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INTRODUCTION OF T -HARMONIC MAPS

Mehran Aminian

Abstract. In this paper, we introduce a second order linear differential opera-

tor
T

¤: C∞(M) → C∞(M) as a natural generalization of Cheng-Yau operator, [8],
where T is a (1, 1)–tensor on Riemannian manifold (M, h), and then we show on
compact Riemannian manifolds, divT = divT t, and if divT = 0, and f be a smooth

function on M , the condition
T

¤ f = 0 implies that f is constant. Hereafter, we
introduce T -energy functionals and by deriving variations of these functionals, we
define T -harmonic maps between Riemannian manifolds, which is a generalization
of Lk-harmonic maps introduced in [3]. Also we have studied fT -harmonic maps
for conformal immersions and as application of it, we consider fLk-harmonic hyper-
surfaces in space forms, and after that we classify complete fL1-harmonic surfaces,
some fLk-harmonic isoparametric hypersurfaces, fLk-harmonic weakly convex hy-
persurfaces, and we show that there exists no compact fLk-harmonic hypersurface
either in the Euclidean space or in the hyperbolic space or in the Euclidean hemi-
sphere. As well, some properties and examples of these definitions are given.

1. Introduction and Preliminaries

Harmonic maps are critical points of energy functionals, equivalently these maps
are solutions of PDE systems when tension fields are zero, [9, 12]. In paper [3], the
authors generalize energy functionals and the notions of tension fields to introduce
Lk-harmonic maps. Following it, we introduce T -energy functionals and by comput-
ing the first variation of these functionals, Theorem 3.4, we define T -harmonic maps
between two Riemannian manifolds. In the paper, we used technicks of [15] to get
some of results and as in Proposition 3.10, Proposition 3.12 and Theorem 3.13.

In Section 2, we first introduce a second order linear differential operator
T
¤:

C∞(M) → C∞(M) as a natural generalization of Cheng-Yau operator, [8], where T

is a (1, 1)-tensor on a Riemannian manifold, and after studying some of its properties,
in Theorem 2.7 and Theorem 2.9, we show that on compact Riemannian manifolds,
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divT = divT t where T t denote the transpose of tensor T with respect to Riemannian

metric h on M ,and constant functions are the only ones that
T
¤ f = 0. In a similar

way, We introduce an operator and show its similar properties to
T
¤ in Theorem 2.13

and Proposition 2.14.
In Section 3, we introduce T -energy functionals and by deriving variations of these

functionals, we define T -harmonic maps between Riemannian manifolds, which is a
generalization of Lk-harmonic maps introduced in [3] and then in Corollary 3.8,
we show that a smooth map ψ : M → M from a Riemannian manifold M to a
Riemannian manifold M is fT -harmonic map if and only if

f
T
¤ψ +

1
2
dψ

(
(T + T t)(∇f) + fdiv(T + T t)

)
= 0 ,

where
T
¤ψ is stated in Definition 3. After that in Theorem 3.13, we study fT -

harmonic maps which are conformal immersions.
In Section 4, by use of Theorem 3.13, in Theorem 4.1, we prove that the ori-

ented immersed hypersurfaces in simply connected space forms are fLk-harmonic
if and only if Hk+1 = 0 and Pk∇f = 0, where Hk+1 is (k + 1)-th mean curvature
and Pk’s are Newton transformations. In Theorem 4.4 and Theorem 4.5, we show
that an immersion from a connected oriented surface into a simply connected space
form is fL1-harmonic if and only if the principal curvatures are zero and 2H1, and
H1∇vf = 0 for every vector v in the distribution of space of principal vectors of
zero’s principal curvature, and if the surface in Euclidean space R3 or in unit Eu-
clidean sphere S3 is complete, then it is a cylinder over planar curve in Euclidean
space and H1∇vf = 0 for every vector v in the distribution of space of principal
vectors of zero’s principal curvature, or it is totally geodesic sphere S2(1) and f

is arbitrary smooth positive function on the surface. As a result of Theorem 4.1,
in Corollary 4.6, we study some isoparametric hypersurfaces in space forms which
are fLk-harmonic. In Theorem 4.7, by property of weakly convex hypersurfaces,
we show that if these hypersurfaces of space forms be fLk-harmonic, then they are
totally geodesic and f is arbitrary smooth positive function on the hypersurface if
k 6= 0, and f is constant positive function if k = 0. Finally in Corollary 4.8, we
get that there exists no compact orientable fLk-harmonic hypersurface either in the
Euclidean space or in the hyperbolic space or in the Euclidean hemisphere.

We recall the prerequisites from [1, 5, 6, 7, 13, 16]. Let Rn+1(c) be the simply
connected Riemannian space form of constant sectional curvature c which is the
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Euclidean space Rn+1, for c = 0, and the Hyperbolic space Hn+1, for c = −1, and the
Euclidean sphere Sn+1, for c = +1. Let ϕ : Mn → Rn+1(c) be a connected oriented
hypersurface isometrically immersed into Rn+1(c) with N as a unit normal vector
field, ∇ and ∇ the Levi-Civita connections on M and Rn+1(c), respectively. For
simplicity we also denote the induced connection on the pullback bundle ϕ∗TRn+1(c)
by ∇. Let X, Y be vector fields on M . We have the following formula for the shape
operator of M ,

∇Xdϕ(Y ) = dϕ(∇XY ) + 〈SX, Y 〉N ,

dϕ(SX) = −∇XN .

As it is known, the shape operator is a self-adjoint linear operator. Let k1, . . . , kn

be its eigenvalues which are called principal curvatures of M . Define s0 = 1 and

sk =
∑

1≤i1<···<ik≤n

ki1 · · · kik .

The k-th mean curvature of M is defined by
(

n

k

)
Hk = sk .

The Newton transformations Pk : X (M) → X (M) are defined inductively by P0 = I

and

Pk = skI − S ◦ Pk−1 , 1 ≤ k ≤ n.

