HYPERSURFACES OF A K-SPACE WITH CONSTANT CURVATURE

By Hong-Suh Park

Dedicated to Prof. Chung Ki Pahk on his 60th Birthday

0. Introduction

An almost Hermitian manifold is called a *K*-space if the associated form of an almost Hermitian structure tensor is a Killing 2-form. The orientable differentiable hypersurface in an almost Hermitian manifold admits an almost contact structure [7] ¹³

The purpose of the present paper is to study the hypersurfaces of a K-space with constant curvature. In section 1, some preliminaries on the hypersurface of a K-space is given. In section 2, it is shown that, if the induced structure tensor and the second fundamental tensor are anti-commutative, then the hypersurface is totally geodesic. Section 3 is devoted to the study of the case that the induced structure tensor and the second fundamental tensor are commutative.

1. Preliminaries

Let \tilde{M} be an almost Hermitian manifold of dimension n(>2) with Hermitian structure $(F_{\beta}^{\ \alpha}, G_{\beta\alpha})$, i.e., with a complex structure tensor $F_{\beta}^{\ \alpha}$ and a positive definite Riemannian metric tensor $G_{\beta\alpha}$ satisfying

$$F_{\beta}^{\ \lambda}F_{\lambda}^{\ \alpha} = -\delta_{\beta}^{\alpha}, \ G_{\lambda\mu}F_{\beta}^{\ \lambda}F_{\alpha}^{\ \mu} = G_{\beta\alpha}.$$

Then, putting $F_{\beta\alpha} = F_{\beta}^{\ \lambda} G_{\lambda\alpha}$ we have $F_{\beta\alpha} = -F_{\alpha\beta}$.

If an almost Hermitian manifold \tilde{M} satisfies

$$\nabla_{\beta} F_{\alpha}^{\ \ \gamma} + \nabla_{\alpha} F_{\beta}^{\ \gamma} = 0,$$

where ∇_{β} denotes the operator of covariant differentiation with respect to Christoffel symbols $\begin{Bmatrix} \gamma \\ \beta \alpha \end{Bmatrix}$ formed with $G_{\beta\alpha}$, then the manifold is called a *K-space*, an almost Tachibana space or a nearly Kaehlerian manifold.

Let M be an orientable hypersurface of a K-space \tilde{M} , then M is represented parametrically by the equation²⁾

$$X^{\lambda} = X^{\lambda}(x^h),$$

¹⁾ Number in brackets refer to the references at the end of the paper.

²⁾ Indices i, j, \cdots run over 1, 2, \cdots , n-1 and α , β , \cdots run over 1, 2, \cdots , n.

where $\{x^{\lambda}\}$, $\{x^{h}\}$ are local coordinates of \tilde{M} and M respectively.

If we put $B_j^{\ \lambda} = \partial_j x^{\lambda}$, $(\partial_j = \partial/\partial x^j)$, then $B_j^{\ \lambda}$ are linearly independent tangent vectors at each point of M. The induced Riemannian metric g_{ji} in M is given by $g_{ji} = G_{\beta\alpha} B_j^{\ \beta} B_i^{\ \alpha}$.

Choosing unit normal vector C^{λ} to the hypersurface M in such a way that C^{λ} and B_i^{λ} form a frame of positive orientation of M, then we have

(1.2)
$$G_{\beta\alpha}B_{j}^{\beta}C^{\alpha}=0, C_{\beta\alpha}C^{\beta}C^{\alpha}=1$$

$$B_{j}^{\lambda}B_{\lambda}^{i}=\delta_{j}^{i}, B_{i}^{\alpha}B_{\beta}^{i}=\delta_{\beta}^{\alpha}-C_{\beta}C^{\alpha},$$

where $B^{i}_{\beta} = G_{\beta\lambda}B_{i}^{\lambda}g^{ji}$, $C_{\lambda} = G_{\lambda\mu}C^{\mu}$.

