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ON RULED REAL HYPERSURFACES
IN A COMPLEX SPACE FORM II

SEUNG-K0OOX LEE AND YONG-500 Pyo

1. Introduction

A complex n-dimensional Kahler manifold of constant holomorphic
sectional curvature cis called a complez space form, which is denoted by
M., (c). A complete and simply connected complex space form consists
of a complex projective space P, C, a complex Euclidean space C" or
a complex hyperbolic space H,C, according as ¢ > 0,c =0or ¢ < 0.

The classification and the structure of the homogeneous real hyper-
surfaces in M, (c) are investigated by many authors. See Takagi [9],
Berndt [2] and etc.

As an example of special real hypersurfaces of P,C, we can give a
ruled real hypersurface. Let v : I — Mp(c) be any regular curve. For

any t{€ I), let M,(f_)l(c) be a totally geodesic complex hypersurface
through the point 4(t) of M, (¢) which is orthogonal to a holomorphic
plane spanned by 7'(t) and Jy'(t). Set M = {z € M,(fll(c) 1t €
I}. Then the construction of M asserts that M is a real hypersurface
of My(c), which is called a ruled real hypersurfece. In [4,5], Kimura
obtained some properties about a ruled real hypersurface M of P,C.

Let M be a real hypersurface of M,{c),c # 0. Then M has an
almost contact metric structure (¢,€,7,¢) induced from the Kahler
structure of M,(c). Let Ty be a distribution defined by the subspace
To(z) = {u € Tu M : g{u,£(z)) = 0} of the tangent space T:M of M
at any point z, which is called the holomorphic distribution. And the
second fundamental form is said to be n-parallel if the shape operator
A satisfies g(VxA(Y'), Z) = 0 for any vector fields X,Y and Z in Ty,
where Vx A denotes the covariant derivative of the shape operator A
with respect to X. Then Kimura and Maeda [6] and Ahn, Lee and Suh
f1] proved the following
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THEOREM A. Let M be a real hypersurface of P,,C,n 2 3. Then
the second fundamental form is n-parallel and the holomorphic distri-
bution Ty is integrable if and only if M is locally a ruled real hyper-
surface.

THEOREM B.  Let M be a real hypersurface of M,(¢),c# 0,n 2
3. Assume that { is not principal. Then it satisfies

(1.1) 9((A¢ — $A)X,Y) =0

for any vector fields X and Y in T and the second fundamental form
is p-parallel if and only if M is locally a ruled real hypersurface.

Now, let S be the Ricci tensor of M. Then S is said to be n-parallel
if g(VxS(Y),Z) = 0 for any vector fields X,Y and Z in Tg. Even
though the second fundamental form for the ruled real hypersurfaces
is n-parallel, the Ricci tensor is not necessarilly -parallel. In fact, if we
put A{ = af + U for a wmt vector fieid U in Ty and smoethfurrctions
a and 8 on M, then the covartant derivative VA of the shape operator
A is given by (see [8])

VXA(Y)=f(X3Y)§a -XaYET03

where we put
FY) = BH9(X, U)g(Y, U) + g(X, $U)g(¥, V)} - (4 X, Y).

This means that A is n-parallel. Furthermore, the covariant derivative
VS of the Ricci tensor S satisfies

(1.2)  g(VxS(Y),2) = -p{g(Y,U)f(X,Z) + 9(Z,U) f(X,Y)}

for any vector fields X, Y and Z in Tj.

The purpose of this article is to prove the following characterization
of ruled real hypersurfaces in terms of the Ricci tensor.

THEOREM.  Let M be a real hypersurface of Mp(c),c #0,n 2 3.
If it satisfies (1.1) and (1.2) and if the structure vector field £ is not
principal, then M is locally a ruled real hypersurface.
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2. Preliminaries

First of all, we recall fundamental properties of real hypersurfaces
of a complex space form. Let M be a real hypersurface of a complex
n-dimensional complex space form (M,(c),§) of constant holomorphic
sectional curvature ¢, and let C be a unit normal vector field on a
neighborhood in M. We denote by J the almost complex structure of
M, (c). For alocal vector field X on the neighborhood in M, the images
of X and C under the linear transformation J can be represented as

JX = ¢X +9(X)C, JC = ¢,

where ¢ defines a skew-symmetric transformation on the tangent bun-
die TM of M, while  and { denote a 1-form and a vector ficld on the
neighborhood in M, respectively. Then it is seen that g{(€, X) = n(X),
where ¢ denotes the Riemannian metric tensor on M induced from
the metric temsor § on M.{c). The set of tensors (¢.£.7n,¢9) is called
an almost contact metric siructure on M. They satisfy the following
properties :

¢ =-I+n®¢ ¢£=0, n(f)=1,

where I denotes the identity transformation. Furthermore, the covari-
ant derivatives of the structure tensors are given by

(21} VxE=9¢A4AX, Vx§Y)=n(Y)AX - g(AX,Y){

for any vector fields X and Y on M, where V is the Riemannian con-

nection on M and A denotes the shape operator of M in the direction
of C.

