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O. Introduction 

An almost Hermitian manifold is caIled a K-space if the associated form of an 

almost Hermitian structure tensor is a Killing 2-form. The orientable differentiable 

hypersurface in an almost Hermitian manifold admits an almost contact structure (7] μ 

The purpose of the present paper is to study the hypersurfaces of a K-space 
with constant curvature. In section 1, some preliminaries on the hypersurface of a 

K-space is given. In section 2, it is shown that, if the induced structure tensor 

and the second fundamental tensor are anti-commutative, then the hypersurface 

is totaIly geodesic. Section 3 is devoted to the study of the case that the induced 

structure tensor and the second fundamental tensor are commutative. 

1. PreIiminaries 

Let m be an a1most Hermitian manifo1d of dimension %(> 2) with Hermitian 

structure (F강， Gß，α) ， i. e. , with a complex structure tensor F / and a positive 

definite Riemannian metric tensor G ß，α satisfying 

F XF a=-f, G F AF μ=G 
β λ ß' V"Å..μ β 

X 
Then, putting F ßa=F/GÅ.a we have F ßa= -Faß" 

If an a1most Hermitian manifold m satisfies 

(1. 1) PβFaT +VaF‘βr= o, 
where Vβ denotes the operator of covariant differentiation with respect to Christoffel 

symbols {싫 formed with Gßa, then the manifold is caIled a K-space, an almost 

Tachibanα space or a nearly Kaehlerian manzfold. 

Let M be an orientable hypersurface of a K-space Ñ/, then M is represented 
parametricaIly by the equation2l 

Å. TrÅ. X"= X^(x") , 
• 

1) Number in brackets refer to the references at the end of the paper. 
2) lndices i. j. … run over 1, 2, ---, χ-1 and a. ß • ... run over 1. 2. …• n. 

‘ 
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À. l f__h, ____ 1___1 _____.-1!__-'-__ _.1: ~ where {x^} , {X"} are local coordinates of M and M respectively. 
X A j X 

If we put B/'=â션 , (깐= â/âxJ
) , then B/ are linearly independent tangent vec-

tors at each point of M. The induced Riemannian metric gji in M is given by 

gjz = GgaBjβB 싼· 
Choosing 1!nit normal vector 녕 to the hypersurface M in such a way that d 

and Bj À form a frame of positive orientation of M , then we have 

(1. 2) GßaB/Ca=O, C ßαCßcα=1 

B XB i=δ?， BαB i=δα-c ，.，ca 'j .LJ;{ -Vj' .LJ iβ β β 

where Bi β= GRxBjAgji, Ca= GλμCμ. 

Th뾰1밍et얀l'a때ns엎for야orm 
μ A μ a 

and CÀ
• That is 

U T"'t. À r h T'to /1.. ,.,U 
(1.3) F:-B/，=져 Bh"'+UPμ 

tL ~À h 
(1. 4) F:-C= -u"Bh 

where zth=ghi%, from which 

(1.5) 감=B\FμλBjμ， 

(1.6) x.=C1F AB.μ=B.μF”1CX. J ^fJ. J J μA 

It is easily seen that the aggregate (져 
Z 
, 상， χj' gji) defines an almost contact 

metric structure in a hypersurface of E , i. e. , the fo1Iowing re1ations are Vaud 

μe%=1， f.tfz=-δ.Z+x 상， j '1 ~ j '''j 
(1 .7) 

져 Zχ
J =0, 져 2%i=0， 

and there exists a positive definite Riemannian metric g치 such that 

g>·tfsIf•
z 

=gst - 깐깐· 

If we put !ji=gl펴 
t, we have J상= -칭· 

N ow denoting by the operator of covariant differentiation with respect to 
h 1 Christoffel symbols V d formed with gji’ 

we see that the equations of Gauss are 

2 λ β rOì λ ( h 1 (1. 8) "\l;B/'=â;Bt+B;"B; μ ~~-Bι L }=H.C , J-Z '-J -Z 1β r J - k If iJ 

。
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where Hji is the second fundamental tensor of the hypersurface, and the 

equations of Weingarten are 

(1.9) À ~ ~À β r( À 1 
VjC =킹C +BJ C이βrj=-HlZB깐， 

where Hj z=Hllgrz. 