The transforms $F_{\lambda}^{\ \mu}B_{j}^{\ \lambda}$ and $F_{\lambda}^{\ \mu}C^{\lambda}$ can be expressed as linear combinations of $B_{j}^{\ \lambda}$ and C^{λ} . That is

(1.3)
$$F_{\lambda}^{\mu}B_{j}^{\lambda}=f_{j}^{h}B_{h}^{\mu}+u_{j}C^{\mu},$$

$$(1.4) F_{\lambda}^{\mu}C^{\lambda} = -u^h B_h^{\mu},$$

where $u^h = g^{hi}u_i$, from which

(1.5)
$$f_{j}^{h} = B_{\lambda}^{h} F_{\mu}^{\lambda} B_{j}^{\mu}$$
,

(1.6)
$$u_{j} = C_{\lambda} F_{\mu}^{\ \lambda} B_{j}^{\ \mu} = B_{j}^{\ \mu} F_{\mu \lambda} C^{\lambda}.$$

It is easily seen that the aggregate $(f_j^i, u^i, u_j, g_{ji})$ defines an almost contact metric structure in a hypersurface of \tilde{M} , i.e., the following relations are valid

(1.7)
$$u^{i}u_{i}=1, f_{j}^{t}f_{t}^{i}=-\delta_{j}^{i}+u_{j}u^{i}, f_{j}^{i}u_{j}=0, f_{j}^{i}u_{i}=0,$$

and there exists a positive definite Riemannian metric g_{ji} such that

$$g_{ji}f_s^{j}f_t^{i}=g_{st}-u_su_t.$$

If we put $f_{ji} = g_{ti}f_j^t$, we have $f_{ji} = -f_{ij}$.

Now denoting by the operator of covariant differentiation with respect to Christoffel symbols $\binom{h}{j}$ formed with g_{ji} , we see that the equations of Gauss are

(1.8)
$$\nabla_{j}B_{i}^{\lambda} = \partial_{j}B_{i}^{\lambda} + B_{j}^{\beta}B_{i}^{\gamma} \begin{Bmatrix} \lambda \\ \beta \gamma \end{Bmatrix} - B_{h}^{\lambda} \begin{Bmatrix} h \\ j i \end{Bmatrix} = H_{ji}C^{\lambda},$$

where H_{ji} is the second fundamental tensor of the hypersurface, and the equations of Weingarten are

(1.9)
$$\nabla_{j}C^{\lambda} = \partial_{j}C^{\lambda} + B_{j}^{\beta}C^{\gamma} \begin{Bmatrix} \lambda \\ \beta \gamma \end{Bmatrix} = -H_{j}^{i}B_{i}^{\lambda},$$

where $H_{j}^{i} = H_{jl}g^{l}$.

Differentiating (1.3) covariantly along M and taking account of (1.8) and (1.9), we have

$$(1.10) \qquad (\nabla_{\mu} F_{\lambda}^{\nu}) B_{j}^{\mu} B_{i}^{\lambda} - H_{ji} u^{t} B_{t}^{\nu} = (\nabla_{j} f_{i}^{t}) B_{t}^{\nu} + f_{i}^{t} H_{jt} C^{\nu} + (\nabla_{j} u_{i}) C^{\nu} - u_{j} H_{i}^{t} B_{t}^{\nu},$$

similarly, operating ∇_i to $F_{\mu}^{\ \nu}B_j^{\mu}$ and adding the equation thus obtained with (1.10), then we get

$$(\nabla_{\mu} F_{\lambda}^{\ \nu} + \nabla_{\lambda} F_{\mu}^{\ \nu}) B_{j}^{\ \mu} B_{i}^{\ \lambda} = (\nabla_{j} f_{i}^{\ t} + \nabla_{i} f_{j}^{\ t} + 2u^{t} H_{ji} - u_{j} H_{i}^{\ t} - u_{i} H_{j}^{\ t}) B_{t}^{\ \nu}$$

$$+ (\nabla_{j} u_{i} + \nabla_{i} u_{j} + f_{i}^{\ t} H_{jt} + f_{i}^{\ t} H_{it}) C^{\nu}.$$

Since the left hand side of the equation above is vanish by (1.1) and since B_j^{λ} , C^{λ} are linearly independent, the following are consistent:

(1.11)
$$\nabla_{j} f_{i}^{t} + \nabla_{i} f_{j}^{t} = -2u^{t} H_{ii} + u_{i} H_{i}^{t} + u_{i} H_{i}^{t},$$

(1.12)
$$\nabla_{j}u_{i} + \nabla_{i}u_{j} = -f_{i}^{\ t}H_{jt} - f_{j}^{\ t}H_{it}.$$

We consider an orientable hypersurface M of a K-space with constant curvature. In this case, the K-space \widetilde{M} is restricted to that of 6-dimension (cf. [4]).

