ON RULED REAL HYPERSURFACES IN A COMPLEX SPACE FORM II

Seung-Kook Lee and Yong-Soo Pyo

1. Introduction

A complex n-dimensional Kähler manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_{n}(c)$. A complete and simply connected complex space form consists of a complex projective space $P_{n} \mathbb{C}$, a complex Euclidean space \mathbb{C}^{n} or a complex hyperbolic space $H_{n} \mathbb{C}$, according as $c>0, c=0$ or $c<0$.

The classification and the structure of the homogeneous real hypersurfaces in $M_{n}(c)$ are investigated by many authors. See Takagi [9], Berndt [2] and etc.

As an example of special real hypersurfaces of $P_{n} \mathbb{C}$, we can give a ruled real hypersurface. Let $\gamma: I \rightarrow M_{n}(c)$ be any regular curve. For any $t(\in I)$, let $M_{n-1}^{(t)}(c)$ be a totally geodesic complex hypersurface through the point $\gamma(t)$ of $M_{n}(c)$ which is orthogonal to a holomorphic plane spanned by $\gamma^{\prime}(t)$ and $J \gamma^{\prime}(t)$. Set $M=\left\{x \in M_{n-1}^{(t)}(c): t \in\right.$ $I\}$. Then the construction of M asserts that M is a real hypersurface of $M_{n}(c)$, which is called a ruled real hypersurface. In [4,5], Kimura obtained some properties about a ruled real hypersurface M of $P_{n} \mathbb{C}$.

Let M be a real hypersurface of $M_{n}(c), c \neq 0$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the Kähler structure of $M_{n}(c)$. Let T_{0} be a distribution defined by the subspace $T_{0}(x)=\left\{u \in T_{x} M: g(u, \xi(x))=0\right\}$ of the tangent space $T_{x} M$ of M at any point x, which is called the holomorphic distribution. And the second fundamental form is said to be η-parallel if the shape operator A satisfies $g\left(\nabla_{X} A(Y), Z\right)=0$ for any vector fields X, Y and Z in T_{0}, where ∇_{X} A denotes the covariant derivative of the shape operator A with respect to X. Then Kimura and Maeda [6] and Ahn, Lee and Suh [1] proved the following

Theorem A. Let M be a real hypersurface of $P_{n} \mathbb{C}, n \geqq 3$. Then the second fundamental form is η-parallel and the holomorphic distribution T_{0} is integrable if and only if M is locally a ruled real hypersurface.

Theorem B. Let M be a real hypersurface of $M_{n}(c), c \neq 0, n \geqq$ 3. Assume that ξ is not principal. Then it satisfies

$$
\begin{equation*}
g((A \phi-\phi A) X, Y)=0 \tag{1.1}
\end{equation*}
$$

for any vector fields X and Y in T_{0} and the second fundamental form is η-parallel if and only if M is locally a ruled real hypersurface.

Now, let S be the Ricci tensor of M. Then S is said to be η-parallel if $g\left(\nabla_{X} S(Y), Z\right)=0$ for any vector fields X, Y and Z in T_{0}. Even though the second fundamental form for the ruled real hypersurfaces is η-parallel, the Ricci tensor is not necessarilly η-parallel. In fact, if we put $A \xi=\alpha \xi+\beta \bar{U}$ for a unit vector fieid U in T_{θ} and smooth furctions α and β on M, then the covariant derivative ∇A of the shape operator A is given by (see [8])

$$
\nabla_{X} A(Y)=f(X, Y) \xi, \quad X, Y \in T_{0}
$$

where we put

$$
f(X, Y)=\beta^{2}\{g(X, U) g(Y, \phi U)+g(X, \phi U) g(Y, U)\}-\frac{c}{4} g(\phi X, Y) .
$$

This means that A is η-parallel. Furthermore, the covariant derivative ∇S of the Ricci tensor S satisfies

$$
\begin{equation*}
g\left(\nabla_{X} S(Y), Z\right)=-\beta\{g(Y, U) f(X, Z)+g(Z, U) f(X, Y)\} \tag{1.2}
\end{equation*}
$$

for any vector fields X, Y and Z in T_{0}.
The purpose of this article is to prove the following characterization of ruled real hypersurfaces in terms of the Ricci tensor.

