• Title/Summary/Keyword: Hopf-Bifurcation

Search Result 95, Processing Time 0.031 seconds

MEAN SQUARE STABILITY IN A MODIFIED LESLIE-GOWER AND HOLLING-TYPE II PREDATOR-PREY MODEL

  • Pal, Pallav Jyoti;Sarwardi, Sahabuddin;Saha, Tapan;Mandal, Prashanta Kumar
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.781-802
    • /
    • 2011
  • Of concern in the paper is a Holling-Tanner predator-prey model with modified version of the Leslie-Gower functional response. Dynamical behaviours such as stability, permanence and Hopf bifurcation have been carried out deterministically. Using the normal form theory and center manifold theorem, the explicit formulae determining the stability and direction of Hopf bifurcation have been derived. The deterministic model is extended to a stochastic one by perturbing the growth equation of prey and predator by white and colored noises and finally the mean square stability of the stochastic model systems is investigated analytically. An extensive quantitative analysis has been performed based on numerical computation so as to validate the applicability of the proposed mathematical model.

EFFECT OF FEAR ON A MODIFIED LESLI-GOWER PREDATOR-PREY ECO-EPIDEMIOLOGICAL MODEL WITH DISEASE IN PREDATOR

  • PAL, A.K.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.375-406
    • /
    • 2020
  • The anti-predator factor due to fear of predator in eco- epidemiological models has a great importance and cannot be evaded. The present paper consists of a modified Lesli-Gower predator-prey model with contagious disease in the predator population only and also consider the fear effect in the prey population. Boundedness and positivity have been studied to ensure the eco-epidemiological model is well-behaved. The existence and stability conditions of all possible equilibria of the model have been studied thoroughly. Considering the fear constant as bifurcating parameter, the conditions for the existence of limit cycle under which the system admits a Hopf bifurcation are investigated. The detailed study for direction of Hopf bifurcation have been derived with the use of both the normal form and the central manifold theory. We observe that the increasing fear constant, not only reduce the prey density, but also stabilize the system from unstable to stable focus by excluding the existence of periodic solutions.

Bifurcation Analysis of a Spatiotemporal Parasite-host System

  • Baek, Hunki
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.335-347
    • /
    • 2020
  • In this paper, we take into account a parasite-host system with reaction-diffusion. Firstly, we derive conditions for Hopf, Turing, and wave bifurcations of the system in the spatial domain by means of linear stability and bifurcation analysis. Secondly, we display numerical simulations in order to investigate Turing pattern formation. In fact, the numerical simulation discloses that typical Turing patterns, such as spotted, spot-stripelike mixtures and stripelike patterns, can be formed. In this study, we show that typical Turing patterns, which are well known in predator-prey systems ([7, 18, 25]), can be observed in a parasite-host system as well.

Hopf-bifurcation Analysis of a Delayed Model for the Treatment of Cancer using Virotherapy

  • Rajalakshmi, Maharajan;Ghosh, Mini
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.119-132
    • /
    • 2022
  • Virotherapy is an effective method for the treatment of cancer. The oncolytic virus specifically infects the lyse cancer cell without harming normal cells. There is a time delay between the time of interaction of the virus with the tumor cells and the time when the tumor cells become infectious and produce new virus particles. Several types of viruses are used in virotherapy and the delay varies with the type of virus. This delay can play an important role in the success of virotherapy. Our present study is to explore the impact of this delay in cancer virotherapy through a mathematical model based on delay differential equations. The partial success of virotherapy is guarenteed when one gets a stable non-trivial equilibrium with a low level of tumor cells. There exits Hopf-bifurcation by considering the delay as bifurcation parameter. We have estimated the length of delay which preserves the stability of the non-trivial equilibrium point. So when the delay is less than a threshold value, we can predict partial success of virotherapy for suitable sets of parameters. Here numerical simulations are also performed to support the analytical findings.

SPIRAL WAVE GENERATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH TWO TIME DELAYS

  • GAN, WENZHEN;ZHU, PENG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1113-1122
    • /
    • 2015
  • This paper is concerned with the pattern formation of a diffusive predator-prey model with two time delays. Based upon an analysis of Hopf bifurcation, we demonstrate that time delays can induce spatial patterns under some conditions. Moreover, by use of a series of numerical simulations, we show that the type of spatial patterns is the spiral wave. Finally, we demonstrate that the spiral wave is asymptotically stable.

