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0. Introduction

An almost Hermitian manifold is called a K-space if the associated form of an
almost Hermitian structure tensor is a Killing 2-form. The orientable differentiable
hypersurface in an almost Hermitian manifold admits an almost contact structure {7]"

The purpose of the present paper is to study the hypersurfaces of a K-space
with constant curvature. In section 1, some preliminaries on the hypersurface of a
K-space is given. In section 2, it is shown that, if the induced structure tensor

and the second fundamental tensor are anti-commutative, then the hypersurface
is totally geodesic. Section 3 is devoted to the study of the case that the induced

structure tensor and the second fundamental tensor are commutative.

1. Preliminaries
Let M be an almost Hermitian manifold of dimension #(>2) with Hermitian
structure (F Ba, G, ), l.e., Wwith a complex structure tensor F 5“ and a positive:

definite Riemannian metric tensor Gﬁa satisfying

F)'F,"=—0% G, F 'F =G,
Then, putting Fﬁa:FﬁlGl ., We have Fﬁa:: —F >
If an almost Hermitian manifold M satisfies
(1. 1) VgF, +V,Fg =0,
where V 5 denotes the operator of covariant differentiation with respect to Christoffel
symbols { ;a} formed with Gy, then the manifold is called a K-space, an almost

Tachibana space or a nearly Kaehlerian manifold.
Let M be an orientable hypersurface of a K-space M, then M is represented

parametrically by the equation®

X*=x*h.

1) Number in brackets refer to the references at the end of the paper.
2) Indices ¢z, 7, <+ run over 1, 2, «-, #—1 and a, B8, -+ run over 1, 2, -, 2,
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where {xz}, {xk} are local coordinates of M and M respectively.

If we put Bj']“:&‘?xl, (3j=3/3xf ), then sz are linearly independent tangent vec-

tors at each point of M. The induced Riemannian metric L in M is given by
. Bp «
£ji=GpaB; By -

Choosing unit normal vector C* to the hypersurface M in such a way that c”
and le form a frame of positive orientation of M, then we have

(1.2) G 4, B;"C*=0, C,,C°C"=1
Ay t ot Xp T SO0 o
Bj B, —cTJ-, Bz-Bﬁ —-§ﬁ CﬁC ,
i A _Jt N u
where B ﬁ_Gﬁ,’{Bj g, Cl“GzﬂC .
The transforms Fzﬁ B ; * and Fl” c* can be expressed as linear combinations of Bj ¢

and CZ. That is

A _ shp it 1
(1.3) FB =f,"B} +u.C",
U~A oyt
(1. 4) FZC = —% Bh,
where ukzgkiuz-, from which
h_ Ay U
(1.5) fi=B",F "B*
. Ap tt__np tt A
(1.6) uj—CzFﬂ Bj —Bj FMC :

It is easily seen that the aggregate (fj.z ,u, ;s gﬁ) defines an almost contact

metric structure in a hypersurface of M, i.e., the following relations are valid
wu;=1, f; tft "= __5]_3 -{—ujuz,
(1.7) o .
i j__ i
fj # =0, f; u;=0,
and there exists a positive definite Riemannian metric g;; such that
Jgt _
giif 'y =8&u—uu,
t
If we put f}a:gﬁfj , we have f;;=—7..

Now denoting by the operator of covariant differentiation with respect to

Christoffel symbols {jkz_} formed with g;,, we see that the equations of Gauss are

(1.8) v,B,'=0,B/+B, B/} |~ B, " }=H C",
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where H;; is the second fundamental tensor of the hypersurface, and the

.equations of Weingarten are
Ao, o BAr[ A gy i
(1.9 VC'=0C"+B,°CT )} =~H,'B
where H_ ‘=H ﬂg”.

Differentiating (1.3) covariantly along M and taking account of (1.8) and
(1.9), we have

U 2. v |
(1.10)  (V,F,)B*B,"—H,u'B"=(V.f,)B,"+f, H;C"+(Vu)C'~u;H,;'B,”,
similarly, operating V, to F ﬂ”Bj‘.‘ and adding the equation thus obtained with
(1.10), then we get
Y v A t 4 t ¢ ! Y
(V#Fl + VI, )Bj”BZ. =(V.f; +V,J; +2u Hﬁ—-usz. —uH, )B,
+(Vu+Va+F, H+ ;" H,C

Since the left hand side of the equation above is vanish by (1.1) and since B J-Z.

