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ON RULED REAL HYPERSURFACES
IN A COMPLEX SPACE FORM II

Seung-Kook Lee and Yong-Soo Pyo

1. Introduction
A complex n-dimensional Kahler manifold of constant holomorphic 

sectional curvature c is called a complex space form^ which is denoted by 
Mn(c). A complete and simply connected complex space form consists 
of a complex projective space PnCy a complex Euclidean space Cn or 
a complex hyperbolic space /TnC, according as c > 0, c = 0 or c < 0.

The classification and the structure of the homogeneous real hyper­
surfaces in Afn(c) are investigated by many authors. See Takagi [9], 
Berndt [2] and etc.

As an example of special real hypersurfaces of PnC, we can give a 
ruled real hypersurface. Let 7 : Z —> Mn(c) be any regular curve. For 
any i(G I), let be a totally geodesic complex hypersurface
through the point 7(t) of Mn(c) which is orthogonal to a holomorphic 
plane spanned by /(t) and Set M = {x E A他(c) : t €
/}. Then the construction of M asserts that Af is a real hypersurface 
of Mn(c), which is called a ruled real hypersurface. In [4,5], Kimura 
obtained some properties about a ruled real hypersurface M of PnC,

Let M be a real hypersurface of Afn(c), c 尹 0. Then M has an. 
almost contact metric structure (饱 induced from the Kahler 
structure of Afn(c). Let 7})be a distribution defined by the subspace 
7o(z) = {u 6 TXM : g(%g(z)) = 0) of 나此 tangent space TXM of M 
at any point x, which is called the holomorphic dzstnbution. And the 
second fundamental form is said to be rj-parallel if the shape operator 
A satisfies ^(VxA(Y), Z) = 0 for any vector fields XyY and Z in To, 
whe호e denotes the covariant derivative of the shape operator A
with respect to X. Then Kimura and Maeda [6] and Ahn, Lee and Suh 
[1] proved the following
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THEOREM A. Let M be a real hypersurface of PnC^n M 3. Then 
the second fundamental form is 7]-parallel and the holomorphic distri­
bution To is integrable if and only if M is locally a ruled real hyper­
surface.

THEOREM B. Let M be a real hypersurface of Mn(c),c 0,n
3. Assume that f is not principal. Then it satisfies

(1-1) g((舞-奶)X,旳=0

for any vector fields X and Y in Tq and the second fundamental form 
is r}-parallel if and only if M is locally a ruled real hypersurface.

Now, let S be the Ricci tensor of M. Then S is said to be ^-parallel 
if g(yxS(Y), Z) = 0 for any vector fields X,Y and Z in Tq. Even 
though the second fundamental form for the 호uled real hypersurfaces 
is ??-parallel, the Ricci tensor is not necessarilly //-parallel. In fact, if we 
put = af +8。for a unit vector field U in Tq and smoothriuiictrons 
a and 0 on Af, then the covariant derivative VA of the shape operator 
A is given by (see [8])

▽xA(Y) = /(X,Y)& X,Fe 瓦

where we put

",F) = /32{g(X, U)g(Y,畛 + g(X,侦J、)g(Y, 17))一河X, Y).

This means that A is 77-parallel. Furthermore, the covariant derivative 
▽S of the Ricci tensor S satisfies

(L2) g(VxS(F), Z) = -0{g(Y, U)f(X, Z) + g(Z, U、由、X, Y)}

for any vector fields X, Y and Z in To-
The purpose of this article is to prove the following characterization 

of ruled real hypersurfaces in teams of the Ricci tensor.

THEOREM. Let M be a real hypersurface of Afn(c),c 0,n 3.
If it satisfies (LI) and (1.2) and if the structure vector field f is not 
principal^ then M is locally a ruled real hypersurfa ce.
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2. Preliminaries
First of all, we recall fundamental properties of real hypersurfaces 

of a complex space form. Let M be a real hypersurface of a complex 
n-dimensional complex space form (Mn(c),g) of constant holomorphic 
sectional curvature c, and let C be a unit normal vector field on a 
neighborhood in M. We denote by J the almost complex structure of 
Mn(c). For a local vector field X on the neighborhood in M, the images 
of X and C under the linear t ransformation J can be represented as

JX = ©X + 77(X)C, JC = 一&

where § defines a skew-symmetric transformation on the tangent bun­
dle TM of while r; and f denote a 1-form and a vector field on the 
neighborhood in M, respectively. Then it is seen that g(&X) = t/(X), 
where g denotes the Riemannian metric tensor on M induced from 
the metric ten^r g on Afn(c). The set of tensors ⑷"Lg) is called 
an 이most contact metric structure on M. They satisfy the following 
properties :

©2=-/ + 77(x)& 妩=0, 依)=1,

where I denotes the identity transformation. Furthermore, the covari­
ant derivatives of the structure tensors are given by

(2.1) VAe = §AX、Vx<^(y)= 7j(Y)AX-g(AX,Y^

for any vector fields X and Y on M, where V is the Riemannian con­
nection on M and A denotes the shape operator of M in the direction 
of C.