From the Cayley-Hamilton theorem, one gets that Pn = 0. Each Pk is a self adjoint
linear operator which commutes with S. For 0 ≤ k ≤ n− 1, the second order linear
differential operator Lk : C∞(M) → C∞(M) as the natural generalization of the
Laplace operator for Euclidean hypersurfaces M , is defined by

Lkf = tr(Pk ◦ ∇2f) ,

where∇2f is metrically equivalent to the Hessian of f and is defined by
〈
(∇2f)X, Y

〉
=

〈∇X(∇f), Y 〉 for all vector fields X, Y on M , and ∇f is the gradient vector field of
f .

We recall the definition of harmonic maps, [9]. Let ψ : M → M be a smooth
map between Riemannian manifolds (M, h) and (M, l) with Levi-Civita connections
∇ and ∇, respectively. We denote the induced connection on the pullback bundle
ψ∗TM by ∇ as well.
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The smooth map ψ is called harmonic if it is a critical point of the energy func-
tional:

E(ψ) =
1
2

∫

Ω
|dψ|2dΩ

for any compact domain Ω in M where |dψ|2 =
∑

i 〈dψ(ei), dψ(ei)〉h for a local
orthonormal frame field {ei}n

i=1 on M . One can prove that ψ is harmonic if and
only if τ(ψ) = 0, [9], where the tension field τ(ψ) is defined as

τ(ψ) =
∑

i

(∇eidψ(ei)− dψ(∇eiei)
)

.

We recall the Divergence Theorem (cf. [7]), to be used later.

Theorem 1.1 (Divergence Theorem). Let M be a compact Riemannian manifold
and X be a vector field on it. Then

∫

M
divX dM = 0 .

2. Second Order Linear Differential Operator
T

¤

Definition 2.1. Let T : X (M) → X (M) be a tensor on Riemannian manifold

(M,h). We define a second order linear differential operator
T
¤: C∞(M) → C∞(M)

as the following:

(2.1)
T
¤ f =

∑

i,j

TijH
f (ei, ej) =

∑

i

Hf (Tei, ei) ,

where {ei}n
i=1 is a local orthonormal frame field on M and Tij = 〈Tej , ei〉h.

It is easily seen that the equation (2.1) is independent of choice of frames and

so it is well defined. When the tensor T is symmetric, operator
T
¤ is Cheng-Yau

operator ¤ introduced in [8].
In local coordinates {xi} for M and h = [hij ], we have

T
¤ f =hl1l3hl2l4

〈
T (

∂

∂xl2
),

∂

∂xl1

〉

h

Hf (
∂

∂xl3
,

∂

∂xl4
)

=hl1l3hl2l4

〈
T (

∂

∂xl2
),

∂

∂xl1

〉

h

(
∂2f

∂xl3∂xl4
− Γli

l3l4

∂f

∂xli

)
,

where Γk
ij ’s are Christoffel symbols of the Levi-Civita connection ∇ on M .
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Remark 2.2. Let T t denote the transpose of tensor T with respect to Riemannian

metric h. Since Γli
l3l4

= Γli
l4l3

and
∂2f

∂xl3∂xl4
=

∂2f

∂xl4∂xl3
then

T
¤ f =

T t

¤ f .

Remark 2.3. One can see that
T
¤ f = div(T∇f)− 〈∇f, divT t

〉
. In fact, let {ei}n

i=1

is a local orthonormal frame field on M , then

div(T∇f) =
∑

i

〈(∇eiT )∇f + T∇ei∇f, ei〉

=
∑

i

〈∇f, (∇eiT
t)ei

〉
+

∑

i

〈T∇ei∇f, ei〉 =
〈∇f,divT t

〉
+

T
¤ f .

Example 2.4. Let f : Rn → R be defined as f(x1, . . . , xn) = x1, T be an arbitrary
(1, 1) tensor on Rn, and {∂i}n

i=1 be the canonical orthonormal frame on Rn. We
have df(∂i) = δi1 and ∇∂i∂j = 0 where ∇ is the canonical Levi-Civita connection on

Rn. Then we get
T
¤ f = 0.

Lemma 2.5. Let (M, h) be a Riemannian manifold and T be a tensor on it, and f

and g be smooth functions on M . Then

T
¤ (fg) = g

T
¤ f + f

T
¤ g + 〈∇f, T∇g〉+ 〈∇g, T∇f〉 .

Proof. Let {ei}n
i=1 be a local orthonormal frame on M such that (∇eiej) (p) = 0 at

a fix point p ∈ M for every i, j. Then at p, by equation (2.1) we have

T
¤ (fg) =

∑

i

∇Tei∇ei(fg) =
∑

i

∇Tei(g∇eif + f∇eig)

=
∑

i

(g∇Tei∇eif + f∇Tei∇eig + (∇Teig)(∇eif) + (∇Teif)(∇eig))

= g
T
¤ f + f

T
¤ g + 〈∇f, T∇g〉+ 〈∇g, T∇f〉 .

¤

Lemma 2.6. Let (M, h) be a compact Riemannian manifold and T be a tensor on
it, and f and g be smooth functions on M . Then
∫

M
f

T
¤ gdM =

∫

M
(g

T
¤ f + 〈∇f, T∇g〉h−〈∇g, T∇f〉h + 〈g∇f − f∇g, divT 〉h)dM .

Proof. Let {ei}n
i=1 be a local orthonormal frame on M such that (∇eiej) (p) = 0 at

a fix point p ∈ M for every i, j. We define the following well defined vector fields
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on M :

X = f
∑

i,j

Tji 〈∇g, ej〉h ei , Y = g
∑

i,j

Tji 〈∇f, ej〉h ei .

Therefore at p, we have

(2.2) divX =
∑

k

〈∇ek
X, ek〉h =

∑

i,j

(Tji(∇eif) 〈∇g, ej〉h + f(∇eiTji) 〈∇g, ej〉h

+ fTji 〈∇ei∇g, ej〉h) = 〈∇g, T∇f〉h + f 〈∇g, divT 〉h + f
T
¤ g ,

and similarly

(2.3) divY = 〈∇f, T∇g〉h + g 〈∇f,divT 〉h + g
T
¤ f .

So by equations (2.2) and (2.3), and Divergence Theorem we get the result. ¤

Theorem 2.7. Let (M, h) be a compact Riemannian manifold and T be a tensor
on it. Then divT = divT t.

