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SPIRAL WAVE GENERATION IN A DIFFUSIVE

PREDATOR-PREY MODEL WITH TWO TIME DELAYS

Wenzhen Gan and Peng Zhu

Abstract. This paper is concerned with the pattern formation of a dif-
fusive predator-prey model with two time delays. Based upon an analysis
of Hopf bifurcation, we demonstrate that time delays can induce spatial
patterns under some conditions. Moreover, by use of a series of numerical
simulations, we show that the type of spatial patterns is the spiral wave.
Finally, we demonstrate that the spiral wave is asymptotically stable.

1. Introduction

Pattern formation in reaction-diffusion systems is one of the most fascinating
phenomena in nonlinear physics and has been observed in various mechanisms
including chemical and biological systems. The most widely studied model for
spatial pattern formation is the reaction-diffusion model proposed by Turing in
1952 [19]. He showed that a system of reacting and diffusing chemicals could
evolve from the initial near-homogeneity into the inhomogeneous pattern of
concentration.

There are two directions on current studies of spatial patterns. One is to
study biological science by use of the theory of spatial patterns [1, 10, 11,
22], the other is to explore conditions enabling spatial patterns from math-
ematical aspect [2–9, 12–18, 20, 21, 23]. Kishimoto and Weinberger [6] proved
the non-existence of stable positive stationary solution in the Lotka-Volterra
competition-diffusion system without the cross-diffusion. However, when the
cross-diffusion is present, Pang et al. [12] studied the existence of spatial pat-
terns for the reaction-diffusion model with different kinds of diffusion terms
and reaction terms. Shi et al. [14] proposed that the cross-diffusion can also
destabilize a uniform equilibrium which is stable for the kinetic system and
the self-diffusion reaction system. They gave an application to the predator-
prey system with preytaxis and vegetation pattern formation in a water-limited
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ecosystem. Tian et al. [18] developed a theoretical framework for investigating
spatial patterns on a plankton allelopathy with the cross-diffusion.

Recently, Sen et al. [13] showed that the time delay may induce spatial
patterns in the reaction-diffusion system. Tian [15] discussed the formation
of delay-induced Turing patterns in a model of allelopathic competition inter-
actions and showed that the time delay plays an important role on pattern
formation by use of a series of numerical simulations performed with a fi-
nite difference scheme. Lian et al. [7] investigated the pattern formation in
a reaction-diffusion predator-prey model incorporating a prey refuge and il-
lustrated the spatial patterns via numerical simulations. They found that the
model dynamics exhibits a delay and diffusion controlled formation growth not
only of spots, stripes and holes, but also of self-replicating spiral patterns.

In this paper, we will study spatial patterns of a reaction-diffusion predator-
prey system with two delays which is written in the form:

(1.1)
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∂u1

∂t
− d1∆u1 = u1(a1 − a11u1 −

a12u2(x, t− τ2)

γ + u2(x, t− τ2)
), (x, t) ∈ Ω× (0, T ),

∂u2

∂t
− d2∆u2 = u2(−a2 + a21u1(x, t− τ1)− a22u2), (x, t) ∈ Ω× (0, T ),

∂u1

∂η
=

∂u2

∂η
= 0, (x, t) ∈ ∂Ω× (0, T ),

ui(x, t) = ϕi(x, t), i = 1, 2, (x, t) ∈ Ω× [−τ, 0],

where u1(x, t) and u2(x, t) represent species densities of the prey and predator,
respectively. ∆ is the Laplacian operator and η is outward unit normal vector
on ∂Ω. d1 and d2 are diffusion coefficients. a1 denotes intrinsic growth rate of
prey species and a2 denotes the death rate of predator species. a11 and a22 are
rates of intra-specific competitions of prey species and predator species, respec-

tively. u2(x,t−τ2)
u2(x,t−τ2)+γ represents the Holling II type functional response. γ is the

half-saturation abundance of prey species. a12 is the capture rate of predator
species. a21 is the conversion rate of predator species. τ1 is called hunting
delay and τ2 is the maturation time of the prey species. The parameters ai,
aij , di (i, j = 1, 2) and γ are positive constants. Initial value ϕi(x, t) (i = 1, 2)
is positive, Hölder continuous and satisfies ∂ϕi/∂η = 0 on the boundary. The
homogeneous Neumann boundary condition biologically indicates that there is
no population flux across the boundary.

The goal of this paper is to explore whether two time delays can drive the
emergence of spatial patterns and how different time delays affect the stability
of spatial patterns by numerical simulations. The structure of this paper is
organized as follows: In Section 2, we analyze the role of time delays in the
generation of spatial patterns from the mathematical point of view and derive
conditions for these patterns to generate. In Section 3, we illustrate spatial
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patterns via numerical simulations. Some discussions are presented in the last
section.