Since the ambient space is of constant holomorphic sectional curva-
ture ¢, the equations of Gauss and Codazzi are respectively obtained:

R(X,Y)Z = J{o(Y, 2)X — o(X, Z)Y

(22) +9(8Y, Z2)¢X — g(¢X, Z)9Y —29(6X,Y)$Z}
+9(AY, Z)AX — g(AX, Z)AY,

(2.3) VxA(Y) = Vy A(X) = Z{n(X)e¥ —7(Y)$X - 29(X,Y)e},



348 Seung-kook Lee and Yong-Sco Pyo

where R denotes the Riemannian curvature tensor of M and Vx4

denotes the covariant derivative of the shape operator A with respect
to X.
Next, we assume that it satisfies

(2.4) 9((4$ — $A)X,Y) =0

for any vector fields X and Y in Tj. Let A = aé + BU, where U is a
unit vector field in Ty, and @ and # are smooth functions on A. Then
we have

g(VxA(Y), 4Z) + g(Vx A(Z),$Y)
(25) = B{o(Y,U)g(AX, Z) + 9(Z,U)g(AX,Y)
—9(Y,$U)g($AX, Z) — 9(Z,4U)g($ AX, Y}

for any vector fields X, Y and Z in T;. Furthermore, (2.4) implies

(2.6) (Ad — gA)X = —Bg(X, $U)¢
for any vector field X in 7. Making use of this property, we have
2.7) 9(VxA(Y), 2} = BG g(AX,Y)g(Z, $U)

for any vector fields X,Y and Z in Ty, where & denotes the cyclic sum
with respect to X, Y and Z, which is proved by Ahn, Lee and Suh {1].

Now, we here calculate the covariant derivative of the Ricei tensor
S. Since the Ricci tensor § is given by

S = 2{(2n+1)1—3n®§} +hA — A2
for the identity transformation I and the trace h of 4, we get
VxS(Y)= -~ %g(gﬁAX, Y)Y + dh(X)AY
+hVx A(Y) - Vx A(AY) — AV A(Y),
from which it turns out to be

9(VxS(Y), Z) =dh(X)g(AY, Z) + hg(V x A(Y ), Z)

(28) — (VX A(Y), AZ) — o(Vx A(Z), AY)
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for any vector fields X, ¥ and Z in Tj,. Accordingly, we have
9(VxS(Y),42) + 9(Vx $(2),4Y)
=h{g(Vx A(Y),42) + ¢(Vx A(Z),Y)}
~9(VxA(Y),A¢Z) — g(Vx A(¢Y), AZ)
— 9(VxA(Z), A¢Y ) — 9(Vx A(4Z), AY)

for any vector fields X, Y and Z in T,, where we have used the as-

sumption (2.4). Since A¢Z = ¢AZ — Bg(Z,$U)¢ for any vector field
Z in Ty by (2.6), we have

d(VxA(Y),A$Z)+ ¢(Vx A(¢Y), AZ)
=g(VxA(Y), $AZ) + g(Vx A((AZ)o), 4Y)
+B8{e(Z,U)g(Vx A($Y), &) — 9(Z,4U)g(Vx A(Y), £)}
for any vector fields X, Y and Z in T}, where we denote by (AZ),
the Tp-component of the vector field AZ. By using (2.5), the above
equation is reformed as
d(VxA(Y),APZ) + g(Vx A{¢Y), AZ)
= p{e(Y,U)g(AX,AZ) + g(AZ,U)g(AX,Y)
— g(Y,8U)g($AX, AZ) — g(AZ,4U)g(¢AX,Y)
— B g(X,U)g(Y,U)g(Z,U) + ¢(Z,U)g(Vx A(4Y),£)
- 9(Z,¢U)g(Vx A(Y),€)}.
From (2.5), (2.9) and the above equation, we obtain
9(VxS(Y),¢Z) + g(Vx5(2),4Y)
= Blh{g(Y,U)g(AX, Z) + g(2,U)g(AX,Y)
—9(Y,0U)g(9AX, Z) — g(Z, ¢U )g(¢ AX,Y)}
~9(Y,U)g(AX,AZ) - g(AZ,U)g(AX,Y)
+9(Y, ¢U)g(¢AX, AZ) + 9(AZ, $U)g(¢AX,Y)
-9(Z,U)g(AX, AY) — g(AY,U)g(AX, Z)
+9(Z, ¢U)g(¢AX, AY') + g(AY, ¢U)g($AX, Z)
—~9(Y,U)g(Vx A($Z),€) — 9(Z,U)g(Vx A($Y), )
+9(Y, ¢U)g(Vx A(Z),€) + 9(Z,6U)g(Vx A(Y'), )
+2p%g(X,U)g(Y,U)g(Z,U)]