C* are linearly independent, the following are consistent:
(1.11) iji’+vifjt=—2utﬂji+ujﬂit+uiﬂjt.
(1.12) Vo +Va,=~f "H,~f, "H,.

We consider an orientable hypersurface M of a K-space with constant curvature.
In this case, the K-space M is restricted to that of 6-dimension (cf. [4]).

The Riemannian curvature tensor X of M takes the form
(1- 13) K?’ﬁalzk(GrlGﬁa_Gracﬁl)’

£ being a positive constant.
Substituting (1. 13) into the Gauss and Codazzi equation:

_ p 'p Bp an 4
Rﬁzjz'k'_'Bk Bj Bz’ Bk Krﬁal_l_HiakHji—Hthk

_p7p Bp ani
VkHji“Viji“‘Bk Bj B, C Kyﬁaz*

i:

where 'Rkjih is a Riemannian curvature tensor in the hypersurface M, we have
(1.14) Ryiin=k 818 i—81i& jk) +H, 0, —H Hy,,

t t
2. Case of ;' H,=f, H,

; ; . . :
We assume that two tensors j:, and H ; are anti-commutative, 1.6
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! ¢
Transvecting (2.1) with fk / , We obtain

4 ! ]
sz—l_ukﬂ Hfz'_f' Hf]fk} =0,

(2

and also transvecting this equation with ui,
)
where o is a scalar field.

LEMMA 2.1. In a hypersurface M of a K-space with constant curvature, if the

) 2 . .
structure tensor f; and the second fundamenial tensor H ; are anti-commuiaiive,

then o is constant.

PROOF. Differentiating (2.2) covariantly along M, we have
(VkHﬂ)uf—l-HﬁVkuz =V, u,;+avu.,
from which, taking the skew-symmetric parts with respect to the indices 2 and.
7, we have

(2.3) HV i —H V' = (Vyoou;— (Veduy+ (V= V)

by virtue of (1.15).
On the other hand, we have from (1.12) and (2.1)

(2.4) Ve, +Vau,=—2f,"H,.

Transvecting (2.3) with % and taking account of (2.4) and unity of uk, we:

have
(2.5) . V,a=pu;,

where 8= ukaa. Theretore (2.3) becomes

(2.6) H Nt —H NV =a(Vu;—V ).
Differentiating (2.5) covariantly, we have
Vkvjcrz(vkﬁ’)uj-l-ﬁvkzcj,
from which, taking the skew-symmetric parts with respect to the indices £ and
7, we have

(2.7) (Vkﬁ)zzj — (Vjﬁ)uk—i-ﬁ(vkuj—vjuk) =0,
because V;x is a gradient vector.

Transvecting (2.7) with %" and taking account of (2.4) and unity of u", we get
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(2.8) | V,8=wu,
where cu==ukvk,6’. Therefore, by the substitution of (2.8) into (2.6), we obtain
(2.9) ,S(Vkuj —V.u,)=0.
Comparing (2.4) and (2.9), we have
. !
(2.10) 5Vkuj.— —Bf, Hﬂ.
Substituting (2.9) and (2.10) into (2.6) and taking account of (2.1), we find.
S 4 |
BH it f, H_=0.
Transvecting the equation above with f z.j , we have
t 2
5(szHz' — zzjui)=0
by virtue of (1.7) and (2.2), which implies
(2.11) B(H}-r—aujut)(ﬂﬁ—aujur) =0,

Now. denoting by M, the subset of the hypersurface M defined by
{PeEM|3(P)#0}, we obtain from (2.11)

(2.12) H,=ouu,
from which

(2. 13) Ry =R 18— 8 ri8 it
on M T

The substitution of (2.12) into (2.4) gives
ViV, =0,
or, comparing this equation with (2.9), we have
(2.14) V=0
on M,.
Differentiating (2. 12) covariantly, we have from (2.5) and (2.14)
VkHﬁ=,8¢kujui
on M,. Furthermore differentiating the equation above covariantly, we have
V,VkH i = WU,
on M, because of (2. 8) and (2.14).
By the Ricci identity and (2.12), we get

t t
a(Ryy; wt Ry, w2,)=0
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on M. Transvecting the last equation with # and using (2.13), we obtain

. . YR
on M,. Furthermore transvecting (2.15) with g #’, we have

4ok =0,
from which =0 on M, kecause £>0. Therefore, from (2.5) we have
A=0 on M,. It contradicts the fact 5#0 on M,. Thus M, is an empty set, and
consequently we see from (2.5) that « is a constant on the hypersurface M. This

completes the proof of Lemma 2. 1.
Let 2 be a principal curvature of A " and X’ the corresponding eigenvector to A,
. e.,
H 'X'=1X
Then we see from (2. 1)

H,'(f,'x)=-2f,'X".