Since the ambient space is of constant holomorphic sectional curva­
ture c, the equations of Gauss and Codazzi are respectively obtained:

R(X, Y)Z = ^{g(Y, Z)X - g(X, Z)Y

(2-2) + 心Y, Z泌X - g(@X, Z泌Y - 2g" Y^Z}
+g(AY, Z)AX — g(AX, Z)AY,

(2.3) VXA(V) - VyA(X) = - ^(Y^X 一 2g(0X, Y)0, 
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where R denotes the Riemannian curvature tensor of M and VxA 
denotes the covariant derivative of the shape operator A with respect 
to X.

Next, we assume that it satisfies

(2.4) g((A©T>A)XY) = 0

for any vector fields X 히id Y in TQ. Let 4g = 戒 + where Z7 is a 
unit vector field in 7q, and a and 0 are smooth functions on M. Then 
we have

g(VxA(Y),妃)+ g(VxA(Z),猝)

(2.5) = p{g(Y, U)g(AX, Z) + g(Z, U)g(AX, F)
-9(匕 <bU)g(&AX, Z) 一 g(Z,柯)g@AX, Y)}

for 히iy vector fields X〉Y and Z in Tq. Furthermore, (2.4) implies

(2.6) 四一奶)X =—伽(瓦机J、大

for any vector field X in To. Making use of this property, we have

(2.7) g^xA(Y\ Z)=眸 g{AX. Y)ff(Z. (/>U)

fo호 any vector fields X、Y and Z in To, where & denotes the cyclic sum 
with respect to X)Y and Z, which is proved by Ahn, Lee and Suh [1].

Now, we here calculate the covariant derivative of the Ricci tensor 
S. Since the Ricci tensor S is given by

S = j((2n + 1)/ — 3t? ® + /zA — A2~x

fo호 the identity transformation I and the trace h of A, we get

▽xS(Y) = ~^g^AX,Y^ + dh(X)AY

+ hVxA(Y) 一 VxA(AK) 一 AVXA(Y),

from which it turns out to be

(2 8) g(、PxS(Y)，Z) =dh(X)ff(AY, Z) + hg^xA(Y), Z)
1 ' - XVxA(F), AZ) - ff(VxA(Z), AY)
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for any vector fields X, Y and Z in Tq. Accordingly, we have 
"▽xS(Y), ©Z) + g(&S(Z), ©Y)

=h{g^xA(Y\ 修)+ g(VxA(Z),仃)} 
少 一 5(VxA(K), A0Z) - g(E7x40Y), AZ)

-XVxA(Z), &甲)-g(^x4(SZ), AY)
£ot any vector fields X> Y and Z in To, where we have used the as­
sumption (2.4). Since A(j>Z = </)AZ — &g(Z部U)& for any vector field 
Z in 7})by (2.6), we have
"▽xA(Y),心 Z) + g&xA(g)MZ)

^(VxA(y), ©AZ) + '(▽x4(Q4Z)°), ©Y)
+ 0{g(Z, U)g^xA^Y), <f) - g(Z, <j>U}g(yxA(Y\ f)} 

for any vector fields X)Y and Z in lo, where we denote by (AZ)0 
the In-ccMuponent of the vector S^ld AZ. 효y usingabove 
equation is reformed as
"▽x A(旳,4猝)+ 戒"4(齿),AZ)

=/3{g(K U)g(AX, AZ) + g(4Z, U)g(AX, Y)
-g(Y,村)ggj AZ) - g(AZ.何)g04X, K)
一俨g(X, U)g(匕 U)g(Z, U) + g(Z, U)g(yxA^Y\&

From (2.5), (2.9) and the above equation, we obtain
g(VxS(Y),猝)+ g(%S(Z),冒)

=雄{g(匕 U)g(AX, Z) + g(Z, U)g(AX, Y)
-9(匕 4>U、)g(0AX, Z) — g(Z,臥J、)g@AX, V)}

一g(匕 U)g(4X, AZ) - g(AZ, U)g(AX, Y)
+9(匕臥厂MAX, AZ) + g(AZ,柯、)g(@AX, F)

() ~9(Z, U)g(AX, AY) - g(AY, U)g(AX, Z)

+g(Z,心0AX, AY) + g(4匕阳)g(妞X, Z)
—g(K U)g(yxA^Z\ f) - g(Z, U)g^xA^Y), Q 
+g0, <bU、)g0xA(Z\f) + g(Z, <^t7)g(VxA(y), f) 
+202g(X,U)g(Y,U)g(Z,U)]
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for any vector fields X、Y and Z in Tq.