Proof. By use of Remark 2.2 and Lemma 2.6, for tensors T t and
T + T t

2
, we get

(2.4)
∫

M
(
〈∇f, T t∇g

〉
h
− 〈∇g, T t∇f

〉
h

+
1
2

〈
g∇f − f∇g, div(T t − T )

〉
h
)dM = 0 .

Since f and g are arbitrary, equation (2.4) implies that div(T t − T ) = 0, and so
divT = divT t. ¤

Remark 2.8. Compactness of Theorem 2.7 is necessary. For instance, by consider-

ing T (x1, x2) =
[

0 0
x2 0

]
on R2, we have divT = 0 whilst divT t = ∂1.

As a generalization result of Maximum Principle for operators we give the fol-
lowing theorem.

Theorem 2.9. Let (M, h) be a compact Riemannian manifold, T be a (1, 1) tensor

on M which is definite and divT = 0, and f be a smooth function on M . If
T
¤ f = 0

then f is constant.

Proof. By Lemma 2.5, we have

(2.5)
T
¤ f2 = 2 〈T (∇f),∇f〉h .

Now using Lemma 2.6, we get

(2.6)
∫

M

T
¤ f2dM = 0 .
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So equations (2.5) and (2.6) result in∫

M
〈T (∇f),∇f〉h dM = 0 .

Since T is definite, we get 〈T (∇f),∇f〉h = 0 and so ∇f = 0. Therefore f is
constant. ¤

Definition 2.10. Let T be a tensor on Riemannian manifold (M, h), ψ : (M, h) →
(M, l) be a smooth map from (M, h) to a Riemannian manifold (M, l) and V ∈ X (ψ)

be a smooth vector field. We define the operator
T

¤: X (ψ) → X (ψ) as follow:

(2.7)
T

¤ V =
∑

i,j

Tij(∇ei∇ejV −∇∇eiejV ),

where {ei}n
i=1 is a local orthonormal frame field on M and Tij = 〈Tej , ei〉h.

It is easily seen that the equation (2.7) are independent of choice of frames and
so it is well defined.

Remark 2.11. Let R̄ be the curvature tensor of the induced connection on the

pullback bundle ψ∗TM . One can see that
T t

¤ V =
T

¤ V +
∑

i R̄(ei, T ei)V . When

T = I,
I

¤ V is the rough Laplacian.

Lemma 2.12. Let T be a tensor on Riemannian manifold (M,h), ψ : (M, h) →
(M, l) be a smooth map from (M,h) to a Riemannian manifold (M, l) and X,Y be
smooth vector fields on M . Then

T
¤ 〈X, Y 〉ψ∗l =

〈
T

¤ dψ(X), dψ(Y )

〉

l

+

〈
dψ(X),

T

¤ dψ(Y )

〉

l

+
∑

i

(〈∇T (ei)dψ(X),∇eidψ(Y )
〉
l
+

〈∇eidψ(X),∇T (ei)dψ(Y )
〉
l

)
,

where {ei}n
i=1 is a local orthonormal frame on M .

Proof. Let {ei}n
i=1 be a local orthonormal frame on M such that (∇eiej) (p) = 0 at

a fix point p ∈ M for every i, j. Then at p, by equations (2.1) and (2.7), we have

T
¤ 〈X, Y 〉ψ∗l =

∑

i,j

Tij

(∇ei∇ej 〈dψ(X), dψ(Y )〉l
)

=
∑

i,j

Tij

(∇ei

(〈∇ejdψ(X), dψ(Y )
〉
l
+

〈
dψ(X),∇ejdψ(Y )

〉
l

))
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=
∑

i,j

Tij

( 〈∇ejdψ(X),∇eidψ(Y )
〉
l
+

〈∇ei∇ejdψ(X), dψ(Y )
〉
l

+
〈∇eidψ(X),∇ejdψ(Y )

〉
l
+

〈
dψ(X),∇ei∇ejdψ(Y )

〉
l

)

=

〈
T

¤ dψ(X), dψ(Y )

〉

l

+

〈
dψ(X),

T

¤ dψ(Y )

〉

l

+
∑

i,j

Tij

〈∇ejdψ(X),∇eidψ(Y )
〉
l
+

∑

i,j

Tij

〈∇eidψ(X),∇ejdψ(Y )
〉
l

=

〈
T

¤ dψ(X), dψ(Y )

〉

l

+

〈
dψ(X),

T

¤ dψ(Y )

〉

l

+
∑

i

(〈∇T (ei)dψ(X),∇eidψ(Y )
〉
l
+

〈∇eidψ(X),∇T (ei)dψ(Y )
〉
l

)
.

¤

Theorem 2.13. Let (M, h) be a compact Riemannian manifold, T be a (1, 1) tensor
on M which is definite and divT = 0, X be a smooth vector field on M , and
ψ : (M, h) → (M, l) be a smooth map from (M,h) to a Riemannian manifold (M, l).

If
T

¤ dψ(X) = 0 then dψ(X) is parallel.

Proof. By Lemma 2.6 and Lemma 2.12, we have
T
¤ 〈X, X〉ψ∗l = 2

∑

i

〈∇T (ei)dψ(X),∇eidψ(X)
〉
l

and
∫

M

T
¤ 〈X,X〉ψ∗l dM = 0.

Thus
∫
M

∑
i

〈
∇(

T+Tt

2

)
(ei)

dψ(X),∇eidψ(X)
〉

l

dM = 0. Since T and so T+T t

2 is

definite, there is a local orthonormal frame {ei}n
i=1 on M which diagonalize T+T t

2 ,
and let {λi}n

i=1 be its corresponding eigenvalues. Therefore∫

M

∑

i

λi

〈∇eidψ(X),∇eidψ(X)
〉
l
dM = 0.

Definiteness implies that the integrand is zero, and so for every i, ∇eidψ(X) = 0.
Thus ∇dψ(X) = 0 on M . ¤

As an extra property of
T

¤, we state the following proposition.

