References
- Z. Bajzer, T. Carr, K. Josic, S. J. Russell and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, J. Theoret. Biol., 252(2008), 109-122. https://doi.org/10.1016/j.jtbi.2008.01.016
- S. Banerjee and R. R. Sarkar, Delay-induced model for tumorimmune interaction and control of malignant tumor growth, Biosystems, 91(1)(2008), 268-288. https://doi.org/10.1016/j.biosystems.2007.10.002
- N. Bellomo, K. Painter, Y. Tao and M. Winkler, Occurrence vs. absence of taxisdriven instabilities in a May-Nowak model for virus infection, SIAM J. Appl. Math., 79(5)(2019), 1990-2010. https://doi.org/10.1137/19m1250261
- M. Biesecker, J. Kimn, H. Lu, D. Dingli and Z. Bajzer, Optimization of Virotherapy for Cancer, Bull. Math. Biol., 72(2010), 469-489. https://doi.org/10.1007/s11538-009-9456-0
- C. Castillo-Chavez, Z. Feng and W. Huang, On the computation of R0 and its role on global stability, in: Mathematical Approaches for For Emerging and Reemerging Infectious Diseases, Springer-Verlag(2002), 229-250.
- M. A. J. Chaplain, Modelling aspects of cancer growth: insight from mathematical and numerical analysis and computational simulation, in Multiscale Problems in the Life Sciences, Vol. 1940 of Lecture Notes in Mathematics, Springer(2008), 147-200.
- J. J. Crivellia, J. Fldes, P. S. Kim and J. R. Wares, A mathematical model for cell cycle-specific cancer virotherapy, J. Biol. Dyn., 6(1)(2012), 104-120. https://doi.org/10.1080/17513758.2011.613486
- P. V. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Mathematical Biosciences, Mathematical Biosciences, 180(2002), 29-48. https://doi.org/10.1016/S0025-5564(02)00108-6
- R. Eftimie and L. Gibelli, A kinetic theory approach for modelling tumour and macrophages heterogeneity and plasticity during cancer progression, Math. Mod. Meth. App. Sci., 30(2020), 659-683. https://doi.org/10.1142/s0218202520400011
- A. M. Elaiw and E. D. Al Agha, Analysis of a delayed and diffusive oncolytic M1 virotherapy model with immune response, Nonlinear Anal. Real World Appl., 55(2020), 103-116.
- A. Eladdadi, L. D. Pillis and P. Kim, Modelling tumourimmune dynamics, disease progression and treatment, Letters in Biomathematics, 5(2018), S1-S5. https://doi.org/10.1080/23737867.2018.1483003
- H. Enderling and A. J. Mark, Chaplain, Mathematical Modeling of Tumor Growth and Treatment, Current Pharmaceutical Design, 20(30)(2014), 4934-4940. https://doi.org/10.2174/1381612819666131125150434
- S. Khajanchi and J. J. Nieto, Mathematical modeling of tumor-immune competitive system, considering the role of time delay, Appl. Math. Comput., 340(2019), 180-205. https://doi.org/10.1016/j.amc.2018.08.018
- S. Khajanchi and S. Banerjee, Stability and bifurcation analysis of delay induced tumor immune interaction model, Appl. Math. Comput., 248(2014), 652-671. https://doi.org/10.1016/j.amc.2014.10.009
- K. S. Kim, S. Kim and I. H. Jung, Dynamics of tumor virotherapy: A deterministic and stochastic model approach, Stoch. Anal. Appl., 34(3)(2016), 483-495. https://doi.org/10.1080/07362994.2016.1150187
- K. S. Kim, S. Kim and I. H. Jung, Hopf bifurcation analysis and optimal control of Treatment in a delayed oncolytic virus dynamics, Math. Comput. Simulation, 149(2018), 1-16. https://doi.org/10.1016/j.matcom.2018.01.003
- M. Rajalakshmi and M. Ghosh, Modeling treatment of cancer using virotherapy with generalized logistic growth of tumor cells, Stoch. Anal. Appl., 36(6)(2018), 1068-1086. https://doi.org/10.1080/07362994.2018.1535319
- F. A. Rihan, D. H. Abdelrahman, F. Al-Maskari, F. Ibrahim and M. A. Abdeen, Delay differential model for tumour-immune response with chemoimmunotherapy and optimal control, Comput. Math. Methods Med., 2014(2014), Article ID 982978.
- R. R. Sarkar and S. Banerjee, Cancer self remission and tumor stability-a stochastic approach, Math. Biosci., 196(2005), 65-81. https://doi.org/10.1016/j.mbs.2005.04.001
- Z. Wang, Z. Guo and H. Peng, A mathematical model verifying potent oncolytic efficacy of M1 virus, Math. Biosci., 276(2016), 19-27. https://doi.org/10.1016/j.mbs.2016.03.001
- R. Yafia, Dynamics analysis and limit cycle in a delayed model for tumor growth with quiescence, Nonlinear Anal. Model. Control, 11(1)(2006), 95-110. https://doi.org/10.15388/NA.2006.11.1.14766
- R. Yafia, A study of differential equation modeling malignant tumor cells in competition with immune system, Int. J. Biomath., 4(2)(2011), 185-206. https://doi.org/10.1142/S1793524511001404