2. Delay driven spatial patterns

In this section, we derive conditions for the generation of spatial patterns.
In particular, we show that when the time delay is absent, the system (1.1)
does not generate the spatial pattern. While, in the presence of time delays,
the formation of spatial patterns is induced.

It is easy to see that the positive uniform equilibrium of the system (1.1)
satisfies:

{

a1 − a11u1 −
a12u2

γ+u2

= 0,

−a2 + a21u1 − a22u2 = 0.
(2.1)

By a routine algebraic computation, sufficient condition can be obtained for
the existence of the positive uniform equilibrium of the system (1.1).

Lemma 2.1. Assume that

(H1) : a1a21 > a11a2.

Then the system (2.1) admits a unique positive uniform equilibrium u∗ =
(u∗

1, u
∗

2).

Now we carry out the linear stability analysis of the system (1.1). Let
v1 = u1 − u∗

1, v2 = u2 − u∗

2 and substitute them in the system (1.1). Retaining
the linear terms in v1 and v2 gives rise to

(2.2)















∂v1
∂t −∆v1 = Av1 +Bv2(x, t− τ2), (x, t) ∈ Ω× (0, T ),
∂v2
∂t −∆v2 = Cv2 +Dv1(x, t− τ1), (x, t) ∈ Ω× (0, T ),
∂v1
∂η = ∂v2

∂η = 0, (x, t) ∈ ∂Ω× (0, T ),

vi(x, t) = ϕi(x, t)− u∗

i , i = 1, 2, (x, t) ∈ Ω× [−τ, 0],

where

(2.3) A = −a11u
∗

1, B =
−a12γu

∗

1

(γ + u∗

2)
2
, C = −a22u

∗

2, D = a21u
∗

2.

Since the boundary condition is homogeneous Neumann on the domain Ω, the
appropriate eigenfunction of the system (2.2) is

(2.4) (v1, v2) = (c1, c2)e
λt cos kx,

where λ is the eigenvalue, k is the wavenumber and 0 ≤ k ∈ R. Substituting
(2.4) in the system (2.2) yields

{

(λc1 + d1k
2c1)e

λt cos kx = (Ac1 +Be−λτ2c2)e
λt cos kx,

(λc2 + d2k
2c2)e

λt cos kx = (Cc2 +De−λτ1c1)e
λt cos kx.

(2.5)
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Since eλt cos kx 6= 0, equations (2.5) is equivalent to the following set of linear
algebraic equations:

(2.6)

(

λ−A+ d1k
2 −Be−λτ2

−De−λτ1 λ− C + d2k
2

)(

c1
c2

)

=

(

0
0

)

.

Nontrivial solutions of equations (2.6) exist if and only if

(2.7) det

(

λ−A+ d1k
2 −Be−λτ2

−De−λτ1 λ− C + d2k
2

)

= 0.

Let τ = τ1 + τ2. Then the characteristic equation of the system (1.1) at the
positive equilibrium u∗ is of the form

(2.8) ∆(λ, τ) = λ2 +Akλ+Bk + Cke
−λτ = 0,

where

Ak = −(A+ C) + (d1 + d2)k
2, Bk = (−A+ d1k

2)(−C + d2k
2), Ck = −BD.

It is well known that u∗ is unstable if there is at least one root with Reλ > 0
and is stable if Reλ < 0 for all λ. That is to say, the stability of u∗ depends
on the location of zeros of the associated characteristic equation. Thus, spatial
patterns generate if Reλ = 0 with τ = τ∗, which is called delay driven spatial
patterns. Moreover, τ∗ is called the Hopf bifurcation threshold.

When the delay is absent (i.e., τ = 0), the equation (2.8) becomes

(2.9) ∆(λ, 0) = λ2 +Akλ+Bk + Ck = 0.

If
(H2) : a11a22(γ + u∗

2)
2 < a12a21

is satisfied, then it is easy to verify that Ak > 0 and Bk+Ck > 0. These imply
that the real parts of the roots of the equation (2.9) are negative. Firstly, we
obtain the following stability result for the characteristic the equation (2.9).

Lemma 2.2. Roots of the equation (2.9) with τ = 0 have always negative real

parts, that is, the positive equilibrium u∗ for the system (1.1) with τ = τ1 =
τ2 = 0 is asymptotically stable.