Theorem. Let M be a real hypersurface of $M_{n}(c), c \neq 0, n \geqq 3$. If it satisfies (1.1) and (1.2) and if the structure vector field ξ is not principal, then M is locally a ruled real hypersurface.

2. Preliminaries

First of all, we recall fundamental properties of real hypersurfaces of a complex space form. Let M be a real hypersurface of a complex n-dimensional complex space form $\left(M_{n}(c), \bar{g}\right)$ of constant holomorphic sectional curvature c, and let C be a unit normal vector field on a neighborhood in M. We denote by J the almost complex structure of $M_{n}(c)$. For a local vector field X on the neighborhood in M, the images of X and C under the linear transformation J can be represented as

$$
J X=\phi X+\eta(X) C, \quad J C=-\xi
$$

where ϕ defines a skew-symmetric transformation on the tangent bundle $T M$ of M, while η and ξ denote a 1-form and a vector field on the neighborhood in M, respectively. Then it is seen that $g(\xi, X)=\eta(X)$, where g denotes the Riemannian metric tensor on M induced from the metric tensor \bar{g} on $M_{n}(c)$. The set of tensors (ϕ, ξ, η, g) is called an almost contact metric structure on M. They satisfy the following properties:

$$
\phi^{2}=-I+\eta \otimes \xi, \quad \phi \xi=0, \quad \eta(\xi)=1
$$

where I denotes the identity transformation. Furthermore, the covariant derivatives of the structure tensors are given by

$$
\begin{equation*}
\nabla_{X} \xi=\phi A X, \quad \nabla_{X} \phi(Y)=\eta(Y) A X-g(A X, Y) \xi \tag{2.1}
\end{equation*}
$$

for any vector fields X and Y on M, where ∇ is the Riemannian connection on M and A denotes the shape operator of M in the direction of C.

Since the ambient space is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are respectively obtained:

$$
\begin{align*}
R(X, Y) Z= & \frac{c}{4}\{g(Y, Z) X-g(X, Z) Y \\
& \quad+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z\} \tag{2.2}\\
& +g(A Y, Z) A X-g(A X, Z) A Y
\end{align*}
$$

$$
\begin{equation*}
\nabla_{X} A(Y)-\nabla_{Y} A(X)=\frac{c}{4}\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \tag{2.3}
\end{equation*}
$$

where R denotes the Riemannian curvature tensor of M and $\nabla_{X} A$ denotes the covariant derivative of the shape operator A with respect to X.

Next, we assume that it satisfies

$$
\begin{equation*}
g((A \phi-\phi A) X, Y)=0 \tag{2.4}
\end{equation*}
$$

for any vector fields X and Y in T_{0}. Let $A \xi=\alpha \xi+\beta U$, where U is a unit vector field in T_{0}, and α and β are smooth functions on M. Then we have

$$
\begin{align*}
& g\left(\nabla_{X} A(Y), \phi Z\right)+g\left(\nabla_{X} A(Z), \phi Y\right) \\
& =\beta\{g(Y, U) g(A X, Z)+g(Z, U) g(A X, Y) \tag{2.5}\\
& \quad-g(Y, \phi U) g(\phi A X, Z)-g(Z, \phi U) g(\phi A X, Y)\}
\end{align*}
$$

for any vector fields X, Y and Z in T_{0}. Furthermore, (2.4) implies

$$
\begin{equation*}
(A \phi-\phi A) X=-\beta g(X, \phi U) \xi \tag{2.6}
\end{equation*}
$$

for any vector field X in T_{0}. Making use of this property, we have

$$
\begin{equation*}
g\left(\nabla_{X} A(Y), Z\right)=\beta \mathfrak{S} g(A X, Y) g(Z, \phi U) \tag{2.7}
\end{equation*}
$$

for any vector fields X, Y and Z in T_{0}, where \mathfrak{S} denotes the cyclic sum with respect to X, Y and Z, which is proved by Ahn, Lee and Suh [1].