Proposition 2.14. Let T be a tensor on a compact Riemannian manifold (M,h),
ψ : (M, h) → (M, l) be a smooth map from (M,h) to a Riemannian manifold (M, l),
and X, Y be smooth vector fields on M . Then
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∫

M

〈
dψ(X),

T

¤ dψ(Y )

〉

l

dM =
∫

M

〈
dψ(Y ),

T

¤ dψ(X)

〉

l

dM

+
∫

M

(〈∇T (ei)dψ(Y ),∇eidψ(X)
〉
l
− 〈∇T (ei)dψ(X),∇eidψ(Y )

〉
l

)
dM

+
∫

M

(〈
dψ(Y ),∇divT dψ(X)

〉
l
− 〈

dψ(X),∇divT dψ(Y )
〉
l

)
dM .

where {ei}n
i=1 is a local orthonormal frame on M .

Proof. Assume a local orthonormal frame {ei}n
i=1 such that

(∇eiej) (p) = 0 at a fix point p ∈ M for every i, j. Let’s define a well-defined vector
fields Z1 and Z2 on M as

Z1 :=
∑

i,j

Tij

〈
dψ(X),∇ejdψ(Y )

〉
l
ei , Z2 :=

∑

i,j

Tij

〈
dψ(Y ),∇ejdψ(X)

〉
l
ei.

So at p, we have

divZ1 =(∇eiTij)
〈
dψ(X),∇ejdψ(Y )

〉
l

+ Tij

〈∇eidψ(X),∇ejdψ(Y )
〉
l
+ Tij

〈
dψ(X),∇ei∇ejdψ(Y )

〉
l

(2.8)

=
〈
dψ(X),∇divT tdψ(Y )

〉
l
+

〈∇T (ei)dψ(X),∇eidψ(Y )
〉
l

+

〈
dψ(X),

T

¤ dψ(Y )

〉

l

.

and similarly

divZ2 =
〈
dψ(Y ),∇divT tdψ(X)

〉
l
+

〈∇T (ei)dψ(Y ),∇eidψ(X)
〉
l

+

〈
dψ(Y ),

T

¤ dψ(X)

〉

l

.(2.9)

Therefore by Theorem 2.7 and equations (??) and (2.9), and Divergence Theorem
we get the result. ¤

3. T -harmonic Maps

Definition 3.1. Let T be a tensor on Riemannian manifold (Mn, h), ψ : (M, h) →
(M, l) be a smooth map where h, l are Riemannian metrics on smooth manifolds M

and M , respectively and ∇, ∇ are Levi-Civita connections on M, M , respectively.
We denote the induced connection on the pullback bundle ψ∗TM by ∇ as well. We
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define a differential operator as follow:

(3.1)
T
¤ψ =

∑

i,j

Tij

(∇eidψ(ej)− dψ(∇eiej)
)
,

where {ei}n
i=1 is a local orthonormal frame field on M and Tij = 〈Tej , ei〉h.

It is easily seen that the equation (3.1) is independent of choice of frames and so
it is well defined.

In local coordinates {xi} for M and {yα} for M , h = [hij ] and ψ = (ψα),
T
¤ψ has

the following expression:
T
¤ψ =

(
T
¤ ψγ + hii′hjj′

〈
T (

∂

∂xj
),

∂

∂xi

〉

h

∂ψα

∂xi′
∂ψβ

∂xj′ Γ
γ
αβ ◦ ψ

)
∂

∂yγ
◦ ψ

=
(

T
¤ ψγ +

〈
T∇ψβ,∇ψα

〉
h
Γγ

αβ ◦ ψ

)
∂

∂yγ
◦ ψ,(3.2)

where Γγ
αβ’s are Christoffel symbols of the Levi-Civita connection ∇ on M .

Remark 3.2. As the equation (3.2) shows,
T
¤ψ =

Tt

¤ψ. When ψ is a smooth function

on M ,
T
¤ψ =

T
¤ ψ.

Definition 3.3. Let T be a tensor on Riemannian manifold (M, h), ψ : (M,h) →
(M, l) be a smooth map from (M, h) to a Riemannian manifold (M, l). We define a
T -energy functional for ψ on a compact domain Ω ⊂ M as follows:

ET (ψ) =
1
2

∑

i,j

∫

Ω
Tij 〈dψ(ei), dψ(ej)〉l dΩ ,

where {ei}n
i=1 is a local orthonormal frame field on Ω. We say that ψ is a T -harmonic

map if it is a critical point of the T -energy functional. That is for every variation
{ψt}t∈I of ψ supported in a compact domain Ω the following equation should be
satisfied:

d

dt

∣∣∣
t=0

ET (ψt) = 0 .

Theorem 3.4 (First variation formula of the T -energy functional). Let T be a tensor
on Riemannian manifold (M,h), ψ : (M,h) → (M, l) be a smooth map from (M, h)
to a Riemannian manifold (M, l). Then

(3.3)
d

dt

∣∣∣
t=0

ET (ψt) = −
∫

Ω

〈
V,

T
¤ψ +

1
2
dψ

(
div(T + T t)

)〉

l

dΩ .

where V is the variation vector field of a smooth variation {ψt}t∈I supported in a
compact domain Ω.
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Proof. Let Ψ : I×M → M be the variation {ψt}t∈I of ψ and ∇ denotes the induced
connection on the pullback bundle Ψ∗TM as well. Let et = ∂

∂t be the standard
coordinate vector field on I and {ei}n

i=1 be an orthonormal frame field on M . Since
[et, X] = 0 for every X ∈ X (M),

∇etdΨ(ei)
∣∣∣
t=0

=
(∇eidΨ(et) + dΨ[et, ei]

) ∣∣∣
t=0

= ∇eiV .

So we get that
(3.4)
d

dt

∣∣∣
t=0

ET (ψt) =
1
2

∑

i,j

∫

Ω
Tij

〈∇eiV, dψ(ej)
〉
l
dΩ +

1
2

∑

i,j

∫

Ω
Tij

〈∇ejV, dψ(ei)
〉
l
dΩ .

Let X and Y be the following well defined smooth vector fields on Ω

X =
∑

i,j

Tij 〈V, dψ(ej)〉l ei , Y =
∑

i,j

Tij 〈V, dψ(ei)〉l ej .

