• Title/Summary/Keyword: Hot-carrier-induced degradation

Search Result 32, Processing Time 0.043 seconds

A study on the hot carrier induced performance degradation of RF NMOSFET′s (Hot carrier에 의한 RF NMOSFET의 성능저하에 관한 연구)

  • 김동욱;유종근;유현규;박종태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.60-66
    • /
    • 1998
  • The hot carrier induced performance degradation of 0.8${\mu}{\textrm}{m}$ RF NMOSFET has been investigated within the general framework of the degradation mechanism. The device degradation model of an unit finger gate MOSFET could be applied for the device degradation of the multi finger gate RF NMOSFET. The reduction of cut-off frequency and maximum frequency can be explained by the transconductance reduction and the drain output conductance increase, which are due to the interface state generation after the hot carrier stressing. From the correlation between hot carrier induced DC and RF performance degradation, we can predict the RF performance degradation just by the DC performance degradation measurement.

  • PDF

Hot Carrier Induced Device Degradation in GAA MOSFET (Hot carrier에 의한 GAA MOSFET의 열화현상)

  • 최락종;이병진;장성준;유종근;박종태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.5-8
    • /
    • 2002
  • Hot carrier induced device degradation is observed in thin-film, gate-all-around SOI transistor under DC stress conductions. We observed the more significant device degradation in GAA device than general single gate SOI device due to the degradation of edge transistor. Therefore, it is expected that the maximum available supply voltage of GAA transistor is lower than that o( bulk MOSFET or single gale SOI device.

  • PDF

Characteristics of AC Hot-carrier-induced Degradation in nMOS with NO-based Gate Dielectrics (NO기반 게이트절연막 NMOS의 AC Hot Carrier 특성)

  • Chang, Sung-Keun;Kim, Youn-Jang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.586-591
    • /
    • 2004
  • We studied the dependence of hot-tarrier-induced degradation characteristics on nitrogen concentration in NO(Nitrided-Oxide) gate of nMOS, under ac and dc stresses. The $\Delta$V$_{t}$ and $\Delta$G$_{m}$ dependence of nitrogen concentration were observed, We observed that device degradation was suppressed significantly when the nitrogen concentration in the gate was increased. Compared to $N_2$O oxynitride, NO oxynitride gate devices show a smaller sensitivity to ac stress frequency. Results suggest that the improved at-hot carrier immunity of the device with NO gate may be due to the significantly suppressed interface state generation and neutral trap generation during stress.ess.

The RF performance degradation in Bulk DTMOS due to Hot Carrier effect (Hot Carrier 현상에 의한 Bulk DTMOS의 RF성능 저하)

  • Park Jang-Woo;Lee Byoung-Jin;Yu Jong-Gun;Park Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.9-14
    • /
    • 2005
  • This paper reports the hot carrier induced RF performance degradation of bulk dynamic threshold voltage MOSFET (B-DTMOS) compared with bulk MOSFET (B-MOS). In the normal and moderate mode operations, the degradations of cut-off frequency $(f_{T})$ and minimum noise figure $(F_{min})$ of B-DTMOS are less significant than those of B-MOS devices. Our experimental results show that the RF performance degradation is more significant than the U performance degradation after hot carrier stressing. Also, the degradation characteristics of RF power Performance of B-DTMOS due to hot carrier effects are measured for the first time.

A Study on New LDD Structure for Improvements of Hot Carrier Reliability (핫 캐리어 신뢰성 개선을 위한 새로운 LDD 구조에 대한 연구)

  • 서용진;김상용;이우선;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The hot carried degradation in a metal oxide semiconductor device has been one of the most serious concerns for MOS-ULSI. In this paper, three types of LDD(lightly doped drain) structure for suppression of hot carried degradation, such as decreasing of performance due to spacer-induced degradation and increase of series resistance will be investigated. in this study, LDD-nMOSFETs used had three different drain structure, (1) conventional surface type LDD(SL), (2) Buried type LDD(BL), (3) Surface implantation type LDD(SI). As experimental results, the surface implantation the LDD structure showed that improved hot carrier lifetime to comparison with conventional surface and buried type LDD structures.