Now, we here calculate the covariant derivative of the Ricci tensor S. Since the Ricci tensor S is given by

$$
S=\frac{c}{4}\{(2 n+1) I-3 \eta \otimes \xi\}+h A-A^{2}
$$

for the identity transformation I and the trace h of A, we get

$$
\begin{aligned}
\nabla_{X} S(Y)=- & \frac{3 c}{4} g(\phi A X, Y) \xi+d h(X) A Y \\
& +h \nabla_{X} A(Y)-\nabla_{X} A(A Y)-A \nabla_{X} A(Y)
\end{aligned}
$$

from which it turns out to be

$$
\begin{align*}
g\left(\nabla_{X} S(Y), Z\right)= & d h(X) g(A Y, Z)+h g\left(\nabla_{X} A(Y), Z\right) \tag{2.8}\\
& -g\left(\nabla_{X} A(Y), A Z\right)-g\left(\nabla_{X} A(Z), A Y\right)
\end{align*}
$$

for any vector fields X, Y and Z in T_{0}. Accordingly, we have

$$
\begin{align*}
g\left(\nabla_{X}\right. & S(Y), \phi Z)+g\left(\nabla_{X} S(Z), \phi Y\right) \\
= & h\left\{g\left(\nabla_{X} A(Y), \phi Z\right)+g\left(\nabla_{X} A(Z), \phi Y\right)\right\} \tag{2.9}\\
& -g\left(\nabla_{X} A(Y), A \phi Z\right)-g\left(\nabla_{X} A(\phi Y), A Z\right) \\
& -g\left(\nabla_{X} A(Z), A \phi Y\right)-g\left(\nabla_{X} A(\phi Z), A Y\right)
\end{align*}
$$

for any vector fields X, Y and Z in T_{0}, where we have used the assumption (2.4). Since $A \phi Z=\phi A Z-\beta g(Z, \phi U) \xi$ for any vector field Z in T_{0} by (2.6), we have

$$
\begin{aligned}
& g\left(\nabla_{X} A(Y), A \phi Z\right)+g\left(\nabla_{X} A(\phi Y), A Z\right) \\
& = \\
& \quad g\left(\nabla_{X} A(Y), \phi A Z\right)+g\left(\nabla_{X} A\left((A Z)_{0}\right), \phi Y\right) \\
& \quad+\beta\left\{g(Z, U) g\left(\nabla_{X} A(\phi Y), \xi\right)-g(Z, \phi U) g\left(\nabla_{X} A(Y), \xi\right)\right\}
\end{aligned}
$$

for any vector fields X, Y and Z in T_{0}, where we denote by $(A Z)_{0}$ the T_{0}-component of the vector field $A Z$. By using (2.5), the above equation is reformed as

$$
\begin{aligned}
g\left(\nabla_{X} A(Y),\right. & A \phi Z)+g\left(\nabla_{X} A(\phi Y), A Z\right) \\
=\beta & g(Y, U) g(A X, A Z)+g(A Z, U) g(A X, Y) \\
& -g(Y, \phi U) g(\phi A X, A Z)-g(A Z, \phi U) g(\phi A X, Y) \\
& -\beta^{2} g(X, U) g(Y, U) g(Z, U)+g(Z, U) g\left(\nabla_{X} A(\phi Y), \xi\right) \\
& \left.-g(Z, \phi U) g\left(\nabla_{X} A(Y), \xi\right)\right\}
\end{aligned}
$$

From (2.5), (2.9) and the above equation, we obtain

$$
\begin{aligned}
& g\left(\nabla_{X} S(Y), \phi Z\right)+g\left(\nabla_{X} S(Z), \phi Y\right) \\
&=\beta[h\{g(Y, U) g(A X, Z)+g(Z, U) g(A X, Y) \\
&-g(Y, \phi U) g(\phi A X, Z)-g(Z, \phi U) g(\phi A X, Y)\} \\
&-g(Y, U) g(A X, A Z)-g(A Z, U) g(A X, Y) \\
&+ g(Y, \phi U) g(\phi A X, A Z)+g(A Z, \phi U) g(\phi A X, Y) \\
&-g(Z, U) g(A X, A Y)-g(A Y, U) g(A X, Z) \\
&+ g(Z, \phi U) g(\phi A X, A Y)+g(A Y, \phi U) g(\phi A X, Z) \\
&-g(Y, U) g\left(\nabla_{X} A(\phi Z), \xi\right)-g(Z, U) g\left(\nabla_{X} A(\phi Y), \xi\right) \\
&+ g(Y, \phi U) g\left(\nabla_{X} A(Z), \xi\right)+g(Z, \phi U) g\left(\nabla_{X} A(Y), \xi\right) \\
&+\left.2 \beta^{2} g(X, U) g(Y, U) g(Z, U)\right]
\end{aligned}
$$