We need to compute divX and divY . Since div(.) =
∑

i 〈∇ei(.), ei〉 is independent
of the choice of the orthonormal frame field, we can choose the frame {ei}n

i=1, such
that (∇eiej) (p) = 0 at a fix point p ∈ M for every i, j. So at p,

divX =
∑

i

〈∇eiX, ei〉

=
∑

i,j

(
(∇eiTij) 〈V, dψ(ej)〉l + Tij

〈∇eiV, dψ(ej)
〉

+ Tij

〈
V,∇eidψ(ej)

〉)
(3.5)

=
〈
V, dψ

(
divT t

)〉
+

∑

i,j

Tij

〈∇eiV, dψ(ej)
〉

+
〈

V,
T
¤ψ

〉
,

divY =
∑

i

〈∇eiY, ei〉

=
∑

i,j

(
(∇ejTij) 〈V, dψ(ei)〉l + Tij

〈∇ejV, dψ(ei)
〉

+ Tij

〈
V,∇ejdψ(ei)

〉)

= 〈V, dψ (divT )〉+
∑

i,j

Tij

〈∇ejV, dψ(ei)
〉

+

〈
V,

∑

i,j

Tij∇eidψ(ej)

〉
(3.6)

= 〈V, dψ (divT )〉l +
∑

i,j

Tij

〈∇ejV, dψ(ei)
〉

+
〈

V,
T
¤ψ

〉
.

Thus Divergence Theorem 1.1, and equations (3.4), (3.5) and (3.6) yield equation
(3.3). ¤

Consequently, from Theorem 3.4, we get the following result.
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Corollary 3.5. Let T be a tensor on Riemannian manifold (M, h), ψ : (M, h) →
(M, l) be a smooth map from (M,h) to a Riemannian manifold (M, l). Then ψ is
T -harmonic map if and only if

(3.7)
T
¤ψ +

1
2
dψ

(
div(T + T t)

)
= 0 .

We call L.H.S of equation (3.7), Amin-tension field AT (ψ) =
T
¤ψ+

1
2
dψ

(
div(T + T t)

)

which is a generalization of the notion introduced in [3].

Remark 3.6. As we see when T = I , AI(ψ) = τ(ψ) where τ(ψ) is the tension field
and so I-harmonic condition is equivalent to being harmonic.

Example 3.7. Let ψ : Rn − {0} → Rn be defined as ψ(x) = x
|x|2 , T be a con-

stant symmetric matrix, {∂i}n
i=1 be the canonical orthonormal frame, and ∇ is the

canonical Levi-Civita connection on Rn. By straightforward computations we have

(3.8)
T
¤ψ =

1
|x|6

(|x|2 (−4Tx− 2tr(T )x) + 8 〈Tx, x〉x)
.

Since T is a constant matrix, by Corollary 3.5 we have ψ is T -harmonic if and only if
T
¤ψ = 0. Now suppose that λ1 and λ2 be two distinct eigenvalues with eigenvectors

V1 and V2 respectively. Substituting these eigenvectors in the equation
T
¤ψ = 0, we

get tr(T ) = 2λ1 = 2λ2 which is a contradiction. Therefore T just has one eigenvalue
and so T is scalar matrix. So by equation (3.8), we get ψ is T -harmonic map if and
only if T is scalar matrix and n = 2, and hence ψ is an harmonic map.

By Corollary 3.5, we can get the following result.

Corollary 3.8. Let T be a tensor on Riemannian manifold (M, h), ψ : (M, h) →
(M, l) be a smooth map from (M, h) to a Riemannian manifold (M, l), and f be a
smooth function on M . Then ψ is fT -harmonic map if and only if

f
T
¤ψ +

1
2
dψ

(
(T + T t)(∇f) + fdiv(T + T t)

)
= 0 .

Example 3.9. Let ψ : Rn → R be defined as ψ(x1, . . . , xn) = x1, T be a constant

matrix, and f be a smooth function. By Example 2.4 and equation (3.2),
T
¤ψ = 0.

By Corollary 3.8, ψ is fT -harmonic function if and only if

(3.9) dψ
(
(T + T t)(∇f)

)
= 0 .

Let T∂i =
∑

j Tji∂j and ∇f =
∑

i(∇∂if)∂i. Since dψ(∂i) = δi1, by equation (3.9), ψ

is fT -harmonic function if and only if
∑

i(∇∂if)(Ti1 +T1i) = 0, which is a first order
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homogeneous linear PDE with constant coefficients. If for every i, Ti1 + T1i = 0,
then f is an arbitrary function. If for some i0, Ti01 + T1i0 6= 0, then by analytical
solution of this PDE, we have f = F (c1, . . . , ĉi0 , . . . , cn) where ci = xi− Ti1+T1i

Ti01+T1i0
xi0

and F is a smooth function.

Proposition 3.10. Let T be a tensor on Riemannian manifold (M, h), ψ : (M, h) →
(M, l) be a smooth map from (M, h) to a Riemannian manifold (M, l), and fi,
i = 1, 2, be smooth positive functions on M . Then

i) if ψ is f1T -harmonic map and f2T -harmonic map, then (T +T t)(∇ ln f1

f2
) ∈

ker dψ.
ii) if (T + T t)(∇ ln f1

f2
) ∈ ker dψ, then ψ is f1T -harmonic map if and only if it

is f2T -harmonic map.

Proof. At first we prove (i). By Corollary 3.8, we have ψ is f1T -harmonic map if
and only if

f1

T
¤ψ +

1
2
dψ

(
(T + T t)∇f1 + f1div(T + T t)

)
= 0 ,(3.10)

and ψ is f2T -harmonic map if and only if

f2

T
¤ψ +

1
2
dψ

(
(T + T t)∇f2 + f2div(T + T t)

)
= 0 .(3.11)

So by equations (3.10) and (3.11), we get

1
f1

dψ
(
(T + T t)∇f1 + f1div(T + T t)

)
=

1
f2

dψ
(
(T + T t)∇f2 + f2div(T + T t)

)
.