Differentiating (1. 3) covariantly along M and taking account of (1.8) and 
(1. 9) , we have 

(1.10) (\1μFλlJ)BjμBt2-HjzμtBtu=(인간 t)B1 
lJ +지 tHjtCU+(Vj%z〕CU-%H1 tBI u, 

similarly, operating 와 to Fμ
lJ 

B; and adding the equation thus obtained with 

(1.10) , then we get 

(\1μF/ +\1'J..Fμ lJ)욕· μBzx= (Vj져 f+\1씬 t+2μtHJz -%Hi 
t 

-%iHj t)Btu 

+ (\1jz반Vz%+간 'Hjt +져 
t 
Hit)C lJ. 

Since the left hand side of the equation above is vanish by (1. 1) and since B j 
À, 

d are 1inear1y independent, the following are consistent: 

(1.11) Vjftt+인져 t=-2μtHjz+%Hzt+XzHjt， 

(1. 12) 인깐+F%= -f2 tHjt -지 tHzt· 

We consider an orientable hypersurface M of a K-space with constant curvature. 
In this case, the K-space h is restricted to that of 6-dimension (cf. [4] ). 

The Riemannian curvature tensor K of M takes the form 

(1. 13) Krßαa=k(GrλGβa-GraGβÀ)' 
k being a positive constant. 

Substituting (1. 13) into the Gauss and Codazzi equation: 

where R kjih is a Riemannian curvature tensor in the hypersurface M , we have 

(1. 14) 

(1.15) 

Rkjih=k(gkhgji-gμgjh)+HkhHji-HjhHki' 

\1 kHji- \1jHki= O. 

2. Case of 간 tHt2 =fz tHtj 

We assume that two tensors f: 
2 and H: 

2 
are anti-commutative, 

J ---- -- J 
1. e. 
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(2. 1) 져 tHti -f2 tHtj =o. 

Transvecting (2. 1) with I k J. we obtain 

Hμ+%%tHtt-지 tHtjf*1 =o, 

and aIso transvecting this equation with uZ
• 

(2.2) H1-%2=αι. 
fZZ <<# 

where α is a scalar field. 

LEMMA 2.1. In a hypersurlace M 01 a K-space with constant curvature. t'f the 

structure tensor 1" Z and the second j.κndaηzental tensor H" Z are anti-commμtatiν'e. 
j 

then a is constant. 

PROOF. Differentiating (2.2) covariantly along M , we have 

(VkHjt)μt + HjtVku
t 
= (Vk'α)깜+αVk깜， 

from which, taking the skew-symmetric parts with respect to the indices k and 
j , we have 

(2.3) HjtVKZet-HktFjZtt=(VKα)χj-(인α)uk+α(Vk깜-v1깔) 

by virtue of (1.15). 

On the other hand. 

(2.4) 

we have from (1. 12) and (2. 1) 

Vkuj+Vj깔= -2fk tHit-

Transvecting (2.3) with u~ and taking account of (2.4) and llnity of 깔. we k 

have 
(2.5) Vjα=ßuj， 

where β= zfvkα. Therefore (2.3) becomes 

(2.6) HjtV따 -HktVjXt =α('11씹 -Vjuk). 

Differentiating (2.5) covariantly, we have 

VkVjα= (Vkß)씬+βVkuj' 

from which. taking the skew-symmetric parts with respect , to the indices k and 

j. we have 

(2.7) (Vkβ)χj- (?jβ)μk+β(Vkχj-VPk) =0, 

because Vjα is a gradient vector. 

k 
Transvecting (2. 7) with μ and taking account of (2.4) and unity of u~. we get. 
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(2.8) VIβ=ω%j’ 

where Qj=zfpkβ• Therefore, by the substitution of (2.8) into (2.6), we obtain 

(2.9) ß(VkUj-VjUk) =0. 