for any vector fields X, Y and Z in T_{0}.
Next, taking account of the first equation of (2.1), we have

$$
\begin{align*}
g\left(\nabla_{X} A(Y), \xi\right)= & \alpha g(\phi A X, Y)-g(\phi A X, A Y) \\
& +d \beta(X) g(Y, U)+\beta g\left(\nabla_{X} U, Y\right) \tag{2.11}
\end{align*}
$$

and hence, by the property of the structure tensor ϕ, we get also

$$
\begin{aligned}
g\left(\nabla_{X} A(\phi Y), \xi\right)= & \alpha g(A X, Y)-g(A X, A Y)+\beta^{2} g(X, U) g(Y, U) \\
& -d \beta(X) g(Y, \phi U)+\beta g\left(\nabla_{X} U, \phi Y\right)
\end{aligned}
$$

for any vector fields X and Y in T_{0}. By substituting the above two equations into (2.10) and by the straightforward calculation, this relation is reformed as follows :

$$
\begin{align*}
& g\left(\nabla_{X} S\right.S(Y), \phi Z)+g\left(\nabla_{X} S(Z), \phi Y\right) \\
&= \beta[(h-\alpha)\{g(Y, U) g(A X, Z)+g(Z, U) g(A X, Y) \\
&\quad-g(Y, \phi U) g(\phi A X, Z)-g(Z, \phi U) g(\phi A X, Y)\} \\
&-g(A Y, U) g(A X, Z)-g(A Z, U) g(A X, Y) \tag{2.12}\\
&+g(A Y, \phi U) g(\phi A X, Z)+g(A Z, \phi U) g(\phi A X, Y) \\
&+2 d \beta(X)\{g(Y, U) g(Z, \phi U)+g(Z, U) g(Y, \phi U)\} \\
& \quad-\beta\left\{g(Y, U) g\left(\nabla_{X} U, \phi Z\right)+g(Z, U) g\left(\nabla_{X} U, \phi Y\right)\right. \\
&\left.\left.\quad-g(Y, \phi U) g\left(\nabla_{X} U, Z\right)-g(Z, \phi U) g\left(\nabla_{X} U, Y\right)\right\}\right]
\end{align*}
$$

for any vector fields X, Y and Z in T_{0}.
Last, we suppose that the structure vector field ξ is principal with corresponding principal curvature α. Then it is seen in [3] and [7] that α is constant on M and it satisfies

$$
\begin{equation*}
A \phi A=\frac{c}{4} \phi+\frac{1}{2} \alpha(A \phi+\phi A) . \tag{2.13}
\end{equation*}
$$

3. Proof of Theorem

In this section, we shall consider a characterization of ruled real hypersurfaces in terms of the Ricci tensor S. Let M be a real hypersurface of $M_{n}(c), c \neq 0, n \geqq 3$. Let us first assume that the structure vector field ξ is not principal. So, we can put $A \xi=\alpha \xi+\beta U$, where U is a unit vector field in the holomorphic distribution T_{0}, and α and β are smooth functions on M. By the assumption, the function β does not vanish identically on M. And we also assume the following conditions:

$$
\begin{equation*}
g((A \phi-\phi A) X, Y)=0 \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
g\left(\nabla_{X} S(Y), Z\right)=-\beta\{g(Y, U) f(X, Z)+g(Z, U) f(X, Y)\} \tag{1.2}
\end{equation*}
$$

for any vector fields X, Y and Z in T_{0}, where

$$
f(X, Y)=\beta^{2}\{g(X, U) g(Y, \phi U)+g(X, \phi U) g(Y, U)\}-\frac{c}{4} g(\phi X, Y)
$$