Next, taking account of the first equation of (2.1), we have

x Vx A(y), C) = y) - g^AX, AY)
( ) +即(X)g(KU)+ 内(▽”，,¥),

and hence, by the property of the structure tensor 如 we get also

g^xA^Yl 0 = ag(AX, K) - g(AX, AY) + 伊g〈X, U)g(Y, U) 
-d队X)g(Y、柯)+ 阮(NxU,样)

for any vector fields X and Y in Tq. By substituting the above two 
equations into (2.10) and by the straightforward calculation, this rela- 
tiQn_is_xrformed as follows ;

"▽xS(Y),秘、)+ g(VxS(Z), 0Y)
=00 - @){9(匕 U)g(AX, Z) + g(Z, U)g(AX, Y) 

—g(匕 <SU)g0AX, Z) - g(Z,仰)g0AX, Y)} 
~g(AY, U)戒AX, Z) - g(AZ, U)g(AX, Y)

('} +ff(AY, </>U)g^AX, Z) + g(AZ, <t>U)g^AX, Y)

+2必(X){g(匕 U)g(Z,奶)+ g(Z, U)g(Y, </>U)} 
—0{g(K U)g(NxU,修)+ g(Z, U)g0xU, </>Y)
一g(匕 ©U)g(NxU, Z) - g(Z,网gW F)}]

for any vector fields X, Y and Z in To.

Last, we suppose that the structure vector field g is principal with 
corresponding principal curvature a. Then it is seen in [3] and [7] that 
a is constant on M and it satisfies

(2.13)
c ]_

A(/>A == —(/> + —+ § A). 
앞 厶
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3. Proof of Theorem
In this section, we shall consider a characterization of ruled real hy­

persurfaces in terms of the Ricci tensor S. Let Af be a real hypersurface 
of Mn(c), c 尹 0,M 3. Let us first assume that the structure vector 
field g is not principal. So, we can put + gU, where 17 is a
unit vector field in the holomorphic distribution To, and a and (3 are 
smooth functions on M. By the assumption, the function 0 does not 
vanish identically on M, And we also assume the following conditions:

(1-1) g((4。一仅)X,Y) = 0,

(1.2) 5(VxS(y), Z) = -/3[g(Y, U)f(X, Z) + g(Z, U)/(X, K))

for any vector fields X, Y and Z in To, where

=伊-卜 gCX&>U)g(Y,U)} — jg(©X,Y).

Under the assumption (1.2), it follows from (2.12) that we have

00 - a){g(Y, UMAX, Z) + g(Z, U)g(AX, Y)
- g(Y,心(心,Z) - g(Z,柯)心AX、丫)} 

~g(AY, UMAX, Z) - g(4Z, U)g{AX, K)
+g(4匕妲)g(奶X, Z) + g(AZ, ©U、)g槌AX, Y) 
+2必(X){g(匕 U)g(Z,仰)+ g(Z, U)g(Y,仞)} 

‘ J 一风9(匕 U、)g(NxU,蛇)+ g(Z, U)g(VxU, *)

-9(匕和)g(NxU, Z) - g(Z,机J)g(NxU, Y)} 
+9(匕 U、)f(X,妙)+ g(Z, U)f(X,红) 

-g(Y,妙)六 X, Z) - g(Z,柯、)f(X, Y)]
=0

for any vector fields X, Y and Z in To. Putting Y = Z — U m this 
equation, we get

俨 gWxU,GU、)
(3 2)' " {s — a 一 也(4X, U) + 伊 - § g(X, 빠 
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for any vector field X in To, where 7 is the function defined by g(AUy U). 
Again, putting Y = U and Z =(j>U in (3.1), we see

(3.3) 0弗(X) = ~ a — T)g(AX, </>U) — (/羿 + *) g(X, ©U)}

for any vector field X in To，Let 7i be a distribution defined by the 
subspace Ti(x) = (u G Tq(x) : g(uy U(x)) = g(s©U(x)) = 0}. We 
consider about any vector fields X in % and F = Z in Ti in (3.1), and 
we then get

0{g(4匕 U)g(AX, F) 一 g(A匕 ©U)g0AX、Y)} = 0.