Comparing (2.4) and (2.9) , we have 

(2.10) ßVkμ1·= -341Hit-

Substituting (2.9) and (2.10) into (2.6) and taking account of (2. 1), we find 

βHjtfk sHs 1=0. 

Transvecting the equation above with f/ , we have 

ß(폭tHi t -α2%j깐)=0 

by virtue of (1 .7) and (2.2), which imp1ies 

(2.11) β(Hjt -αUjU1) (H11 -αμ1μt〕 =o.

Now denoting by M 1 the subset of the hypersurface M defined by 

{PεMIß(P) :;6 0}， we obtain from (2.11) 

(2.12) 

from which 
(2.13) 

on M 1• 

I1 - =αμ.μ.'. -- JZ ----r-z’ 

R kjih =kCfhkgji-gkigjh) 

The substitution of (2. 12) into (2. 4) gives 

Vk씬+Vjμk=O， 

or, comparing this equation with (2.9) , we have 

(2. 14) VkUj=O 

on M r 

Differentiating (2. 12) covariantly, we have from (2.5) and (2.14) 

VkHji= ßUkUjui 

on M 1• Furthermore differentiating the equation above covariantly, we have 

V1VkHji=ωU1UkUjUi 

on M 1 because of (2. 8) and (2. 14). 

By the Ricci identity and (2. 12), we get 

a(Rlkj ttttZ%+ Rkli t%·Wt] = Q 

• 
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on j1l.! t. Transvecting the last equation with 상 and using (2.13) , we obtain 

(2.15) k(gkP， -g'j껄)=0 

ki 1 
on Mt. Furthermore transvecting (2.15) with g 강 , we have 

4αk=O， 

from which α=0 on M 1 because k>O. Therefore, from (2.5) we have 

β=0 on M 1• It contradicts the fact ß:;I=O on M 1 • . Thus M 1 is an empty set, and 

consequently we see from (2.5) that α is a constant on the hypersurface M. This 

completes the proof of -Lemma 2. 1. 

Let ,1, be a principal curvature of H; 1 and X' the corresponding eigenvector to ,1" 

1. e •• 

HI ZXj=AXa. 

Then we see from (2. 1) 

Hf 1 (지 'XJ
) = -,1,1, 'Xt

• 

Thus, using (2.2), (H; ') has the foIlowing form 
j 

-α -
,1,1 0 

(2.16) (Hjt)= -λ l 

0 À.2 

-,1,2 

for suitable orthonormal frame at each point M , thereby we have 

(2.17) Ht t=α. 

Differentiating (2. 1) covariantly, we have 

(Vk져 t)Htt+fj tpkHμ-(맑지 t)Hjt -간 tVKHjt=o. 

• 

If we add this equation to the equation obtained by interchanging the indices k 

and j in this 

-2α안Hkj+ukHj tHit +χjfHk tHtt+J; tFKHZt+.fk tvlH
“ 

-(Fkj; t)Hjt-2￡ tVIHkt=o 

by virtue of (1. 11), (1. 15) and (2.2). 

Transvecting this equation above with gki상 and taking account of symmetry 
of Hji and skew-symmetry Of !ji with respect to the indices, we find 
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(2. 18) 

because of (1. 7) and 

On the other hand. 

- α2+HktHkt - α(밀ll)μ1=0 

(2.2). 

(1. 11) leads to 

'Vkll = -χtHk k+α%t. 

If substitute the equation above into (2. 18). then 

(2. 19) HktHkt= 2a2-αHt t. 

Comparing (2.17) and (2.19). we have 

HktHkt=α2. 

Hence we get from this equation ancl (2. 16) 
2 . _,2 

α +2À~+2À‘ =a. 1 I 6001''''2 

and consequent1y 신=À2=0. Thus (2.16) has the form 

α -

(폭 Z)=j 
0 0 

0 
0 0 

0 

for suitable orthonormal frame at each point of M. 

Now we assume that α~O. 