Under the assumption (1.2), it follows from (2.12) that we have

$$
\begin{align*}
\beta[(h-\alpha)\{ & g(Y, U) g(A X, Z)+g(Z, U) g(A X, Y) \\
& -g(Y, \phi U) g(\phi A X, Z)-g(Z, \phi U) g(\phi A X, Y)\} \\
- & g(A Y, U) g(A X, Z)-g(A Z, U) g(A X, Y) \\
+ & g(A Y, \phi U) g(\phi A X, Z)+g(A Z, \phi U) g(\phi A X, Y) \\
+ & 2 d \beta(X)\{g(Y, U) g(Z, \phi U)+g(Z, U) g(Y, \phi U)\} \\
- & \beta\left\{g(Y, U) g\left(\nabla_{X} U, \phi Z\right)+g(Z, U) g\left(\nabla_{X} U, \phi Y\right)\right. \tag{3.1}\\
& \left.-g(Y, \phi U) g\left(\nabla_{X} U, Z\right)-g(Z, \phi U) g\left(\nabla_{X} U, Y\right)\right\} \\
+ & g(Y, U) f(X, \phi Z)+g(Z, U) f(X, \phi Y) \\
& -g(Y, \phi U) f(X, Z)-g(Z, \phi U) f(X, Y)] \\
= & 0
\end{align*}
$$

for any vector fields X, Y and Z in T_{0}. Putting $Y=Z=U$ in this equation, we get

$$
\begin{align*}
& \beta^{2} g\left(\nabla_{X} U, \phi U\right) \\
& \quad=\beta\left\{(h-\alpha-\gamma) g(A X, U)+\left(\beta^{2}-\frac{c}{4}\right) g(X, U)\right\} \tag{3.2}
\end{align*}
$$

for any vector field X in T_{0}, where γ is the function defined by $g(A U, U)$. Again, putting $Y=U$ and $Z=\phi U$ in (3.1), we see

$$
\begin{equation*}
\beta d \beta(X)=-\beta\left\{(h-\alpha-\gamma) g(A X, \phi U)-\left(\beta^{2}+\frac{c}{4}\right) g(X, \phi U)\right\} \tag{3.3}
\end{equation*}
$$

for any vector field X in T_{0}. Let T_{1} be a distribution defined by the subspace $T_{1}(x)=\left\{u \in T_{0}(x): g(u, U(x))=g(u, \phi U(x))=0\right\}$. We consider about any vector fields X in T_{0} and $Y=Z$ in T_{1} in (3.1), and we then get

$$
\beta\{g(A Y, U) g(A X, Y)-g(A Y, \phi U) g(\phi A X, Y)\}=0 .
$$

Accordingly, we have

$$
\begin{equation*}
\beta\{g(A Y, \phi U) A \phi Y+g(A Y, U) A Y\}=0, \quad Y \in T_{1} . \tag{3.4}
\end{equation*}
$$

Now, let M_{0} be the non-empty open subset of M consisting of points x at which $\beta(x) \neq 0$. We here prove the following

Lemma 3.1. The distribution T_{1} is A-invariant on M_{0}.
Proof. We can put $A U=\beta \xi+\gamma U+\delta U_{1}$ and $A \phi U=\gamma \phi U+\delta \phi U_{1}$, where U_{1} is a unit vector field in T_{1}, and γ, δ and ε are smooth functions on M_{0}. Let M_{1} be an open subset of M_{0} defined by $M_{1}=\left\{x \in M_{0}\right.$: $\delta(x) \neq 0\}$. Suppose that M_{1} is not empty. Then we have by (3.4)

$$
g\left(Y, U_{1}\right) A Y+g\left(Y, \phi U_{1}\right) A \phi Y=0, \quad Y \in T_{1}
$$

on M_{1}. Putting $Y=U_{1}$ in this equation, $A U_{1}=0$ and hence $A \phi U_{1}=0$ by (1.1). Furthermore, we get the following equation

$$
g\left(Y, U_{1}\right) A Z+g\left(Z, U_{1}\right) A Y+g\left(Y, \phi U_{1}\right) A \phi Z+g\left(Z, \phi U_{1}\right) A \phi Y=0,
$$

for any vector fields Y and Z in T_{1}. Putting $Y=U_{1}$ in the above equation, we have $A Z=0$ for any vector field Z in T_{1}. Thus T_{1} is A invariant on M_{1} and hence $L(\xi, U, \phi U)$ is also A-invariant on M_{1}, where $L(\xi, U, \phi U)$ is a distribution defined by the subspace $L_{x}(\xi, U, \phi U)$ of the tangent space $T_{x} M$ spanned by the tangent vectors $\xi(x), U(x)$ and
$\phi U(x)$ at any point x in M_{1}. Therefore $\delta=0$ on M_{1}, a contradiction. It completes the proof.