Therefore (T + T t)(∇ ln f1

f2
) ∈ ker dψ. In a similar way, we get (ii). ¤

Lemma 3.11. Let T be a tensor on Riemannian manifold (M,h), ψ : (M, h) →
(M, l) be a smooth map from (M, h) to a Riemannian manifold (M, l), and f be a
smooth positive function on M . Assume that ϕ : (M, fh) → (M, l) where ϕ(p) =
ψ(p) for every p ∈ M . Then

• i)

T
¤ϕ =

1
f

(
T
¤ψ − 1

2
dψ

(
(T + T t)

h
∇ ln f − (

h
trT )

h
∇ ln f

))
,

• ii) ϕ is a T -harmonic map if and only if

T
¤ψ +

1
2
dψ

((n

2
− 1

)(
(T + T t)

h
∇ ln f

)
+

h
div (T + T t)

)
= 0 .
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Proof of case (i).
Let {ei}n

i=1 be a local orthonormal frame field on (M, fh), that is

(3.12) f 〈ei, ej〉h = δij .

Then we have

(3.13) Tij = f 〈Tej , ei〉h .

We put gi = f
1
2 ei. Then by equations (3.12) and (3.13), we get

(3.14) 〈gi, gj〉h = δij , Tij = 〈T (gj), gi〉h .

Therefore by Definition 3.1 and equation (3.14), we have

T
¤ϕ =

∑

i,j

Tij

(
l

∇ei dϕ(ej)− dϕ(
fh

∇ei ej)

)

=
∑

i,j

Tij

(
l

∇ gi

f
1
2

dϕ(
gj

f
1
2

)− dϕ(
fh

∇ gi

f
1
2

gj

f
1
2

)

)

=
∑

i,j

1
f

Tij

(
l

∇gi dϕ(gj)− dϕ(
fh

∇gi gj)

)

=
∑

i,j

1
f

Tij

(
l

∇gi dϕ(gj)− dϕ
( h
∇gi gj +

1
2f

df(gj)gi +
1
2f

df(gi)gj

− 1
2f

〈
gi, gj

〉
h

h
∇ f

))

=
1
f

(
T
¤ψ − 1

2f
Tijdψ

(
df(gj)gi + df(gi)gj − 〈gi, gj〉h

h
∇ f

))

=
1
f

(
T
¤ψ − 1

2f
dψ

(∑

i

(df(T (gi))gi + df(gi)T (gi)− 〈gi, T (gi)〉h
h
∇ f)

))

=
1
f

(
T
¤ψ − 1

2f
dψ

(
(T + T t)

h
∇ f − (

h
trT )

h
∇ f

))
.

Proof of case (ii).
By Corollary 3.5 we get

(3.15)
T
¤ϕ +

1
2
dϕ

(
fh

div (T + T t)
)

= 0 ,

At first we compute
fh

div T . As before, let {ei}n
i=1 be a local orthonormal frame field

on (M, fh) and gi = f
1
2 ei. So
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fh

div T =
∑

i

(
fh

∇ei T )ei =
1
f

∑

i

(
fh

∇gi T )gi =
1
f

∑

i

(
fh

∇gi Tgi − T
fh

∇gi gi

)

=
1
f

∑

i

(
h
∇gi Tgi +

1
2f

(
df(T (gi))gi + df(gi)T (gi)− 〈gi, T (gi)〉h

h
∇ f

)

−T

(
h
∇gi gi +

1
2f

(
df(gi)gi + df(gi)gi − 〈gi, gi〉h

h
∇ f

)))

=
1
f

(
h

div T +
1
2f

(∑

i

(df(T (gi))gi)− (
h
tr T )

h
∇ f + (n− 1)T

h
∇ f

))
,

and similarly, we compute
fh

div T t, and then by substituting in equation (3.15), and
by use of case (i) we get the result. ¤

Proposition 3.12. Let T be a tensor on Riemannian manifold (M, h), ψ : (M, h) →
(M, l) be a smooth map from (M, h) to a Riemannian manifold (M, l), and f1 and
f2 be smooth positive functions on M . Assume that ϕ : (M, f2h) → (M, l) be
ϕ(p) = ψ(p) for every p ∈ M . Then

i) if ψ is f1T -harmonic map and ϕ is T -harmonic map, then f1 and f2 satisfy

the equation (T + T t)
h
∇ ln f

(n
2−1)

2
f1

∈ ker dψ.

ii) if f1 and f2 satisfy the equation (T + T t)
h
∇ ln f

(n
2−1)

2
f1

∈ ker dψ , then, ψ is
f1T -harmonic map if and only if ϕ is T -harmonic map.

Proof. By Corollary 3.8 we have ψ is f1T -harmonic map if and only if

(3.16)
T
¤ψ +

1
2
dψ

(
(T + T t)

h
∇ ln f1+

h
div (T + T t)

)
= 0 ,

and by Lemma 3.11, ϕ is T -harmonic map if and only if

(3.17)
T
¤ψ +

1
2
dψ

((n

2
− 1

)
(T + T t)

h
∇ ln f2+

h
div (T + T t)

)
= 0 .

Therefore by equalizing equations (3.16) and (3.17), we prove case (i). In a similar
way, we get (ii). ¤

Theorem 3.13. Let T be a tensor on Riemannian manifold (M, h), ψ : (M, h) →
(M, l) be a smooth map from (M, h) to a Riemannian manifold (M, l), f1 and f2 be
smooth positive functions on M , and ψ be a conformal immersion ψ∗l = f2h. Then
ψ is f1T -harmonic map if and only if

(3.18)

{ ∑
i B(Tei, ei) = 0,

(T + T t)
h
∇ ln(f1f2)+

h
div (T + T t)− (

h
trT )

h
∇ ln f2 = 0 ,
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where B is the second fundamental form of conformal immersion ψ and {ei}n
i=1 is

a local orthonormal frame field on (M,h).