(2.9)

(2.10)
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for any vector fields X, Y and Z in Tj.
Next, taking account of the first equation of (2.1), we have

9(VxA(Y),£) = ag(¢AX,Y) ~ g(¢AX, AY)

and hence, by the property of the structure tensor ¢, we get also

9(VxA($Y),€) = ag(AX,Y) - g(AX, AY) + f9(X,U)g(Y,U)
— dB(X)g(Y, ¢U) + Bg(VxU,4Y)

for any vector fields X and Y in T;. By substituting the above two
equations into (2.10) and by the straightforward calculation, this rela-
tion.is reformed as follows ;

9(VxS8(Y),4Z) + 9(VxS(Z),4Y)
= pl(h — a){g(Y,U)9(AX, Z) + ¢(Z,U)9(AX,Y)
—g(Y,9U)g($AX, Z) — 9(Z,9U)g($AX,Y)}
~g(AY,U)g(AX,Z) — g(AZ,U)g(AX,Y)
+9(AY, ¢U)g(¢AX, Z) + g(AZ, $U)g(¢AX,Y)
+2dB(X ) {g(Y,U)g(Z, ¢U) + 9(Z, U )g(Y, $U)}
—Bleg(Y, U)g(VxU,¢2) + g(Z,U)g(VxU, ¢Y)
—9(Y,9U)g(VxU,Z) - ¢(Z,4U)g(Vx U, Y)}]

(2.12)

for any vector fields X, Y and Z in Ty.

Last, we suppose that the structure vector field £ is principal with
corresponding principal curvature a. Then it is seen in [3] and [7] that
« 1s constant on M and it satisfies

(2.13) AgA = 4543 + %Q(Aé + $A).
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3. Proof of Theorem

In this section, we shall consider a characterization of ruled real hy-
persurfaces in terms of the Rieci tensor S. Let M be areal hypersurface
of Myp(c),e # 0,n 2 3. Let us first assume that the structure vector
field £ is not principal. So, we can put A¢ = af + SU, where U is a
unit vector field in the holomorphic distribution 75, and o and g are
smooth functions on M. By the assumption, the function 3 does not
vanish identically on M. And we also assume the following conditions:

(1.1) 9((A¢ — A)X,Y) =0,

(12)  ¢(VxS(Y),2) = -B{e(Y, U)X, Z) + ¢(Z,U) f(X,Y)}
for any vector fields X,Y and Z in Ty, where

Y Ir

[
B X, Uy, $U) + (X, ¢U)g(Y,U)} — 198X, Y).

£V VY
J ;T

—~he L

Under the assumption (1.2), it follows from (2.12) that we have

Bl(h — a){g(Y,U)g(AX,Z) + 9(Z,U)g(AX,Y)

—g(Y,8U)g($AX, Z) — ¢(Z,¢U)g9(¢AX,Y)}

—g(AY, U)g(AX,Z) — g(AZ,U)g(AX,Y)

+9(AY, ¢U)g($AX, Z) + g(AZ,¢U)g($AX,Y)

+2dB(X {o(Y,U)g(Z,4U) + g(Z,U)g(Y, 8U )}

~B{e(Y,U)g(VxU,8Z) + ¢(Z,U)g(VxU, $Y)
—9(Y,¢U)9(VxU, Z) - ¢(Z,4U)g(VxU,Y}}

+9(Y,U)f(X,6Z) + 9(2,U)f(X,¢Y)

~g(Y,¢U)f(X,2Z) - ¢(Z,4U)f(X,Y)]

=0

(3.1)

for any vector fields X, ¥ and Z in Ty. Putting Y = Z = U in this

equation, we get
B2 9(VxU,4¢U)

(3.2) =ﬁ{(h_a_7)g(AX,U)+(ﬁz—g)g(XaU)}
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for any vector field X in Ty, where v is the function defined by g( AU, U).
Again, putting Y = U and Z = ¢U in (3.1), we see