Accordingly, we have

(34) fi{g(AY. </>U)A</>Y + g(AY. U)AY} = 0, Y eTx.

Now, let Mq be the non-empty open subset of M consisting of points 
x at which 0(w)二卜 0. We here prove the following

Lemma 3.1. The distribution T\ is A-invariant on Mq.

Proof. We can put AU = + yU + 8U1 and A(f>U =飞柯 + 辨0，
whe호。?7i is a unit vector field in T조, and y, 8 and e are smooth functions 
on Mq, Let Mi be an open subset of Mq defined by = (x € Mq : 
$3) 寸二 아. Suppose that is not empty. Then we have by (3.4)

g(匕 +g(匕= 0, Y c 写

on Mi，Putting Y = Ui in this equation, AUi = 0 and hence A^Ui = 0 
by (1,1). Furthermore, we get the following equation

g(匕 U^AZ + g(Z> U^AY + g(匕心A^Z + g(Z,柯两Y = 0,

for any vector fields Y and Z in 7i< Putting Y = Ui in the above 
equation, we have AZ = 0 for any vector fi시d Z in Thus Ti is A- 
invariant on and hence Z(& U)<f>U) is also 序invariant on Af1, where 
£(&?/，孜7) is a distribution defined by the subspace Lx(^, £7, <j)U) of 
the tangent space TXM spanned by the tangent vectors and 
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©U(£) at any point x in Therefore 5 = 0 on a contradict ion. 
It completes the proof. □

Consequently, we get

芯=状+伊入

au = 轮노 m
A(MJ = y»U

on Mq. Hence we have by (3.1)

(h-a- 7){g(匕 U)g(AX, Z) + g(Z, U、)g(AX, Y)
—g(Y, <$U、)g0AX, Z) - g(Z,奶)g(仞4X, Y)}

+2烦X){g(Y, U)g(Z,柯、)+ g(Z, U)g(Y,心
(3 5) U)g(VxU, </>Z) + g(Z, U)g(yxU,(l)Y)

' -9(巴认JWNxU, Z) - g(Z,柯、)gW Y)}

+g(匕 U)f(X, ,Z) + g(Z, U、由、X,好)

-9(匕印)六X, Z) - g(Z,"中、X, Y)]
=0

for any vector fields X, Y and Z in To. Putting F = 17 and taking Z 
in Ti in (3.5), we obtain

阮(N xU、4>Z) = (h-a- [)g(厶 X, Z) - jg(X, Z).

Accordingly, we have by (3.2)

旳xU = 0 — a — 끼饱4X - + /3yg(X, <卬、世
(3.6) c4

+ {10 一 a - 了)一 j } g(x, ©U、)U + 伊g(X, U^U

for any vector H시d X in %.

Lemma 3.2. 7 — 0 on Mq.

P^oof. Let M2 be the open subset of Mq consisting of points x 
at; which 7(x)尹 0. Suppose that M2 is not empty. The discussion is 
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considered on the subset Af2. Substituting (3.3) and (3.6) into (2.11), 
we get

'(▽x，4( Y), o = —g(&姒 X, y)+ (/i-湖(仞IX, Y)
(3.7) c 9

F0X, Y) + 伊〈g(X, U)g(匕时)+ g(X,如为(匕 U)}

for any vector fields X and Y in Tq. Interchanging X and Y in the 
above equation and applying (2.3), we have

(3.8) A^AX 一(h — t)奶X = -fiyg(X,妙)& X C %,

from which together with A(/)U = ^>AU = y(f)U it follows that

(3.9) h — 2丁 = 0.

g(VxA(U), 0 =(俨 + j)点,她)，XeT0.

By the assumption. (1.2), we have

g(VxS(U),U) = -2/3 (项2 + j) g(X,阳)，XeT0.

And, by (2.8) and (3.9), we can get

9(VxS(U), U) = •泌(X) - 2^(VxA(t7), £), XeT0.

Hence we obtain by the above three equations

(3.10) dh(X) = 0, Xc%・

From (3.9) and (3.10), we get dy(X) = 0. Thus we have

▽x4(U) = d町K + /M)AX + NxU 一 AVXU, XeTq.