Proof. Since ψ is a conformal immersion, so the second fundamental form

(3.19) B(ei, ej) = ∇eidψ(ej)− dψ(
f2h

∇ ei ej),

is normal to tangent space of submanifold ψ(M) ⊂ M . Thus by equation (3.19), we
have

(3.20)
T
¤ψ=

∑

i,j

Tij

(
∇eidψ(ej)− dψ(

h
∇ei ej)

)
=

∑

i,j

Tij

(
B(ei, ej) + dψ(

f2h

∇ ei ej−
h
∇ei ej)

)

=
∑

i,j

Tij

(
B(ei, ej) +

1
2f2

dψ

(
df2(ej)ei + df2(ei)ej − δij

h
∇ f2

))

=
∑

i

(
B(ei, T ei) +

1
2f2

dψ

(
df2(Tei)ei + df2(ei)Tei − Tii

h
∇ f2

))

=
∑

i

B(Tei, ei) +
1

2f2
dψ

(∑

i

〈
h
∇ f2, T (ei)

〉

h

ei + T
h
∇ f2 − (

h
trT )

h
∇ f2

)

=
∑

i

B(Tei, ei) +
1
2
dψ

(
(T + T t)

h
∇ ln f2 − (

h
trT )

h
∇ ln f2

)
.

By Corollary 3.8 we have ψ is f1T -harmonic map if and only if

(3.21)
T
¤ψ +

1
2
dψ

(
(T + T t)

h
∇ ln f1+

h
div (T + T t)

)
= 0 .

Now substituting equation (3.20) in equation (3.21), we get
(3.22)

∑

i

B(Tei, ei) +
1
2
dψ

(
(T + T t)

h
∇ ln(f1f2)− (

h
trT )

h
∇ ln f2+

h
div (T + T t)

)
= 0 .

By noting normal and tangential part of equation (3.22), we get system of equations
(3.18). ¤

Remark 3.14 (Proposition 1.1 of [15]). By Theorem 3.13, a conformal immersion
ψ∗l = f2h, is f1-harmonic map if and only if the mean curvature vector field H = 0,
that is ψ is minimal and f1 = Cf

n
2
−1

2 for some constant C. In particular, an isometric
immersion is f -harmonic if and only if f is constant and hence ψ is harmonic.

Proposition 3.15. Let ψ1 : (M, h) → (M, l) and ψ2 : (M, l) → (M, k) be smooth
maps between Riemannian manifolds M , M and M , M , and ∇, ∇,∇ be Levi-Civita
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connections on M, M, M , respectively, f a smooth function , and T a tensor on
Riemannian manifold M . Then ψ2 ◦ ψ1 is a fT -harmonic map if and only if

f
∑

i

(
∇dψ1(ei)dψ2

)
dψ1(T (ei))+dψ2

(
f

T
¤ψ1 +

1
2
dψ1

(
(T + T t)∇f + fdiv(T + T t)

))
= 0 ,

where {ei}n
i=1 is a local orthonormal frame field on M . Especially, If ψ1 is a fT -

harmonic map, then ψ2 ◦ ψ1 is a fT -harmonic map if and only if

f
∑

i

(
∇dψ1(ei)dψ2

)
dψ1(T (ei)) = 0 .

Proof. Assume an local orthonormal frame {ei}n
i=1 on M such that (∇eiej) (p) = 0

at a fix point p ∈ M for every i, j. Then by Definition 3.1, we have

T
¤(ψ2 ◦ ψ1) =

∑

i,j

Tij∇eid(ψ2 ◦ ψ1)(ej)

=
∑

i,j

Tij

((
∇dψ1(ei)dψ2

)
dψ1(ej) + dψ2

(∇eidψ1(ej)
))

=
∑

i

(
∇dψ1(ei)dψ2

)
dψ1(T (ei)) + dψ2

(
T
¤ψ1

)
.(3.23)

By Corollary 3.8 we have ψ2 ◦ ψ1 is a fT -harmonic map if and only if

(3.24) f
T
¤(ψ2 ◦ ψ1) +

1
2
d(ψ2 ◦ ψ1)

(
(T + T t)∇f + fdiv(T + T t)

)
= 0 .

Therefore substituting equation (3.23) in equation (3.24) we get the result. ¤

Remark 3.16. Note that by Proposition 3.15, we can not get that ψ2 is f -harmonic
map if ψ1 and ψ2 ◦ ψ1 are fT -harmonic maps, even if ψ1 is an identity map and
T is definite symmetric tensor. We show it as the following. Let ψ1 : R2 → R2 be
identity map, and ψ2 : R2 → R, ψ2(x1, x2) = x1. By Example 3.9, if f = f(x1) is
non constant, then ψ2 is not a f -harmonic map. By Corollary 3.8, ψ1 and ψ2 are fT -

harmonic maps if T∇f + fdivT = 0. So for every j, f ′(x1)Tj1 + f(x1)
∑

i

∂Tji

∂xi
= 0.

If T21 = 0, we have T11 = k
|f(x1)|e

g(x2) where g is a smooth function and k is some
constant, and T22 = T22(x1). Therefore we can choose a definite diagonal tensor T

to prove the claim.
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4. fLk-harmonic Hypersurfaces

In this section, as application of fT -harmonic maps for conformal immersions,
we consider fLk-harmonic hypersurfaces in space forms, [4], which is fT -harmonic
hypersurfaces when T is Pk transformation.

Theorem 4.1. Let ψ : Mn → Rn+1(c) be an isometric immersion from a connected
oriented Riemannian manifold M into a simply connected space form Rn+1(c), and
f be a smooth positive function on M . Then ψ is an fLk-harmonic hypersurface if
and only if Hk+1 = 0 and Pk∇f = 0.