Hot-Carrier-Induced Degradation in Submicron MOS Transistors (Submicron MOS 트랜지스터의 뜨거운 운반자에 의한 노쇠현상)

  • 최병진;강광남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.7
    • /
    • pp.780-790
    • /
    • 1988
  • We have studied the hot-carrier-induced degradation caused by the high channel electric field due to the decrease of the gate length of MOSFET used in VLSI. Under DC stress, the condition in which maximum substrate current occures gave the worst degradation. Under AC dynamic stress, other conditions, the pulse shape and the falling rate, gave enormous effects on the degradation phenomena, especially at 77K. Threshold voltage, transconductance, channel conductance and gate current were measured and compared under various stress conditions. The threshold voltage was almost completely recovered by hot-injection stress as a reverse-stress. But, the transconductance was rapidly degraded under hot-hole injection and recovered by sequential hot-electron stress. The Si-SiO2 interface state density was analyzed by a charge pumping technique and the charge pumping current showed the same trend as the threshold voltage shift in degradation process.

  • PDF

Hot Carrier Induced Performance Degradation of Peripheral Circuits in Memory Devices (소자열화로 인한 기억소자 주변회로의 성능저하)

  • Yun, Byung-Oh;Yu, Jong-Gun;Jang, Byong-Kun;Park, Jong-Tae
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.34-41
    • /
    • 1999
  • In this paper, hot carrier induced performance degradation of peripheral circuits in memory devices such as static type imput buffer, latch type imput buffer and sense amplifier circuit has been measured and analyzed. The used design and fabrication of the peripheral circuits were $0.8 {\mu}m$ standard CMOS process. The analysis method is to find out which device is most significantly degraded in test circuits by using spice simulation, and then to characterize the correlation between device and circuit performance degradation. From the result of the performance degradation of static type input buffer, the trip point was increased due to the transconductance degradation of NMOS. In the case of latch type input buffer, there was a time delay due to the transconductance degradation of NMOS device. Finally, hot carrier induced the decrease of half-Vcc voltage and the increased of sensing voltage in sense amplifier circuits have been measured.

  • PDF

Hot-carrier Induced MOSFET Degradation and its Lifetime Measurement (Hot-carrier 효과로 인한 MOSFET의 성능저하 및 동작수명 측정)

  • 김천수;김광수;김여환;김보우;이진효
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.182-187
    • /
    • 1988
  • Hot carrier induced device degradation characteristics under DC bias stress have been investigated in n-MOSFETs with channel length of 1.2,1.8 um, and compared with those of LDD structure device with same channel length. Based on these results, the device lifetime in normal operating bias(Vgs=Vds=5V) is evaluated. The lifetimes of conventional and LDD n-MOSFET with channel length of 1.2 um are estimated about for 17 days and for 12 years, respectively. The degradation rate of LDD n-MOSFET under the same stress is the lowest at n-region implnatation dose of 2.5E15 cm-\ulcorner while the substrate current is the lowest at the dose of 1E13cm-\ulcorner Thses results show that the device degradation characteristics are basic measurement parameter to find optimum process conditions in LDD devices and evaluate a reliability of sub-micron device.

  • PDF

Hot-Carrier Induced Degradation in Submicron MOS Transistor (Submicron MOSTransistor에서 Hot-Carrier에 의한 열화현상의 연구)

  • Choi, Byung-Jin;Kang, Kwang-Nham
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.469-472
    • /
    • 1987
  • The hot-carrier induced degradation in very short-channel MOSFET was studied systematically. Under the traditional DC stress conditions, the threshold voltage shift (${\Delta}Vt$) and the transconductance degradation (${\Delta}Gm$/(Gmo-${\Delta}Gm$)) were confirmed to depend exponentially on the stress time and the dependency between the two parameters was proved to be linear. And the degradation due to the DC stress across gate and drain was studied. As the AC dynamic process is more realistic in actual device operation, the effects of dynamic stresses were studied.

  • PDF

Hot carrier induced device degradation in amorphous InGaZnO thin film transistors with source and drain electrode materials (소스 및 드레인 전극 재료에 따른 비정질 InGaZnO 박막 트랜지스터의 소자 열화)

  • Lee, Ki Hoon;Kang, Tae Gon;Lee, Kyu Yeon;Park, Jong Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.82-89
    • /
    • 2017
  • In this work, InGaZnO thin film transistors with Ni, Al and ITO source and drain electrode materials were fabricated to analyze a hot carrier induced device degradation according to the electrode materials. From the electrical measurement results with electrode materials, Ni device shows the best electrical performances in terms of mobility, subthreshold swing, and $I_{ON}/I_{OFF}$. From the measurement results on the device degradation with source and drain electrode materials, Al device shows the worst device degradation. The threshold voltage shifts with different channel widths and stress drain voltages were measured to analyze a hot carrier induced device degradation mechanism. Hot carrier induced device degradation became more significant with increase of channel widths and stress drain voltages. From the results, we found that a hot carrier induced device degradation in InGaZnO thin film transistors was occurred with a combination of large channel electric field and Joule heating effects.