Browse > Article
http://dx.doi.org/10.5666/KMJ.2020.60.2.335

Bifurcation Analysis of a Spatiotemporal Parasite-host System  

Baek, Hunki (Department of Mathematics Education, Daegu Catholic University)
Publication Information
Kyungpook Mathematical Journal / v.60, no.2, 2020 , pp. 335-347 More about this Journal
Abstract
In this paper, we take into account a parasite-host system with reaction-diffusion. Firstly, we derive conditions for Hopf, Turing, and wave bifurcations of the system in the spatial domain by means of linear stability and bifurcation analysis. Secondly, we display numerical simulations in order to investigate Turing pattern formation. In fact, the numerical simulation discloses that typical Turing patterns, such as spotted, spot-stripelike mixtures and stripelike patterns, can be formed. In this study, we show that typical Turing patterns, which are well known in predator-prey systems ([7, 18, 25]), can be observed in a parasite-host system as well.
Keywords
a spatiotemporal parasite-host system; Turing bifurcation; Hopf bifurcation; wave bifurcation; pattern formation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. I. Camara and M. A. Aziz-Alaoui, Turing and Hope patterns formation in a predator-prey model with Leslie-Gower-type functional response, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Algorithms and Applications, 16(2009), 479-488.
2 D. Ebert, M. Lipsitch and K. L. Mangin, The effect of parasites on host population density and extinction: experimental epidemiology with Daphnia and six microparasites, Am. Nat., 156(2000), 459-477.   DOI
3 M. R. Garvie, Finite-Difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB, Bull. Math. Biol., 69(2007), 931-956.   DOI
4 D. A. Garzon-Alvarado, C. H. Galeano and J. M. Mantilla, Turing pattern formation for reaction-convection-diffusion systems in fixed domains submitted to toroidal velocity fields, Appl. Math. Model., 35(2011), 4913-4925.   DOI
5 J. Hale and H. Kocak, Dynamics and bifurcations, Springer-Verlag, New York, 1991.
6 T.-W. Hwang and Y. Kuang, Deterministic extinction effect of parasites on host populations, J. Math. Biol., 46(2003), 17-30.   DOI
7 I. Kozlova, M. Singh, A. Easton and P. Ridland, Twospotted spider mite predator-prey model, Math. Comput. Model., 42(2005), 1287-1298.   DOI
8 L. Li, Patch invasion in a spatial epidemic model, Appl. Math. Comput., 258(2015), 342-349.   DOI
9 L. Li and Z. Jin, Pattern dynamics of a spatial predator-prey model with noise, Nonliear Dynam., 67(3)(2012), 1737-1744.   DOI
10 J. Li, Y. Xiao and Y. Yang, Global analysis of a simple parasite-host model with homoclinic orbits, Math. Biosci. Eng., 9(4)(2012), 767-784.   DOI
11 A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 44(3)(2002), 311-370.   DOI
12 K. Wang and Y. Kuang, Fluctuation and extinction dynamics in host-microparasite systems, Commun. Pure Appl. Anal., 10(5)(2011), 1537-1548.   DOI
13 F. Rao, W. Wang and Z. Li, Spatiotemporal complexity of a predator-prey system with the effect of noise and external forcing, Chaos, Solitons Fractals, 41(2009), 1634-1644.   DOI
14 M. J. Smith, J. D. M. Rademacher and J. A. Sherratt, Absolutes stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type, SIAM J. Appl. Dyn. Syst., 8(3)(2009), 1136-1159.   DOI
15 M. J. Smith, J. A. Sherratt, The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction-diffusion systems, Physica D, 236(2007), 90-103.   DOI
16 W. Wang, W. Li, Z. Li and H. Zhang, The effect of colored noise on spatiotemporal dynamics of biological invasion in a diffusive predator-prey system, Biosystems, 104(2011), 48-56.   DOI
17 L. Yang, M. Dolnik, A. M. Zhabotinsky and I. R. Epstein, Pattern formation arising from interactions between Turing and wave instabilities, J. Chem. Phys., 117(15)(2002), 7259-7265.   DOI
18 W. Wang, Q.-X. Liu and Z. Jin, Spatiotemporal complexity of a ratio-dependent predator-prey system, Phys. Rev. E, 75(2007), 051913, 9 pp.   DOI
19 Y. Wang, J. Wang and L. Zhang, Cross diffusion-induced pattern in an SI model, Appl. Math. Comput., 217(2010), 1965-1970.   DOI
20 W. Wang, L. Zhang, H. Wang and Z. Li, Pattern formation of a predator-prey system with Ivlev-type functional response, Ecological Modelling, 221(2010), 131-140.   DOI
21 Z. F. Zhang, T. R. Ding, W. Z. Huang, Zh. X. Dong, Qualitative theory of differential equations, Translations of Mathematical Monographs 101, AMS, Providence, RI, 1992.
22 H. Baek, Spatiotemporal Dynamics of a Predator-Prey System with Linear Harvesting Rate, Math. Probl. Eng., (2014), Art. ID 625973, 9 pp.
23 D. Alonso, F. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns, Ecology, 83(1)(2002), 28-34.   DOI
24 R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts, Phil. Tran. R. Soc. Lond. B, 291(1981), 451-524.   DOI
25 H. Baek, On the dynamical behavior of a two-prey one-predator system with two-type functional responses, Kyungpook Math. J., 53(4)(2013), 647-660.   DOI
26 M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems : Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theoret. Biol., 245(2007), 220-229.   DOI
27 I. Berenstein, M. Dolnik, L. Yang, A. M. Zhabotinsky, and I. R. Epstein, Turing pattern formation in a two-layer system: Superposition and superlattice patterns, Physical Review E, 70(2004), 046219.   DOI