The Riemannian curvature tensor K of \widetilde{M} takes the form

(1.13)
$$K_{\gamma\beta\alpha\lambda} = k(G_{\gamma\lambda}G_{\beta\alpha} - G_{\gamma\alpha}G_{\beta\lambda}),$$

k being a positive constant.

Substituting (1.13) into the Gauss and Codazzi equation:

$$\begin{split} R_{kjih} &= B_k^{\ \gamma} B_j^{\ \beta} B_i^{\ \alpha} B_h^{\ \lambda} K_{\gamma\beta\alpha\lambda} + H_{kh} H_{ji} - H_{jh} H_{ki}, \\ \nabla_k H_{ji} - \nabla_j H_{ki} &= B_k^{\ \gamma} B_j^{\ \beta} B_i^{\ \alpha} C^{\lambda} K_{\gamma\beta\alpha\lambda}, \end{split}$$

where R_{kiih} is a Riemannian curvature tensor in the hypersurface M, we have

(1.14)
$$R_{kjih} = k(g_{kh}g_{ji} - g_{ki}g_{jh}) + H_{kh}H_{ji} - H_{jh}H_{ki},$$

$$\nabla_k H_{ii} - \nabla_i H_{ki} = 0.$$

2. Case of
$$f_i^t H_{ti} = f_i^t H_{ti}$$

We assume that two tensors $f_i^{\ i}$ and $H_i^{\ i}$ are anti-commutative, i.e.

(2.1)
$$f_j^{t} H_{ti} - f_i^{t} H_{tj} = 0.$$

Transvecting (2.1) with f_k^{j} , we obtain

$$H_{ki} + u_k u^t H_{ti} - f_i^t H_{tj} f_k^j = 0$$
,

and also transvecting this equation with u^i ,

$$(2.2) H_{ki}u^i = \alpha u_k,$$

where α is a scalar field.

LEMMA 2.1. In a hypersurface M of a K-space with constant curvature, if the structure tensor $f_j^{\ i}$ and the second fundamental tensor $H_j^{\ i}$ are anti-commutative, then α is constant.

PROOF. Differentiating (2.2) covariantly along M, we have

$$(\nabla_k H_{it}) u^t + H_{it} \nabla_k u^t = (\nabla_k \alpha) u_i + \alpha \nabla_k u_i,$$

from which, taking the skew-symmetric parts with respect to the indices k and j, we have

$$(2.3) H_{jt}\nabla_k u^t - H_{kt}\nabla_j u^t = (\nabla_k \alpha)u_j - (\nabla_j \alpha)u_k + \alpha(\nabla_k u_j - \nabla_j u_k)$$

by virtue of (1.15).

On the other hand, we have from (1.12) and (2.1)

$$\nabla_k u_j + \nabla_j u_k = -2 f_k^{\ t} H_{jt}.$$

Transvecting (2.3) with u^k and taking account of (2.4) and unity of u^k , we have

$$(2.5) \nabla_j \alpha = \beta u_j,$$

where $\beta = u^k \nabla_k \alpha$. Therefore (2.3) becomes

$$(2.6) H_{jt}\nabla_k u^t - H_{kt}\nabla_j u^t = \alpha(\nabla_k u_j - \nabla_j u_k).$$

Differentiating (2.5) covariantly, we have

$$\nabla_k \nabla_j \alpha = (\nabla_k \beta) u_j + \beta \nabla_k u_j,$$

from which, taking the skew-symmetric parts with respect to the indices k and j, we have

(2.7)
$$(\nabla_k \beta) u_j - (\nabla_j \beta) u_k + \beta (\nabla_k u_j - \nabla_j u_k) = 0,$$

because $\nabla_i \alpha$ is a gradient vector.