Consequently, we get

$$
\left\{\begin{array}{l}
A \xi=\alpha \xi+\beta U \\
A U=\beta \xi+\gamma U \\
A \phi U=\gamma \phi U
\end{array}\right.
$$

on M_{0}. Hence we have by (3.1)

$$
\begin{align*}
(h-\alpha-\gamma)\{ & g(Y, U) g(A X, Z)+g(Z, U) g(A X, Y) \\
& \quad-g(Y, \phi U) g(\phi A X, Z)-g(Z, \phi U) g(\phi A X, Y)\} \\
+ & 2 d \beta(X)\{g(Y, U) g(Z, \phi U)+g(Z, U) g(Y, \phi U)\} \\
- & \beta\left\{g(Y, U) g\left(\nabla_{X} U, \phi Z\right)+g(Z, U) g\left(\nabla_{X} U, \phi Y\right)\right. \tag{3.5}\\
& \left.\quad-g(Y, \phi U) g\left(\nabla_{X} U, Z\right)-g(Z, \phi U) g\left(\nabla_{X} U, Y\right)\right\} \\
+ & g(Y, U) f(X, \phi Z)+g(Z, U) f(X, \phi Y) \\
& -g(Y, \phi U) f(X, Z)-g(Z, \phi U) f(X, Y)] \\
= & 0
\end{align*}
$$

for any vector fields X, Y and Z in T_{0}. Putting $Y=U$ and taking Z in T_{1} in (3.5), we obtain

$$
\beta g\left(\nabla_{X} U, \phi Z\right)=(h-\alpha-\gamma) g(A X, Z)-\frac{c}{4} g(X, Z)
$$

Accordingly, we have by (3.2)

$$
\begin{align*}
\beta \nabla_{X} U= & (h-\alpha-\gamma) \phi A X-\frac{c}{4} \phi X+\beta \gamma g(X, \phi U) \xi \tag{3.6}\\
& +\left\{\gamma(h-\alpha-\gamma)-\frac{c}{4}\right\} g(X, \phi U) U+\beta^{2} g(X, U) \phi U
\end{align*}
$$

for any vector field X in T_{0}.
LEMMA 3.2. $\gamma=0$ on M_{0}.
Proof. Let M_{2} be the open subset of M_{0} consisting of points x at which $\gamma(x) \neq 0$. Suppose that M_{2} is not empty. The discussion is
considered on the subset M_{2}. Substituting (3.3) and (3.6) into (2.11), we get

$$
\begin{align*}
& g\left(\nabla_{X} A(Y), \xi\right)=-g(A \phi A X, Y)+(h-\gamma) g(\phi A X, Y) \\
& \quad-\frac{c}{4} g(\phi X, Y)+\beta^{2}\{g(X, U) g(Y, \phi U)+g(X, \phi U) g(Y, U)\} \tag{3.7}
\end{align*}
$$

for any vector fields X and Y in T_{0}. Interchanging X and Y in the above equation and applying (2.3), we have

$$
\begin{equation*}
A \phi A X-(h-\gamma) \phi A X=-\beta \gamma g(X, \phi U) \xi, \quad X \in T_{0} \tag{3.8}
\end{equation*}
$$

from which together with $A \phi U=\phi A U=\gamma \phi U$ it follows that

$$
\begin{equation*}
h-2 \gamma=0 . \tag{3.9}
\end{equation*}
$$

Accordingly, patting $Y=U$ in (3.7), we-get

$$
g\left(\nabla_{X} A(U), \xi\right)=\left(\beta^{2}+\frac{c}{4}\right) g(X, \phi U), \quad X \in T_{0}
$$

By the assumption (1.2), we have

$$
g\left(\nabla_{X} S(U), U\right)=-2 \beta\left(\beta^{2}+\frac{c}{4}\right) g(X, \phi U), \quad X \in T_{0}
$$

And, by (2.8) and (3.9), we can get

$$
g\left(\nabla_{X} S(U), U\right)=\gamma d h(X)-2 \beta g\left(\nabla_{X} A(U), \xi\right), \quad X \in T_{0}
$$