On the other hand, we get by (2.7)

g(yxA(U\ Y)=伽{g(X, U)g(Y,孜7) + g(X,网g(Y, U)}, 
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from which together with (3.6), (3.8) and the above equation it follows 
that

三 0 (mod f), X G Tq.

Since T\ is A-invariant, let X 6 Ti be a principal vector field corre­
sponding to the principal curvature A. By (3.8) and (3.11), we have

c
 - 4
 

Ac
 -
4
 

+20z(
\

스s

 
-

This means that 7 = 0 on M2)a contradiction. It concludes the 
proof. □

Consequently, we have

f &=顼+的

< AU =阳
{ A(f>U = 0

on Mq.
Next, we shall prove the following

Lemma 3.3. AX = 0 for any vector Held X in on Mq.

Proof. Under the property 了 = 0, we see

(33) 邸顷^顷+ ^佟④以

and

(38) A^>AX 一 h^AX = 0

for any vector field X in Tq, Let JV € Tj be a principal vector field 
corresponding to the principal curvature A. We have by (38)

A2 — hX = 0.
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So, A = 0 or A = /i. Suppose that there is a principal curvature 
A = K(尹 0).. Then we obtain by (3.6) and (38)

/3Vx>l(Z7)=(―儿2 + ha + 丿俨 + *)(f)AX、X € Ti-

Since g(Vx，4(U))Y) = 0 for any vector fields X and K in To by (2.7), 
we get

(3.12) W — ha 一 "2 —室=0.

For any fixed point x in Mo, let V be the eigenspace at point x corre­
sponding to the eigenvalue A = 0). We set dim V = 2p > 0. Then
a = (1 — 2p)h. Consequently, we have by (3.12)

2ph2 = 02 +

Hence we get by (33)

(3.13) dh{X} = 비3g(XfU)

for any vector field X in Tq. As is well known, the Ricci formula for 
the shape operator A is given by

VxVyA(Z) - VyVxA(Z) = R(X,Y)(AZ) — A(R(X,Y)Z)

for any vector fields X, Y and Z・ Let Yq be n, unit vector field in T* 
such that AYq = hYQ. Putting X =(f)U and ¥ = Z = K)in 나le Ricci 
formula, we can obtain c = 0 by (2.2), (2.7), (3.35)s (3.13) and Lemma 
3.2, a contradiction. This means that AX — 0 for ay vector field X 
inTi. □

Proof of Theorem. Suppose that the interior Int(M — Mq ) of M — 
Mq is not empty. On the subset, the function 0 is vanishes identically 
and therefore f is principal. Thus we have

(4© —农4)g = 0.

For any principal vector field X in To with principal curvature A, the 
condition (1.1) is reduced to A</)X = A(/>X + 0(X)& where 0 is a 1-form 
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on Int(M — Mq). From = a& the inner product of A(f)X and £ 
gives us to 0(X) = 0. This means that
(3.14) A, - ©A = 0
on Int{M 一 Mo). Since g is principal on Int(M — Mq\ we have by 
(2-13)

(2A - q)4©X = (： + a人)©X.

Using (3.14) and the above equation, we get
(3.15) 2人2 - 2aA - I = 0,

乙

from which it follows that all principal curvatures are non-zero constant 
on Int(M — Mq). Since we assume that the set Mq is not empty, (3.14) 
means that

g(*X,Y) = 0, X,YeT0
on Mq. So, it follows fi?om this and (3.1) that we get

AX = g“XM)W = 0g(X,l伏
for any vector field X in Tq, Hence, by Lemma 3.2 and Lemma 3.3, wc 
have
(3.16) AU = 0& AX = Q
for any vector field X in To orthogonal to U. By means of the continuity 
of principal curvatures, (3.15) and (3.16) lead a contradiction. It shows 
that Int(M — Mo) must be empty. Thus the open set Mq is a dense 
subset of M. By the continuity of principal curvatures again, we see 
that the shape operator satisfies the condition (3 16) on the whole M. 
Therefore the distribution Tq is integrable on M. Moreover the integral 
manifold of Tq can be regarded as the submanifold of codimension 2 in 
Afn(c) whose normal vect。호 fields are g and C. Since we have

gExFM) = g(VxKf) = 0
and

g(^xY,C)=g(4X,Y) = 0
for any vector fields X and K in To by (2.1) and (3.16), where V denotes 
the Riemannian connection of Mn(c), it is seen that the submanifold 
is totally geodesic in Mn(c). Since Tb is also J-invariant, its integral 
manifold is a complex manifold and hence it is a complex space form 
A/n_1(c). Thus M is locally a ruled 호eal hypersurface. □
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