\tilde{M}^{2 n+1}(\phi, \tilde{\xi}, \eta, \tilde{g})$ be an almost contact manifold, and let $\tilde{\nabla}$ be the Riemannian connection of $\tilde{g}$. For $X, X \in \mathscr{X}(M)$, we get

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) N,  \tag{3.1}\\
& \tilde{\nabla}_{X} N=-H X+w(X) N, \tag{3.2}
\end{align*}
$$

where $\nabla_{X} Y$ and $-H X$ are the tangential parts (with respect to $N$ ) of $\tilde{\nabla}_{X} Y$ and $\tilde{\nabla}_{X} N$, respectively, to $M$. We can see that $\nabla:(X, Y) \rightarrow \nabla_{X} Y$ is a symmetric connection on $M, h$ is symmetric, and is called the second fundamental form of $M$ (with respect to $N$ ).

If $h=0$ on $M$, then $M$ is called to be totally geodesic. Let $g$ be the induced metric: $g=\tilde{g} / M$. In general, the connection $\nabla$ is not the Levi-Civita connection of $g$. Using (3.1) and (3.2), we obtain

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=h(X, Y) g(N, Z)+h(X, Z) g(Y, N) \tag{3.3}
\end{equation*}
$$

Suppose that $\nabla$ is the Levi-Civita connection of the induced metric $g$, then we find

$$
2 g\left(\nabla_{X} Y, Z\right)=X \cdot g(Y, Z)+Y \cdot g(X, Z)-Z \cdot g(X, Y)+g([X, Y], Z)
$$

$$
\begin{aligned}
& \quad+g([Z, X], Y)+g(X,[Z, Y]) \\
& = \\
& =2 \tilde{g}\left(\nabla_{X} Y+h(X, Y) N, Z\right) .
\end{aligned}
$$

From which we have

$$
\begin{equation*}
h(X, Y) \tilde{g}(N, Z)=0 \tag{3.4}
\end{equation*}
$$

for any $X, Y, Z \in \mathscr{X}(M)$. Since $N$ is an affine normal, we find from (3.3) and (3.4) the following:

THEOREM 2. In order that the connection $\nabla$ of the hypersurface $M$ imbedded in almost contact manifold $\tilde{M}$ in such a way that the vector field $\xi$ is always tangent to $M$ is a Riemannian connection of $g=\tilde{g} / M$, it is necessary and sufficient that $M$ is totally geodesic.
Now, we assume that $\tilde{M}=\tilde{M}^{2 n+1}(\phi, \xi, \eta, \tilde{g})$ is a Sasakian manifold; that is, the following holds good:
(3.5)

$$
\left(\tilde{\nabla}_{U} \phi\right) V=\eta(V) U-\tilde{g}(U, V) \xi, U, V \in \mathscr{X}(\tilde{M})
$$

where $\mathscr{X}(\tilde{M})$ is the set of all vector fields on $\tilde{M}$. It is well known that (3.5) implies

$$
\begin{equation*}
\tilde{\nabla}_{U} \xi=\phi U \tag{3.6}
\end{equation*}
$$

Suppose $M$ is totally geodesic, then (3.6) implies $\alpha(X)=0$ for any $X$. Thus we have immediately the following:

THEOREM 3. There are no totally geodesic hypersurfaces imbedded in a Sasakian manifold $\tilde{M}$ in such a way that the vector field $\xi$ is always tangent to $M$.

Summing up theorem 2 and 3 , we obtain
THEOREM 4. The induced connection $\nabla$ of the hypersurface $M$ imbedded in a Sasakian manifold $\tilde{M}$ in such a way that the vector field $\xi$ is always tangent to $M$ cannot be a Riemannian connection of $g=\tilde{g} / M$.

## 4. Hypersurfaces of affinely cosymplectic manifold.

We assume that $\tilde{M}=\tilde{M}^{2 n+1}(\phi, \xi, \eta)$ is affinely cosymplectic; an almost contact manifold $\tilde{M}^{2 n+1}(\phi, \xi, \eta)$ with a symmetric affine connection $\tilde{\nabla}$ satisfies

$$
\widetilde{\nabla} \phi=0, \tilde{\nabla} \eta=0 .
$$

Then we have

$$
\begin{gather*}
\left(\nabla_{X} \eta\right) Y=0, X, Y \in \mathscr{X}(M),  \tag{4.1}\\
\tilde{\nabla}_{X} \phi Y=f\left(\nabla_{X} Y\right)+\alpha\left(\nabla_{X} Y\right) N-h(X, Y) A, \quad X, Y \in \mathscr{X}(M) . \tag{4.2}
\end{gather*}
$$

On the other hand

$$
\begin{align*}
\tilde{\nabla}_{X} \phi Y= & \left(\nabla_{X} f\right) Y+f\left(\nabla_{X} Y\right)+h(X, f Y) N-\alpha(Y) H X  \tag{4,3}\\
& +\alpha(Y) \omega(X) N+\left(\nabla_{X} \alpha Y\right) N .
\end{align*}
$$

Comparing (4.2) and (4.3), we get
$\left(\nabla_{X} f\right) Y=\alpha(Y) H X-h(X, Y) A$,

$$
\begin{equation*}
\left(\nabla_{X} \alpha\right) Y=-h(X, f Y)-\alpha(Y) \omega(X) . \tag{4.4}
\end{equation*}
$$

Moreover, we find from (4, 1), (4.4) and (4.5)

$$
\begin{align*}
& {[f, f](X, Y)+d \eta(X, Y) \xi+d \alpha(X, Y) A }  \tag{4.6}\\
= & \alpha(Y) H f X-\alpha(X) H f Y+\alpha(X) f H Y-\alpha(Y) f H X \\
& +(\alpha \wedge \omega)(X, Y) A
\end{align*}
$$

Now we assume that $M$ is to be totally flat, then $H X=0$.
Thus we find from (4.6) the following:
THEOREM 5. Suppose that the hypersurface $M$ imbedded in an affinely cosymplectic manifold $\tilde{M}$ in such a way that the vector field $\xi$ is always tangent to $M$ is to be totally flat. Then the necessary and sufficient condition in order that ( $f, \xi, A, \eta$, $\alpha, \lambda$ )-structure is normal is $\alpha \wedge \omega=0$ on $M$.

Kyungpook University

## REFERENCE

[1] Samuel I. Goldberg and Kentaro Yano, Noninvariant hypersurfaces of almost contact manifolds. Kodai Math. Sem. Rep. 22(1970), 199-218.
[2] -, Polynomial structure on manifolds. J. Math. Soc. Japan 22(1970), 25-34.


[^0]:    Manifolds, mapping, tensor fields and any geometric objects we discuss are assumed to be differentiable and of class $C^{\infty}$.