Hence we obtain by the above three equations

$$
\begin{equation*}
d h(X)=0, \quad X \in T_{0} \tag{3.10}
\end{equation*}
$$

From (3.9) and (3.10), we get $d \gamma(X)=0$. Thus we have

$$
\nabla_{X} A(U)=d \beta(X) \xi+\beta \phi A X+\gamma \nabla_{X} U-A \nabla_{X} U, \quad X \in T_{0} .
$$

On the other hand, we get by (2.7)

$$
g\left(\nabla_{X} A(U), Y\right)=\beta \gamma\{g(X, U) g(Y, \phi U)+g(X, \phi U) g(Y, U)\}
$$

from which together with $(3.6),(3.8)$ and the above equation it follows that

$$
\begin{gather*}
\left(\beta^{2}+\frac{c}{4}\right) A \phi X-\frac{c}{4} \gamma \phi X-\beta^{2} \gamma\{g(X, U) \phi U+2 g(X, \phi U) U\} \tag{3.11}\\
\equiv 0(\bmod \xi), \quad X \in T_{0}
\end{gather*}
$$

Since T_{1} is A-invariant, let $X \in T_{1}$ be a principal vector field corresponding to the principal curvature λ. By (3.8) and (3.11), we have

$$
\lambda^{2}-\gamma \lambda=0, \quad\left(\beta^{2}+\frac{c}{4}\right) \lambda-\frac{c}{4}=0 .
$$

This means that $\gamma=0$ on M_{2}, a contradiction. It concludes the proof.

Consequently, we have

$$
\left\{\begin{array}{l}
A \xi=\alpha \xi+\beta U \\
A U=\beta \xi \\
A \phi U=0
\end{array}\right.
$$

on M_{0}.
Next, we shall prove the following
Lemma 3.3. $A X=0$ for any vector field X in T_{1} on M_{0}.
Proof. Under the property $\gamma=0$, we see

$$
d \beta(X)=\left(\beta^{2}+\frac{c}{4}\right) g(X, \phi U)
$$

and

$$
A \phi A X-h \phi A X=0
$$

for any vector field X in T_{0}. Let $X \in T_{1}$ be a principal vector field corresponding to the principal curvature λ. We have by (3.8')

$$
\lambda^{2}-h \lambda=0
$$

So, $\lambda=0$ or $\lambda=h$. Suppose that there is a principal curvature $\lambda=h(\neq 0)$.. Then we obtain by (3.6) and (3.8')

$$
\beta \nabla_{X} A(U)=\left(-h^{2}+h \alpha+\beta^{2}+\frac{c}{4}\right) \phi A X, \quad X \in T_{1} .
$$

Since $g\left(\nabla_{X} A(U), Y\right)=0$ for any vector fields X and Y in T_{0} by (2.7), we get

$$
\begin{equation*}
h^{2}-h \alpha-\beta^{2}-\frac{c}{4}=0 . \tag{3.12}
\end{equation*}
$$

For any fixed point x in M_{0}, let V be the eigenspace at point x corresponding to the eigenvalue $\lambda=h(\neq 0)$. We set $\operatorname{dim} V=2 p>0$. Then $\alpha=(1-2 p) h$. Consequently, we have by (3.12)

$$
2 p h^{2}=\beta^{2}+\frac{c}{4} .
$$

Hence we get by (3.3')

$$
\begin{equation*}
d h(X)=h \beta g(X, \phi U) \tag{3.13}
\end{equation*}
$$

for any vector field X in T_{0}. As is well known, the Ricci formula for the shape operator A is given by

$$
\nabla_{X} \nabla_{Y} A(Z)-\nabla_{Y} \nabla_{X} A(Z)=R(X, Y)(A Z)-A(R(X, Y) Z)
$$

for any vector fields X, Y and Z. Let Y_{0} be a unit vector field in T_{1} such that $A Y_{0}=h Y_{0}$. Putting $X=\phi U$ and $Y=Z=Y_{0}$ in the Ricci formula, we can obtain $c=0$ by (2.2), (2.7), (3.3), (3.13) and Lemma 3.2 , a contradiction. This means that $A X=0$ for any vector field X in T_{1}.