61 

Using Cartan’s lemma with respect to the hypersurface with constant principal 

curvature of a space of constant curvature (cf. [lJ). 

5 k+α0 =0 - , , 
α-0 v. 

where k is a constant curvature of K-space. therefore k=O. It contradicts to k>O. 

Hence α=0. i. e.. H퍼=0. Thus we have 

THEOREM 2.2 In a hy.ψersμrface M of a K-space wz"th constant cμrvatμre. zf tM 

strαctμ?’e tensor 지 ‘ and the second fundamental tensor H: Z are antz'-commμtaHve. 
l 

then hypersurface M z's totally geodesz'c. 

3. case of fl fHtt= -fa tH 

In this section we assume that two tensors fj Z and H/ are commutatlve. 1. e ... 

(3. 1) fy IH//+지 tHfj=o. 
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(3.2) 
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the vector field μJ is a Killing vector field, 

Vkχj+Fjμ，， =0. 

Transvecting (3. 1) with f k 
J u' , we haVé' 

(3.3) HifZtt =αgl’ 

1. e. , 

LEMMA. 3. 1. In a hyþersurface M 01 a K-sþace μ，ith constant cμrνatμre. if the 

structμre tensor f i' and the second fundamental tensor H j 
t 

are commutative, then α 

28 a C01Zstant , 

PROOF. Differentiating (3.3) covariantly a]ong M and taking the skew-sym­

metric parts of the equation obtainecì thus, we have 

HltPk%r-HhrF1ι1=(''1"α)uj-(Vp)깜+a(Vkχj-Vj%k). 
k Transvecting this equation with μ and taking account of (3.2), we find 

(3.4) Flα=β%i’ 

where a=z/Vtα. Differentìating (3.4) covariantly and taking the skew-symmetric 

parts of the equation obtained thus, we get 

(Vkβ)χj - (Fjβ)Uk+β(VkUj-VPk) =0. 

Transvecting the equation above with 삼， we obtain 

(3.5) 까β=ω%， 

where ω= u"Vkß. 
The last two equations imply that 
(3. 6)ß(Vkuj - Vjuk)=O. 

Comparing (3.2) and (3.6), we see that 
(3. 7) βVk깜=0. 

We will denote M 1 the subset of the hypersurface M defined by {PεM} 떠(P) =rf O} • 

Then we have from (3.7) 

(3.8) 까%z=o 

。n M 1• 

If we differentiate both sides of the equation 져 
z

깐 =0, then 

(3.9) (Vk져 t)깐=0 
"Ûn M1 by virtue of (3.8). 
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Transvecting (1. 11) with u, and taking account of (3.3) and (3.9), we have 

(3.10) 

which implies 

(3. 11) 

on M1• 

n. .. =αU μ ，. JZ ----J ’ 

R kjih =k(gkhgji-g /dgjll) 

From (3.4), (3.5), (3.8) and (3.10) , we obtain 

'ï1/'ï1 kHji= ωμIUkUj깐 

()n M r 

By the Ricci identity and (3.10) , we have 

α(R ; tμ，μ +R tx.χ )=0 /ki -T"i ' --kli --j 

on M 1• Transvecting the last equation with 상， we find 

or, using (3. 11) 

(3.12) 

αR tx =α 
Ikj ""' 

αk(gkjμl-gμiUk)=O 

()n M 1" Furthermore transvecting (3. 12) with lj상， we have 4 ak=O, from which 

α=0 on M 1• Therefoer from (3.4) we have β=0 on M 1• It contradicts the fact 

that β~O on 1111, Thus M] is an empty set, and consequently we see from (3.4) 

that α is a constilnt on the hypersurface 111. This completes the proof of 

Lemma 3.1 

THEOREM 3.2. hz a hypersurface 111 of a K-space with constant cμrvature， if the 

strμctμre tensOí f; i and tlze second fundamental tønsor H; i are commutatz"ve, then 
l 

the hypersur fiαce λf is totαlly umbilical. 

PROOF. 