Thus, using (2.2), (H j_s) has the following form

- o
- A4 0
(2.16) (H;")= ~4 |
0 5
- —45 |
for suitable orthonormal frame at each point M, thereby we have
(2.17) H, =«

Differentiating (2. 1) covariantly, we have
(ViJ; t)Hf:i_[_fj tvkﬂif_(kai t)Hf: —J; thHj:.‘:O'
If we add this equation to the equation obtained by interchanging the indices %
and 7 1n this
: | ¢ ¢ t
—20:%,5]{12}.—!—%}!;- H,+uH, Hﬂ-l—fj V.H, +f, Vsz.t
—(ka;- t)Hﬁ_zfz tV]‘Hkt=O

by virtue of (1.11), (1.15) and (2.2).

Transvecting this equation above with gkiuj and taking account of symmetry
of H;; and skew-symmetry of f;; with respect to the indices, we find
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(2.18) —a’+H, H" —a(V, f*)u,=0
because of (1.7) and (2.2).
On the other hand, (1.11) leads to

kam=-utﬂkk—l—aur.

If substitute the equation above into (2.18), then

(2.19) H, H"=20"~aH,".
Comparing (2.17) and (2.19), we have
B2
H, H =o',

Hence we get from this equation and (2. 16)

o202 =0,

and consequently 4;=4,=0. Thus (2.16) has the form

(Hy i): 0

- 0 =

for suitable orthonormal frame at each point of M.

Now we assume that a#0.

Using Cartan’s lemma with respect to the hypersurface with constant principal
curvature of a space of constant curvature (cf. [1]),

5 k+ a0
& —U

:O"

where % is a constant curvature of K-space, therefore £=0. It contradicts to 2> 0.

Hence a=0, i.e., H =0, Thus we have

THEOREM 2.2 In a hypersurface M of a K-space with constant curvature, if the
structure lensor sz and the second jundamental tensor H *are anti-commutative,

then nypersurface M is totally geodesic.

3. Case of f‘j ’Hm:—fa. lrH”.

. . ' 2 2 5 .
In this section we assume that two tensors S, and A ; are commutative, le.,

(3.1) fiH i+ f, 'H, =0,
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In this case, the vector field #’ is a Killing vector field, i.e.,
(3.2) Vku;.+V}-uk=O.

Transvecting (3.1) with f, J zf, we have

1
(3.3) H,u=ou,.

LEMMA. 3.1. In a hypersurface M of a K-space with constant curvature, if the
structure tensor f !.z and the second fundamental tensor H }-3 are commutative, then o

S a constant,

PROOF. Differentiating (3.3) covariantly along M and taking the skew-sym-

metric parts of the equation obtained thus, we have

H.Vu —H,\N i =(V,0u—-mu+a(Vu~Vu,).

Transvecting this eguation with " and taking account of (3.2), we find
(3.4) V,a=(u,
where ,8=z¢tV,a:. Differentiating (3.4) covariantly and taking the skew-symmetric
parts of the equation obtained thus, we get
Transvecting the equation above with ¥, we obtain

(3. 5) V ‘3_—“‘(1)2{].,

7

where w=uka/3.

The last two equations 1mply that

(3.6) _,B(Vkuj—-vjuk) =Q.
Comparing (3.2) and (3.6), we see that
(3.7) ﬁka»ﬁj=0.

We will denote M, the subset of the hypersurface M defired by {P&M} |S5(P)#0}.