Transvecting (2.7) with u^k and taking account of (2.4) and unity of u^k , we get

(2.8)
$$\nabla_{j}\beta = \omega u_{j},$$

where $\omega = u^k \nabla_k \beta$. Therefore, by the substitution of (2.8) into (2.6), we obtain

(2.9)
$$\beta(\nabla_k u_i - \nabla_j u_k) = 0.$$

Comparing (2.4) and (2.9), we have

$$\beta \nabla_k u_i = -\beta f_k^{\ t} H_{it}.$$

Substituting (2.9) and (2.10) into (2.6) and taking account of (2.1), we find

$$\beta H_{it} f_k^s H_s^t = 0.$$

Transvecting the equation above with f_i^j , we have

$$\beta(H_{it}H_i^t - \alpha^2 u_i u_i) = 0$$

by virtue of (1.7) and (2.2), which implies

(2.11)
$$\beta(H_{jt} - \alpha u_j u_t)(H^{jt} - \alpha u^j u^t) = 0.$$

Now denoting by M_1 the subset of the hypersurface M defined by $\{P \in M \mid \beta(P) \neq 0\}$, we obtain from (2.11)

$$(2.12) H_{ji} = \alpha u_j u_i,$$

from which

(2.13)
$$R_{kjih} = k(f_{hk}g_{ji} - g_{ki}g_{jh})$$

on M_1 .

The substitution of (2.12) into (2.4) gives

$$\nabla_k u_i + \nabla_j u_k = 0,$$

or, comparing this equation with (2.9), we have

$$\nabla_k u_j = 0$$

on M_1 .

Differentiating (2.12) covariantly, we have from (2.5) and (2.14)

$$\nabla_k H_{ji} = \beta u_k u_j u_i$$

on M_1 . Furthermore differentiating the equation above covariantly, we have

$$\nabla_l \nabla_k H_{ii} = \omega u_l u_k u_j u_i$$

on M_1 because of (2.8) and (2.14).

By the Ricci identity and (2.12), we get

$$\alpha(R_{lkj}^{t}u_{t}u_{i}+R_{kli}^{t}u_{j}u_{t})=0$$

on M_1 . Transvecting the last equation with u^i and using (2.13), we obtain

(2.15)
$$k(g_{kj}u_l - g_{lj}u_k) = 0$$

on M_1 . Furthermore transvecting (2.15) with $g^{kj}u^l$, we have

$$4\alpha k=0$$
,

from which $\alpha=0$ on M_1 because k>0. Therefore, from (2.5) we have

 $\beta=0$ on M_1 . It contradicts the fact $\beta\neq 0$ on M_1 . Thus M_1 is an empty set, and consequently we see from (2.5) that α is a constant on the hypersurface M. This completes the proof of Lemma 2.1.

Let λ be a principal curvature of $H_i^{\ i}$ and X^i the corresponding eigenvector to λ , i.e.,

$$H_i^{i}X^j=\lambda X^i$$
.

Then we see from (2.1)

$$H_t^{i}(f_i^t X^j) = -\lambda f_t^{i} X^t.$$

Thus, using (2.2), (H_j^i) has the following form

$$(2.16) \qquad (H_j^i) = \begin{bmatrix} \alpha & & & & \\ & \lambda_1 & & 0 \\ & & -\lambda_1 & \\ & 0 & & \lambda_2 \\ & & -\lambda_2 \end{bmatrix}$$

for suitable orthonormal frame at each point M, thereby we have

Differentiating (2.1) covariantly, we have

$$(\nabla_k f_j^{t}) H_{ti} + f_j^{t} \nabla_k H_{it} - (\nabla_k f_i^{t}) H_{jt} - f_i^{t} \nabla_k H_{jt} = 0.$$

If we add this equation to the equation obtained by interchanging the indices k and j in this

$$-2\alpha u_{i}H_{kj} + u_{k}H_{j}^{t}H_{it} + u_{j}H_{k}^{t}H_{it} + f_{j}^{t}\nabla_{k}H_{it} + f_{k}^{t}\nabla_{j}H_{it}$$
$$-(\nabla_{k}f_{i}^{t})H_{jt} - 2f_{i}^{t}\nabla_{j}H_{kt} = 0$$

by virtue of (1.11), (1.15) and (2.2).