(3. 13) 

Differentiating (3. 1) covariantly, we find 

('ï1 kHj，)지 t十HjSk지 
t十 ('ï1kHi) 져 t+HgtVkj; t=o. 

Adding (3.13) to the equation which obtained thus by interchanging of the 

indices j and k in (3.13), we find 

2(인Hkt)fz t+HjtVkfz t+Hkt?jft t+(와Hit)져 t+(VJHzt)4t 

-2αμ H ， .+ χ H.H t+μ.H·H t=0 kj I - (4r k.l..L it .l..L j 'VC-f .L.L it .l...L k 

by virtue of (1. 11) (1. 15) and (3.3). 

Transvecting this equation with li’ we have 
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(3.14) (HμHk~_ αHk k)%j + (VtHk k)J; t=o 

because of (1.11), (1.15) and (3.3). 

AIso transvecting (3. 14) with 상， we obtain 

(3.15) HkiHhi=αHt · 

The substitution of (3.15) into (3.14) gives 

(VtH감)져 t=o. 

Transvecting this equation with 긴 J and using (1. 7) , we find 

(3. 16) FzHk k - (VtH야)깐%t=o. 

On the other hand, if we differentiate (3.3) covariantly, then 

(VKHjt)χg +HjtFKXz=αVkUj• 

Transvecting this equation with /j , we obtain 

(3.17) 상(VzHt t) = o 

by virtue of (1. 15) and (3.2). 

Comparing (3.16) and (3.17), we see that 

까H삼=0， 

which implies that H감 is a constant. 

Now putting 값 the principal curvature of Hj 1 distinct to α， we easily see from 

(3. 1) and (3_ 3) that (Hj ~) has the form 

- α -
,11 0 

(3. 18) (Hj z)= ,11 

0 ,12 

,12 _ 

for suitable orthonormal frame at each point of M. Thereby we have 

(3. 19) Ht t=α+2，11+ 2，12' 

from which 

(3.20) À1+À2=C; constant 

because Ht t and α are constants. 

’ 
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From (3. 15) and (3. 18), we find 

(3.21) 져+A;=α(A1 +A2) , 

which is a non-negative constant. Since 
2 /~2 ， ~2 

(신+A2)W-Oî+λ;)=2A년2’ 

1 

we see 

(3.22) A1A2= constant. 

The substitution of (3.20) into (3.22) gives 

cX - 22 = constant-1 "1 

Differentiating this equation covariantly, we get 

V/1(c-2A1) =0, 

which implies that λ1 is a constant, therefore ~ is a aIso constant because of 

(3.20). 

Now we assume that α<진 <A2• Then 

(3.23) 2α-신 -A2<a-A2<α-λ1 <0. 

Using Cartan’s Iemma with respect to the hypersurface with constant principal 
curvature of a space of constant curvature (cf. [1]), 

k+αA， k+αA" 
(3.24) 파괴+F쳐=0. 

where k is a positive constant. 
The equation (3. 24) is rewritten as 

(3.25) k+aA1 = -쭈쑤(k+aA2). 
u -"'2 

from which 

by virtue of (3.23). 

(3.26) 
n” <

n
ι
 

‘
값
 

0 

+ 

< 

k 

젠
 

야
 

a 

0 

+ 

< 

땐
 앙
 ‘
뼈
 

a 

L
κ
 
L
κ
 

+ 

e 
얘
、
 펴
 

짜
씨
 which impIies 

(3.27) α신 <-k<O or αA2< -k<O. 

On the other hand. the equation (3.24) can be written as 

αk(2a-A1 -A2)+α2(Al-X2)2=o， 

from which 
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(3.28) α(2α-À1 -À2)=0， 

(3.27) and α <지 <À2• 

α2(21-A2)2=0 

because of (3.23), 

1lherefore, frorn (3.28) vve have α=0， vvhich irnplies k<O frorn (3.26). It con­

tradicts the fact that the positive constancy of k. 

Hence À1 =À2=α on the hypersurface M , therefore vve find Hji=αgH It irnplies 

that the hypersurface M is totally urnbilicaI. 

Yeungnarn University. 
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