Proof. As we know the second fundamental form of ψ is B(X, Y ) = 〈S(X), Y 〉N
where S is the shape operator and X, Y are vector fields on M , and N as the unit nor-
mal direction. The Pk’s transformation are symmetric and free-divergence in space
forms. Now by putting T = Pk in Theorem 3.13, we get

∑
i 〈S ◦ Pk(ei), (ei)〉N = 0

where {ei}n
i=1 is a local orthonormal frame field on M , and Pk∇f = 0. Since

tr(S ◦ Pk) = (k + 1)sk+1, sk+1 = 0. ¤

Remark 4.2. As it is well known totally umbilic hypersurfaces of dimension equal
or greater than two in the Euclidean space are hyperplanes and hyperspheres, and in
the Hyperbolic space are obtained by intersecting with affine hyperplanes, especially
are hyperspheres and hyperbolic spaces of codimension one, and in the Euclidean
sphere are hyperspheres, hence are of constant principal curvatures. So Theorem 4.1
implies that a totally umbilic hypersurface M of Rn+1(c) is fLk-harmonic if and only
if, f is arbitrary smooth positive function on M if k 6= 0, and f is constant positive
function if k = 0, and in both cases M is an open piece of Rn when c = 0 or an open
piece of Hn(−1) when c = −1 or an open piece of Sn(1) when c = 1.

Remark 4.3. Consider the cylinder S1(r)×R ⊂ R3. Since H1 6= 0 and H2 = 0, by
Theorem 4.1, it is an L1-harmonic hypersurface but not harmonic.

Theorem 4.4. Let ψ : M → R3(c) be an isometric immersion from a connected
oriented Riemannian surface M into a simply connected space form R3(c) and f be
a smooth positive function on M . Then ψ is an fL1-harmonic surface if and only
if the principal curvatures are zero and 2H1, and H1∇vf = 0 for every vector v in
the distribution of space of principal vectors of zero’s principal curvature.

Proof. By Theorem 4.1, M is an fL1-harmonic hypersurface if and only if s2 = 0
and S∇f = s1∇f . Since s2 = 0, principal curvatures are zero and s1. Let {e1, e2}
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be a local orthonormal principal vector fields, corresponding to principal curvatures
zero and s1, respectively. So by S∇f = s1∇f , we get s1∇e1f = 0. The proof of
converse is straightforward. ¤

Theorem 4.5. Let ψ : M → R3(c),(c = 0, 1), be an isometric immersion from a
complete connected oriented Riemannian surface M into a simply connected space
form R3(c). If c = 0, then ψ is fL1-harmonic surface if and only if ψ(M) is a
cylinder over planar curve and H1∇vf = 0 for every vector v in the distribution
of space of principal vectors of zero’s principal curvature. If c = 1, then ψ is fL1-
harmonic surface if and only if ψ(M) is S2(1) and f is arbitrary smooth positive
function on M .

Proof. If H2 = 0, we have constant sectional curvature K = c, and so ψ is a space
form. By Hartman-Nirenberg theorem and Liebmann theorem, the only complete
oriented two dimensional space form with constant sectional curvature K = c in
R3(c) is: a cylinder over planar curve if c = 0; S2(1) if c = 1 (cf. [10, 11, 14]). Now
by Remark 4.2, Theorem 4.1 and Theorem 4.4, we get the result. ¤

As a result of Theorem 4.1, we can get the following corollary for isoparametric
hypersurfaces in space forms (see proof of Theorem 4.5 of [3]).

Corollary 4.6. Let ψ : Mn → Rn+1(c), be an isoparametric hypersurface immersed
into simply connected space form Rn+1(c). If c = 0, then ψ is an fLk-harmonic
hypersurface if and only if ψ(M) is an open piece of Rn, and f is arbitrary smooth
positive function on M if k 6= 0, and f is constant positive function if k = 0, or
ψ(M) is an open piece of generalized right cylinder Sm(r) × Rn−m with r > 0 and
m ≤ k, and f is an arbitrary smooth positive function on M if m < k, and f is
positive constant on each integral submanifold of distribution of space of principal
vectors of zero’s principal curvature if m = k. If c = −1, then ψ is an fLk-harmonic
hypersurface if and only if ψ(M) is an open piece of Hn(−1), and f is arbitrary
smooth positive function on M if k 6= 0, and f is constant positive function if k = 0.
If c = 1 and M has at most two principal curvatures, then ψ is an fLk-harmonic
hypersurface if and only if ψ(M) is an open piece of Sn(1), and f is arbitrary smooth
positive function on M if k 6= 0, and f is constant positive function if k = 0, or
ψ(M) is an open piece of Sm( 1√

α2+1
)×Sn−m( α√

α2+1
) with α > 0, and α and f satisfy

the following equations:
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∑

i

(
m

i

)(
n−m

k + 1− i

)
(−α2)i = 0 ,

∑

i

(
m− 1

i

)(
n−m

k − i

)
(−α2)i∇vf =

∑

i

(
m

i

)(
n−m− 1

k − i

)
(−α2)i∇wf = 0 ,

for every vector v and w in the distribution of space of principal vectors corresponding
to α and − 1

α principal curvatures, respectively.

Theorem 4.7. Let ψ : Mn → Rn+1(c) be an isometric immersion from a connected
oriented Riemannian manifold M into a simply connected space form Rn+1(c), and
f be a smooth positive function on M . If all principal curvature are non negative
(it is called weakly convex), then ψ is an fLk-harmonic hypersurface if and only if
ψ(M) is an open piece of Rn when c = 0 or an open piece of Hn(−1) when c = −1
or an open piece of Sn(1) when c = 1, and in all cases, f is arbitrary smooth positive
function on M if k 6= 0, and f is constant positive function if k = 0.

Proof. Since all all principal curvature are non negative, so if Hk+1 = 0, then all
principal curvature are zero. That is the hypersurface M is totally geodesic. Now
by Remark 4.2, we get the result. ¤

Let us recall that every compact hypersurface immersed into the Euclidean space
or in the hyperbolic space or in the Euclidean hemisphere has an elliptic point (cf.
[1, 2]), that is, a point where all the principal curvatures are positive (or negative).
Therefore for every k, k = 0, . . . , n, k-th mean curvature is not identically zero. So
we have the following non-existence result as a consequence of Theorem 4.1.

Corollary 4.8. There exists no compact orientable fLk-harmonic hypersurface ei-
ther in Rn+1 or Hn+1 or Sn+1

+ .
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1. L. J. Aĺıas & N. Gürbüz: An extension of Takahashi theorem for the linearized
operators of the higher order mean curvatures. Geom. Ded. 121 (2006), 113-127.
https://doi.org/10.1007/s10711-006-9093-9
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