Transvecting this equation above with $g^{ki}u^{j}$ and taking account of symmetry of H_{ji} and skew-symmetry of f_{ji} with respect to the indices, we find

(2.18)
$$-\alpha^{2} + H_{kt}H^{kt} - \alpha(\nabla_{k}f^{kt})u_{t} = 0$$

because of (1.7) and (2.2).

On the other hand, (1.11) leads to

$$\nabla_{h} f^{kt} = -u^{t} H_{h}^{k} + \alpha u^{t}.$$

If substitute the equation above into (2.18), then

(2.19)
$$H_{kt}H^{kt} = 2\alpha^2 - \alpha H_t^{t}.$$

Comparing (2.17) and (2.19), we have

$$H_{kt}H^{kt}=\alpha^2$$
.

Hence we get from this equation and (2.16)

$$\alpha^2 + 2\lambda_1^2 + 2\lambda_2^2 = \alpha^2$$
,

and consequently $\lambda_1 = \lambda_2 = 0$. Thus (2.16) has the form

$$(H_j^i) = \begin{bmatrix} \alpha & & & & \\ & 0 & & & 0 \\ & & 0 & & 0 \\ & 0 & & & 0 \end{bmatrix}$$

for suitable orthonormal frame at each point of M.

Now we assume that $\alpha \neq 0$.

Using Cartan's lemma with respect to the hypersurface with constant principal curvature of a space of constant curvature (cf. [1]),

$$5\frac{k+\alpha 0}{\alpha-0}=0$$

where k is a constant curvature of K-space, therefore k=0. It contradicts to k>0. Hence $\alpha=0$, i.e., $H_{ii}=0$. Thus we have

THEOREM 2.2 In a hypersurface M of a K-space with constant curvature, if the structure tensor $f_j^{\ i}$ and the second fundamental tensor $H_j^{\ i}$ are anti-commutative, then hypersurface M is totally geodesic.

3. Case of
$$f_i^{t}H_{ti} = -f_i^{t}H_{ti}$$

In this section we assume that two tensors $f_i^{\ i}$ and $H_i^{\ i}$ are commutative, i.e.,

(3.1)
$$f_{i}^{t}H_{ti}+f_{i}^{t}H_{tj}=0.$$

In this case, the vector field u^{j} is a Killing vector field, i.e.,

$$(3.2) \qquad \nabla_k u_i + \nabla_i u_k = 0.$$

Transvecting (3.1) with $f_k^{\ j}u^i$, we have

$$(3.3) H_{ii}u^i = \alpha u_i.$$

LEMMA. 3.1. In a hypersurface M of a K-space with constant curvature, if the structure tensor $f_{i}^{\ i}$ and the second fundamental tensor $H_{j}^{\ i}$ are commutative, then α is a constant,

PROOF. Differentiating (3.3) covariantly along M and taking the skew-symmetric parts of the equation obtained thus, we have

$$H_{it}\nabla_k u' - H_{kt}\nabla_i u' = (\nabla_k \alpha)u_i - (\nabla_i \alpha)u_k + \alpha(\nabla_k u_i - \nabla_i u_k).$$

Transvecting this equation with u^k and taking account of (3.2), we find $\nabla_i \alpha = \beta u_i$,

where $\beta = u' \nabla_{l} \alpha$. Differentiating (3.4) covariantly and taking the skew-symmetric parts of the equation obtained thus, we get

$$(\nabla_k \beta) u_i - (\nabla_i \beta) u_k + \beta (\nabla_k u_i - \nabla_i u_k) = 0.$$

Transvecting the equation above with u^k , we obtain

$$\nabla_{j}\beta = \omega u_{j},$$

where $\omega = u^k \nabla_k \beta$.

The last two equations imply that

$$\beta(\nabla_k u_j - \nabla_j u_k) = 0.$$

Comparing (3.2) and (3.6), we see that

$$\beta \nabla_k u_j = 0.$$

We will denote M_1 the subset of the hypersurface M defined by $\{P \in M\} \mid \beta(P) \neq 0\}$. Then we have from (3.7)

$$(3.8) \qquad \nabla_i u_i = 0$$

on M_1 .

If we differentiate both sides of the equation $f_j^{i}u_i=0$, then

$$(3.9) \qquad (\nabla_k f_i^{i})u_i = 0$$

on M_1 by virtue of (3.8).