(3.3) BdB(X) = —p{(h - a - 7)g(AX,4V) - (8 + ) 9(X, 6U) }

for any vector field X in Ty. Let 7y be a distribution defined by the
subspace T1(z) = {u € To(z) : g(u,U(z)) = g(u,4dU(z)) = 0}. We
consider about any vector fields X in Tp and Y = Z in T} in (3.1), and
we then get

Ble(AY,U)g(AX,Y) ~ g(AY, $U)g($AX,Y)} = 0.
Accordingly, we have

(34)  B{g(AY,$U)ASY + g(AY,U)AY} =0, Y €Ty

Now, let Mj be the non-empty open subset of M consisting of points
z at which B(z) # 0. We here prove the following

LEMMA 3.1.  The distribution T} is A-invariant on M.
Proof. We can put AU = B¢ +~U +6U; and AU = voU + 64Uy,

where Uy is a unit vector field in 7y, and 7, § and ¢ are smooth functions
on My. Let M, be an open subset of My defined by M; = {z € M, :
é{x) # 0}. Suppose that M, is not empty. Then we have by (3.4)

(Y, Ur)AY + g(Y,¢U1)AdY =0, Y eTy

on M;. Putting Y = U in this equation, AU; = 0 and hence 44U; =0
by (1.1). Furthermore, we get the following equation

oY, U)AZ + ¢(2,U,)AY + (Y, ¢U1)AZ + g(Z, U, ) AdY =0,

for any vector fields Y and Z in 7). Putting Y = U, in the above
equation, we have AZ = ¢ for any vector field Z in T}. Thus T} is A-
invariant on M; and hence L(¢,U, U ) is also A-invariant on M;, where
L{£,U,4U) is a distribution defined by the subspace L (£,U,¢U) of
the tangent space T, M spanned by the tangent vectors £(z), U(z) and
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#U(z) at any point z in M;. Therefore § = 0 on M,, a contradiction.
It completes the proof. O

Consequently, we get

Af = af + BU,
AU = B¢ + U,
AdU = voU

on M. Hence we have by (3.1)

(h—a— M g(Y,U)9(AX, Z) + 9(2,U)g(AX,Y)

—9(Y,¢U)g(¢AX, Z) — 9(Z, pU )g(6 AX,Y)}

+2dB(X){g(Y,U)g(Z,¢U) + ¢(Z,U)g(Y, U )}

~B{g(Y,U)g(VxU,$Z) + g(Z,U)g(VxU,¢Y)
—9(Y,9U)g(VxU,Z) - ¢(Z,4U)g(VxU,Y)}

+9(Y,U)f(X,42) + g(Z,U)f(X,4Y)

~9(Y,¢U)f(X,Z) — 9(Z,$U) f(X,Y)]

=0

(3.5)

for any vector fields X, ¥ and Z in T,. Putting Y = U and taking Z
in T in (3.5), we obtain

B9(VxU, 62} = (h — a = 7)g(AX, Z) — 29(X, 2).
Accordingly, we have by (3.2)
VXU = (h = a = 7)$AX ~ 24X + frg(X, 6V
o H{rh—a =2 = £} o(X,0UI + Fo(X,U)4U

for any vector field X in 7}.
LEMMA 3.2. ~=0o0n M,.

Proof.  Let M, be the open subset of My consisting of points =
at which v(z) # 0. Suppose that M, is not empty. The discussion is
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considered on the subset M,. Substituting (3.3) and (3.6) into (2.11),
we get

9(VxA(Y),€) = ~g(APAX,Y) + (h— v)g($AX,Y)

(3.7) — 298X, Y) + B{9(X, U)g(Y, 8U) + 9(X, ¢U)g(¥, U)}

for any vector fields X and Y in T,. Interchanging X and Y in the
above equation and applying (2.3), we have

(38)  APAX ~ (h —1)$AX = —frg(X, V), X €T,
from which together with AgU = ¢ AU = ~v¢U it follows that

(3.9) h—2y=0.

9(VxA(U), &) = (ﬂ2 + E) 9(X,9U), X €Tp.
By the assumption (1.2), we have
o(VxSW),U) = =26 (8 + 5) o(X,6U), X €T,
And, by (2.8) and (3.9), we can get
H(VxS(U),U) = vdh(X) - 289(Vx A(U),£), X € Ts.
Hence we obtain by the above three equations
(3.10) d(X)=0, XeT.
From (3.9) and (3.10), we get dv(X) = 0. Thus we have
Vx A(U) = dB(X)€ + BSAX + 1V xU — AVxU, X € To.
On the other hand, we get by (2.7)

9(VxAU),Y) = By {g(X,U)g(Y, 8U) + g(X, $U)g(Y, U)},
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from which together with (3.6), (3.8) and the above equation it follows
that

(3.11) (ﬁ2 )A¢X - -7¢X B2y {g(X,U)¢U + 29(X, U)U}
| =0 (mod ), X €T

Since T; is A-invariant, let X € 7 be a principal vector field corre-
sponding to the principal curvature A. By (3.8) and (3.11}, we have

A2 —4A =0, (ﬁ2 )xumzo.