Proof of Theorem. Suppose that the interior $\operatorname{Int}\left(M-M_{0}\right)$ of $M-$ M_{0} is not empty. On the subset, the function β is vanishes identically and therefore ξ is principal. Thus we have

$$
(A \phi-\phi A) \xi=0 .
$$

For any principal vector field X in T_{0} with principal curvature λ, the condition (1.1) is reduced to $A \phi X=\lambda \phi X+\theta(X) \xi$, where θ is a 1 -form
on $\operatorname{Int}\left(M-M_{0}\right)$. From $A \xi=\alpha \xi$, the inner product of $A \phi X$ and ξ gives us to $\theta(X)=0$. This means that

$$
\begin{equation*}
A \phi-\phi A=0 \tag{3.14}
\end{equation*}
$$

on $\operatorname{Int}\left(M-M_{0}\right)$. Since ξ is principal on $\operatorname{Int}\left(M-M_{0}\right)$, we have by (2.13)

$$
(2 \lambda-\alpha) A \phi X=\left(\frac{c}{2}+\alpha \lambda\right) \phi X
$$

Using (3.14) and the above equation, we get

$$
\begin{equation*}
2 \lambda^{2}-2 \alpha \lambda-\frac{c}{2}=0 \tag{3.15}
\end{equation*}
$$

from which it follows that all principal curvatures are non-zero constant on $\operatorname{Int}\left(M-M_{0}\right)$. Since we assume that the set M_{0} is not empty, (3.14) means that

$$
g(A X, Y)=0, \quad X, Y \in T_{0}
$$

on M_{0}. So, it follows from this and (3.1) that we get

$$
A X=g(A X, \xi) \xi=\beta g(X, U) \xi
$$

for any vector field X in T_{0}. Hence, by Lemma 3.2 and Lemma 3.3, we have

$$
\begin{equation*}
A U=\beta \xi, \quad A X=0 \tag{3.16}
\end{equation*}
$$

for any vector field X in T_{0} orthogonal to U. By means of the continuity of principal curvarures, (3.15) and (3.16) lead a contradiction. It shows that $\operatorname{Int}\left(M-M_{0}\right)$ must be empty. Thus the open set M_{0} is a dense subset of M. By the continuity of principal curvatures again, we see that the shape operator satisfies the condition (316) on the whole M. Therefore the distribution T_{0} is integrable on M. Moreover the integral manifold of T_{0} can be regarded as the submanifold of codimension 2 in $M_{n}(c)$ whose normal vector fields are ξ and C. Since we have

$$
\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)=g\left(\nabla_{X} Y, \xi\right)=0
$$

and

$$
\bar{g}\left(\bar{\nabla}_{X} Y, C\right)=g(A X, Y)=0
$$

for any vector fields X and Y in T_{0} by (2.1) and (3.16), where $\bar{\nabla}$ denotes the Riemannian connection of $M_{n}(c)$, it is seen that the submanifold is totally geodesic in $M_{n}(c)$. Since T_{0} is also J-invariant, its integral manifold is a complex manifold and hence it is a complex space form $M_{n-1}(c)$. Thus M is locally a ruled real hypersurface.

References

1. S.-S. Ahn, S-B. Lee and Y.-J. Suh, On ruled real hypersurfaces in a complex space form, Preprint
2 J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolvc space, J. Reine Angew Math., 395 (1989), 132-141.
3 U-H. Ki and Y.-J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ., 32 (1990), 207-221.
2. M. Kımura, Sectional curvatures of a holomorphzc plane in $P_{n}(C)$, Math Ann , 276 (1987), 487-497
5 M. Kimura, Some generalazations of homogeneous real hypersurafes in a complex projective space, Preprint
3. M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math Z., 202 (1989), 299-311.
4. Y Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan, 28 (1976), 529-540.
5. Y-S. Pyo, On ruled real hypersurfaces in a complex space form, Preprint.
6. R Takagi, On homogeneous real hypersurfaces of a complex projectzve space, Osaka J. Math., 10 (1973), 495-506.

Department of Basic Studies
Don Bosco School of Arts
Kyungpook 718-910, Korea
Department of Applied Mathematics
National Fisheries University of Pusan
Pusan 608-737, Korea