Transvecting (1.11) with u_t and taking account of (3.3) and (3.9), we have

$$(3.10) H_{ii} = \alpha u_i u_i,$$

which implies

(3.11)
$$R_{kjih} = k(g_{kh}g_{ji} - g_{ki}g_{jh})$$

on M_1 .

From (3.4), (3.5), (3.8) and (3.10), we obtain $\nabla_i \nabla_k H_{ii} = \omega u_i u_k u_i u_i$

on M_1 .

By the Ricci identity and (3.10), we have

$$\alpha(R_{lkj}^{t}u_{t}u_{i}+R_{kli}^{t}u_{j}u_{t})=0$$

on M_1 . Transvecting the last equation with u^i , we find

$$\alpha R_{lki}^{t} u_{t} = 0$$
,

or, using (3.11)

(3.12)
$$\alpha k(g_{kj}u_l - g_{lj}u_k) = 0$$

on M_1 . Furthermore transvecting (3.12) with $g^{kj}u^l$, we have $4\alpha k=0$, from which $\alpha=0$ on M_1 . Therefore from (3.4) we have $\beta=0$ on M_1 . It contradicts the fact that $\beta\neq 0$ on M_1 . Thus M_1 is an empty set, and consequently we see from (3.4) that α is a constant on the hypersurface M. This completes the proof of Lemma 3.1

THEOREM 3.2. In a hypersurface M of a K-space with constant curvature, if the structure tensor f_j^i and the second fundamental tensor H_j^i are commutative, then the hypersurface M is totally umbilical.

PROOF. Differentiating (3.1) covariantly, we find

(3.13)
$$(\nabla_k H_{it}) f_i^{t} + H_{it} \nabla_k f_i^{t} + (\nabla_k H_{it}) f_i^{t} + H_{it} \nabla_k f_i^{t} = 0.$$

Adding (3.13) to the equation which obtained thus by interchanging of the indices j and k in (3.13), we find

$$2(\nabla_{j}H_{kt})f_{i}^{t} + H_{jt}\nabla_{k}f_{i}^{t} + H_{kt}\nabla_{j}f_{i}^{t} + (\nabla_{k}H_{it})f_{j}^{t} + (\nabla_{j}H_{it})f_{k}^{t}$$
$$-2\alpha u_{i}H_{kj} + u_{k}H_{it}H_{j}^{t} + u_{j}H_{it}H_{k}^{t} = 0$$

by virtue of (1.11) (1.15) and (3.3).

Transvecting this equation with g^{hi} , we have

(3.14)
$$(H_{ki}H^{ki} - \alpha H_k^{k})u_j + (\nabla_t H_k^{k})f_j^{t} = 0$$

because of (1.11), (1.15) and (3.3).

Also transvecting (3.14) with u^{j} , we obtain

$$(3.15) H_{ki}H^{ki} = \alpha H_t^{ki}.$$

The substitution of (3.15) into (3.14) gives

$$(\nabla_t H_k^k) f_i^t = 0.$$

Transvecting this equation with $f_i^{\ j}$ and using (1.7), we find

(3.16)
$$\nabla_{i}H_{k}^{k} - (\nabla_{t}H_{k}^{k})u_{i}u^{t} = 0.$$

On the other hand, if we differentiate (3.3) covariantly, then

$$(\nabla_k H_{ji})u^i + H_{ji}\nabla_k u^i = \alpha \nabla_k u_j.$$

Transvecting this equation with g^{kj} , we obtain

$$(3.17) u^i(\nabla_i H_t^t) = 0$$

by virtue of (1.15) and (3.2).

Comparing (3.16) and (3.17), we see that

$$\nabla_j H_k^{k} = 0$$
,

which implies that $H_k^{\ k}$ is a constant.

Now putting λ_k the principal curvature of H_j^i distinct to α , we easily see from (3.1) and (3.3) that (H_i^i) has the form

$$(3.18) \qquad (H_j^{i}) = \begin{bmatrix} \alpha & & & & \\ & \lambda_1 & & 0 \\ & & \lambda_1 & & \\ & 0 & & \lambda_2 & \\ & & & & \lambda_2 & \end{bmatrix}$$

for suitable orthonormal frame at each point of M. Thereby we have

(3.19)
$$H_{t}^{t} = \alpha + 2\lambda_{1} + 2\lambda_{2},$$

from which

(3.20)
$$\lambda_1 + \lambda_2 = c; \text{ constant}$$

because $H_t^{\ t}$ and α are constants.