PATTERN FORMATION IN A GENERAL DEGN-HARRISON REACTION MODEL

  • Zhou, Jun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.655-666
    • /
    • 2017
  • In this paper, we study the pattern formation to a general Degn-Harrison reaction model. We show Turing instability happens by analyzing the stability of the unique positive equilibrium with respect to the PDE model and the corresponding ODE model, which indicate the existence of the non-constant steady state solutions. We also show the existence periodic solutions of the PDE model and the ODE model by using Hopf bifurcation theory. Numerical simulations are presented to verify and illustrate the theoretical results.

EFFECT OF MATURATION AND GESTATION DELAYS IN A STAGE STRUCTURE PREDATOR PREY MODEL

  • Banerjee, Sandip;Mukhopadhyay, B.;Bhattacharyya, R.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1379-1393
    • /
    • 2010
  • In this paper, a stage-structured predator prey model (stage structure on prey) with two discrete time delays has been discussed. The two discrete time delays occur due to maturation delay and gestation delay. Linear stability analysis for both non-delay as well as with delays reveals that certain thresholds have to be maintained for coexistence. Numerical simulation shows that the system exhibits Hopf bifurcation, resulting in a stable limit cycle.

Sustained Oscillation of an Inverter-Fed Induction Motor Drive System and its Stabilization

  • Li Hongmei;Hikihara Takashi
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.80-84
    • /
    • 2006
  • The sustained oscillation of rotor speed is often experienced in PWM inverter induction motor (IM) drive systems. In this paper the oscillation is investigated from the point of view of Hopf bifurcation theory. The sufficient and necessary conditions for existence of limit cycle are introduced to determine the bifurcation set in the stator voltage versus stator frequency plane. According to the conditions it is clarified that the bifurcation set inherently exists in the instable operation of IM. Moreover, it is numerically shown that the V/f curve can be adjusted to stabilize the sustained oscillation of rotor speed.

Chaotic Thermal Convection of a Intermediate Prandtl-Number Fluid in a Horizontal Annulus: Pr=0.2 (수평 환형 공간에서의 중간 Prandtl 수 유체의 혼돈 열대류: Pr=0.2)

  • Yu, Ju-Sik;Kim, Yong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.433-441
    • /
    • 2001
  • Natural convection of a fluid with intermediate Prand시 number of Pr=0.2 in a horizontal annulus is considered, and the bifurcation phenomena and chaotic flows are numerically investigated. The unsteady two-dimensional streamfunction-vorticity equation is solved with finite difference method. The steady downward flow with two counter-rotating eddies bifurcates to a simple periodic flow with a fundamental frequency. And afterwards, second Hopf bifurcation occurs, and a quasi-periodic flow with two incommensurable frequencies appears. However, a new time-periodic flow is established after experiencing quasi-periodic states. As Rayleigh number is increased further, the chaotic flow regime is reached after a sequence of successive Hopf bifurcation to quasi-periodic and chaotic flow regimes. A scenario similar to the Ruelle-Takens-Newhouse scenario of the onset of chaos is observed.

Warning Signal for Limit Cycle Flutter of 2D Airfoil with Pitch Nonlinearity by Critical Slowing Down (비틀림 비선형성을 갖는 2차원 익형의 Critical Slowing Down 을 이용한 Limit Cycle Flutter 예측 인자)

  • Lim, Joosup;Lee, Sang-Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In this paper, limit cycle flutter induced by Hopf bifurcation is studied with nonlinear system analysis approach and observed for the critical slowing down phenomenon. Considering an attractor of the dynamics of a system, when a small perturbation is applied to the system, the dynamics converge toward the attractor at some rate. The critical slowing down means that this recovery rate approaches zero as a parameter of the system varies and the size of the basin of attraction shrinks to nil. Consequently, in the pre-bifurcation regime, the recovery rates decrease as the system approaches the bifurcation. This phenomenon is one of the features used to forecast bifurcation before they actually occur. Therefore, studying the critical slowing down for limit cycle flutter behavior would have potential applicability for forecasting those types of flutter. Herein, modeling and nonlinear system analysis of the 2D airfoil with torsional nonlinearity have been discussed, followed by observation of the critical slowing down phenomenon.