This means that v = 0 on M;, a contradiction. It concludes the
proof. [

Consequently, we have

AE = af + U,
AU = g€,
AU =10

on M.

Next, we shall prove the following
LEMMA 3.3. AX =0 for any vector field X in T} on M,.
Proof.  Under the property v = 0, we see

(33) dp(X) = (B + £) 9(X, 8V),
and
(3.8%) A¢AX — hpAX =0

for any vector field X in Ty. Let X € Ty be a principal vector field
corresponding to the principal curvature A. We have by (3.8’)

M _hA=0.
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So, A = 0 or A = h. Suppose that there is a principal curvature
A = h(# 0).. Then we obtain by (3.6) and (3.8")

BV x A(U) = (—h2 +ha+ 8+ E) SAX, X €T

Since g¢(Vx A(U),Y) = 0 for any vector fields X and Y in T by (2.7),

we get

(3.12) B — ha — 2 — 43 =0.

For any fixed point = in My, let V' be the eigenspace at point = corre-
sponding to the eigenvalue A = h(5# 0). We set dim V = 2p > 0. Then
a = (1 — 2p)h. Consequently, we have by (3.12)

oWph? = g% 4 <.
4
Hence we get by (3.3")

(3.13) dh(X) = hBg(X, $U)

for any vector field X in T5. As is well known, the Ricci formula for
the shape operator 4 is given by

VxVyA(Z) - VyVxA(Z) = R(X,Y)AZ) - A(R(X,Y)Z)

for any vector fields X,Y and Z. Let ¥ be a unit vector field in T;
such that AYy; = AY,. Putting X = ¢U and Y = Z = Y, in the Ricei
formula, we can obtain ¢ = 0 by (2.2), (2.7), (3.3°), (3.13) and Lemma
3.2, a contradiction. This means that AX = 0 for any vector field X
m7y. O

Proof of Theorem.  Suppose that the interior Int(M — M) of M —
M, is not empty. On the subset, the function 8 is vanishes identically
and therefore ¢ is principal. Thus we have

(Ad— $A)E = 0.

For any principal vector field X in Ty with principal curvature A, the
condition (1.1) is reduced to AgX = A¢pX +0(X )¢, where 8 is a 1-form
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on Int(M — M;). From Af = af, the inner product of A¢X and ¢
gives us to 8(X) = 0. This means that

(3.14) Ap—pA =0

on Int(M — My). Since £ is principal on Int(M — My), we have by
(2.13)

(2X - a)AgX = (5 + a,\) $X.

2
Using (3.14) and the above equation, we get
(3.15) 2X% — 22 — f?f =0,

from which it follows that all principal curvatures arc non-zero constant
on Int(M — M,). Since we assume that the set My is not empty, (3.14)
means that

g{AX\Y)=0, X, YeT,
on Mjy. So, it follows from this and (3.1} that we get

AX = g(AX, () = Bg(X,U)
for any vector field X in Ty. Hence, by Lemma 3.2 and Lemma 3.3, we
have

(3.16) AU = B¢, AX =0

for any vector field X in Tj orthogonal to U. By means of the continuity
of principal curvarures, (3.15) and (3.16) lead a contradiction. It shows
that Int(M — M,) must be empty. Thus the open set My is a dense
subset of M. By the continuity of principal curvatures again, we sce
that the shape operator satisfies the condition (3 16) on the whole Af.
Therefore the distribution 7 is integrable on M. Moreover the integral
manifold of T can be regarded as the submanifold of codimension 2 in
M, (c) whose normal vector fields are £ and C. Since we have

g(VxY,§) = g(VxY,§) =0
and

§(VxY,C)=g(AX,Y)=0
for any vector fields X and Y in Ty by (2.1) and (3.16), where V denotes
the Riemannian connection of M,{(¢}, it is seen that the submanifold
1s totally geodesic in M,{c). Since Ty is also J-invariant, its integral
manifold is a complex manifold and hence it 15 a complex space form
M,_1(¢). Thus M is locally a ruled real hypersurface. O
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