Then we have from (3.7) |
(3.8) Vjuz:o

on M.
If we differentiate both sides of the equation f} z-uz:O,. then
(3.9) ~ (VoS =0

on M, by virtue of (3.8).
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Transvecting (1.11) with #, and taking account of (3.3) and (3.9), we have

(3. 10) sz:cwjui.
which implies
(3.11) R,in=k(C g —8 i)

on M -
From (3.4), (3.5), (3.8) and (3.10), we obtain
| V;Vkﬂjz- — Cﬂulﬂk%j%z—

on M,.
By the Riccil identity and (3.10), we have
{
a(}?!kj J‘wtui—l—1"{”,‘?[1&. ztjut)zo

on M,. Transvecting the last equation with zci, we find

!
aRW ut—-O,

or, using (3.11)

(3.12) ak(gkac,-—gljuk)=0

on M,. Furthermore transvecting (3.12) with gkf «, we have 4 ak=0, from which
a=0on M,. Therefoer from (3.4) we have 8=0 on M,. It contradicts the fact
that 570 on M,. Thus M, is an empty set, and consequently we see from (3.4)

that o« is a constant on the hypersurface M. This completes the proof of
Lemma 3.1

THEOREM 3.2. In a hypersurface M of a K-space with constant curvature, if the

structure teinsor Jz * and the second fundamental tensor H j ‘ are commutative, then
the hypersurjace M is totally umbilical.

PROOF. Differentiating (8.1) covariantly, we find
(3.13) (VH D +H N +(VH) f A+ HN, F =0

Adding (3.13) to the equation which obtained thus by interchanging of the
indices 7 and & in (3.13), we find

2(VH N +H NS A HN S+ (VHDS + (VHS
— 20, H  +w,H, H +uH, H, =0
by virtue of (1.11) (1.15) and (3.3).

. . . . ki
Transvecting this equation with g, we have
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(3.14) (H H" —al, Du;+(V,H, 7, '=0
because of (1.11), (1.15) and (3.3).

Also transvecting (3.14) with z.»:j, we obtain

(3.15) H H"=aH,".
The substitution of (3.15) into (3.14) gives

(VH ,Of; '=o.
Transvecting this equation with f, / and using (1.7), we find
(3.16) VH, =V H, Dy =o0.
On the other hand, if we differentiate (3.3) covariantly, then
(Vi D'+ H, V' =aV,u.
Transvecting this equation with gkj, we obtain
(3.17) u'(V,H, =0

by virtue of (1.15) and (3. 2).
Comparing (3.16) and (3.17), we see that

;
Vjﬂk "‘O:
which implies that H kk 1S a constant.

Now putting 4, the principal curvature of A ; " distinct to ar, we easily see from

(3.1) and (3.3) that (H ; 3.) has the form

- o _
. 21 0
(3.18) (H; )= 44
0 Ay
~ 22 —
for suitable orthonormal frame at each point of M. Thereby we have
(3.19) H, '=a+22,+22,
from which
(3.20) A +4,=c¢; constant
because H, ' and a are constants.

!
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From (3.15) and (3.18), we find
(3.21) 2422 =a (A +2),
which is a non-negative constant. Since
Ay +2)° = A3+ =222,
we see
(3.22) A, A,=constant.

The substitution of (3.20) into (8.22) gives

2
cll — A ; =constant.

Differentiating this equation covariantly, we get
which implies that 4, is a constant, therefore A, is a also constant because of

(3. 20).
Now we assume that a'<21 <2, Then

(3.23) 200— A, — A, <ar— 22 <a'—21 <0.

Using Cartan’s lemma with respect to the hypersurface with constant principal
curvature of a space of constant curvature (cf. [1]),

k+oal, k+od,
-— .3 =0,

(3.24)

where £ 1s a positive constant.
The equation (8.24) is rewritten as

(3.25) fad=——— -t al),
from which
(k+ar)(k+al,) <O
by virtue of (3.23). Thus either
(3.26) . k+al, <0 or k+al,<0,

which implies
(3.27) a21<-k <0 or ald,<—k<0.
On the other hand, the equation (3.24) can be written as
k(20— 2, — A,)+a’ (A, = 2,)°=0,

from which
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(3. 28) a(Ra—2 ~2)=0, &’(3;—2,)°=0
because of (3.23), (3.27) and a<2q;,<4,.

Therefore, from (3.28) we have a=0, which implies £<0 from (3.26). It con-
tradicts the fact that the positive constancy of Z.

Hence A;=A,=a on the hypersurface M, therefore we find H =08 It implies
that the hypersurface M is totally umbilical.

Yeungnam University.
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