From (3.15) and (3.18), we find

(3.21)
$$\lambda_1^2 + \lambda_2^2 = \alpha(\lambda_1 + \lambda_2),$$

which is a non-negative constant. Since

$$(\lambda_1 + \lambda_2)^2 - (\lambda_1^2 + \lambda_2^2) = 2\lambda_1\lambda_2$$

we see

(3.22)
$$\lambda_1 \lambda_2 = \text{constant.}$$

The substitution of (3.20) into (3.22) gives

$$c\lambda_1 - \lambda_1^2 = \text{constant.}$$

Differentiating this equation covariantly, we get

$$\nabla_i \lambda_1(c-2\lambda_1) = 0,$$

which implies that λ_1 is a constant, therefore λ_2 is a also constant because of (3.20).

Now we assume that $\alpha < \lambda_1 < \lambda_2$. Then

$$(3.23) 2\alpha - \lambda_1 - \lambda_2 < \alpha - \lambda_2 < \alpha - \lambda_1 < 0.$$

Using Cartan's lemma with respect to the hypersurface with constant principal curvature of a space of constant curvature (cf. [1]),

$$\frac{k+\alpha\lambda_1}{\alpha-\lambda_1} + \frac{k+\alpha\lambda_2}{\alpha-\lambda_2} = 0,$$

where k is a positive constant.

The equation (3.24) is rewritten as

(3.25)
$$k+\alpha\lambda_1 = -\frac{\alpha-\lambda_1}{\alpha-\lambda_2}(k+\alpha\lambda_2),$$

from which

$$(k+\alpha\lambda_1)(k+\alpha\lambda_2)<0$$

by virtue of (3.23). Thus either

$$(3.26) k+\alpha\lambda_1 < 0 \text{ or } k+\alpha\lambda_2 < 0,$$

which implies

(3.27)
$$\alpha \lambda_1 < -k < 0 \text{ or } \alpha \lambda_2 < -k < 0.$$

On the other hand, the equation (3.24) can be written as

$$\alpha k(2\alpha-\lambda_1-\lambda_2)+\alpha^2(\lambda_1-\lambda_2)^2=0,$$

from which

66 Hong-Suh Park
$$\alpha(2\alpha - \lambda_1 - \lambda_2) = 0, \quad \alpha^2(\lambda_1 - \lambda_2)^2 = 0$$

because of (3.23), (3.27) and $\alpha < \lambda_1 < \lambda_2$.

Therefore, from (3.28) we have $\alpha = 0$, which implies k < 0 from (3.26). It contradicts the fact that the positive constancy of k.

Hence $\lambda_1 = \lambda_2 = \alpha$ on the hypersurface M, therefore we find $H_{ji} = \alpha g_{ji}$. It implies that the hypersurface M is totally umbilical.

Yeungnam University.

REFERENCES

- [1] E.Cartan, Familles de surfaces isoparamétrques dans les espaces à courbure constante, Oeuvres completes, (1938).
- [2] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, II. Interscience publishers, (1963).
- [3] M.Okumura, Certain almost contact hypersurfaces in Kaehlerian manifolds of constant holomorphic sectional curvature, Tôhoku Math. J., 16(1964), 270-284.
- [4] S. Tachibana, On infinitesimal conformal and projective trasformations of compact Kspace, Tôhoku Math. J., 13(1961), 386-392.
- [5] K. Takamatsu, Some properties of 6-dimensional K-spaces, Kōdai Math. Sem. Rep., 23(1971), 215—232.
- [6] K. Takamatsu and H.S. Park, On certain hypersurfaces of a 6-dimensional K-space. Memo. Fac. Tech. Kanazawa Univ., 15(1963), 401-408.
- [7] Y. Tashiro, On contact structure of hypersurfaces in complex manifolds I, Tôhoku Math. J., 15(1963), 62-78.