When the time delay is present (i.e., τ 6= 0) and if λ = iw0 is a root of the
equation (2.8), then we have

{

w2
0 −Bk = Ck cosw0τ,

w0Ak = Ck sinw0τ.
(2.10)

This leads to

(2.11) w4
0 + (A

2

k − 2Bk)w
2
0 +B

2

k − C
2

k = 0,

where

(2.12) A
2

k − 2Bk = (−A+ d1k
2)2 + (−C + d2k

2)2,

and

(2.13) B
2

k − C
2

k = [AC − (Cd1 +Ad2)k
2 + d1d2k

4]2 − (−BD)2.
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In view of the hypothesis (H2), it is easy to verify that B
2

k − C
2

k < 0 for
some fixed k. Therefore, (2.11) has a unique positive real root:

w0 =

√

−A
2

k + 2Bk + [(A
2

k − 2Bk)2 − 4(B
2

k − C
2

k)]
1/2

2
.

Thus, the equation (2.8) has pure imaginary root iw0 when

(2.14) τ = τ∗ +
2jπ

w
, j = 1, 2, . . . , τ∗ =

arccos
w2

0
−B(k)

C(k)

w0
.

Next, applying the method developed by [10], we calculate the wavenumber
k. From (2.12) and (2.13), we get

(2.15) d1d2k
4 − (Cd1 +Ad2)k

2 +AC +BD = 0.

Clearly, (2.15) has a unique positive root

k∗ =

√

Cd1 +Ad2 +
√

(Cd1 +Ad2)2 − 4d1d2(AC +BD)

2d1d2
.

Thus, B
2

k − C
2

k < 0 is satisfied if k < k∗. Moreover, the Hopf bifurcation
threshold is given by τ∗ from (2.14). In summary, we have the following result:

Theorem 2.1. Suppose that the system (1.1) satisfies hypothesis (H1) and

(H2), then time delays can induce spatial patterns. Moreover,

(i) If τ1 = τ2 = 0, then the positive equilibrium u∗ of the system (1.1) is

local asymptotically stable.

(ii) If τ = τ1 + τ2 > τ∗, then the positive equilibrium u∗ of the system (1.1)
is unstable.

Remark 2.1. If the sum of two time delays is large enough, then u∗ of the
system (1.1) is unstable and the system (1.1) has spatial patterns.

3. Numerical results

In view of Theorem 2.1, fulfilments of hypothesis (H1) and (H2) are suffi-
cient for the positive uniform equilibrium (u∗

1, u
∗

2) being linearly unstable with
respect to the particular case of the system (1.1). We take the following values:

(3.1) a1 = 1, a11 = 1, a12 = 1, γ = 1, a2 = 1, a21 = 2, a22 = 1, τ1 = 2, τ2 = 2.

For this special choice, the positive uniform equilibrium is given by

(u∗

1, u
∗

2) = (1.2858, 0.5616).

In this section, using the Euler difference method, we give some numerical
results based on the formulae in Section 2. The domain of the system (1.1) is
confined to a square domain Ω = [0, Lx] × [0, Ly] ⊂ R2. The wavenumber for
the domain is thereby

k = π(m/Lx, n/Ly), and |k| = π
√

(m/Lx)2 + (n/Ly)2, m, n = 0, 1, . . . .
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We consider the system (1.1) in a fixed domain Lx = 900 and Ly = 300 and
solve it on a grid with 900×300 sites by a simple Euler method with a time step
of △t = 0.1 and a space step of △x = △y = 1. By discretizing the Laplacian
in the grid with lattice sites denoted by (i, j), the numerical form is

△u|(i,j) =
1

△x△y
[al(i, j)u(i− 1, j) + ar(i, j)u(i+ 1, j)

+ ad(i, j)u(i, j − 1) + au(i, j)u(i, j + 1)− 4u(i, j)],

where the matrix elements of al, ar, ad and au are unity except at the boundary.
When (i, j) is at the left boundary (that is, i = 0), we define al(i, j)u(i −
1, j) ≡ u(i+1, j), which guarantees zero-flux of reactants in the left boundary.
Similarly we define ar(i, j), ad(i, j) and au(i, j) such that the boundary is no-
flux.

It is well-known that for a purely spatial homogeneous initial distribution,
the system always sustains homogeneous and the spatial pattern does not gener-
ate. So we take initial conditions with an inhomogeneous spatial perturbation.
Our simulations indicate that the spiral wave emerges. Moreover, the number
of spiral waves depends on the number of the critical point of the initial data.
We recall that the critical point (xc, yc) of the initial data means that (xc, yc)
satisfied that u1(xc, yc)|t=0 = u∗

1 and u2(xc, yc)|t=0 = u∗

2.
Here, we present the results of two computer experiments differing in the

form of initial conditions. In the first case, the initial distribution of species is
given in the following form:

u1(x, y, t) = u∗

1 − ǫ1(x − 40)(x− 160)− ǫ2(y − 60)(y − 140),

u2(x, y, t) = u∗

2 − ǫ3(x − 90)− ǫ4(y − 100),

where ǫ1 = 2 · 10−7, ǫ2 = 3 · 10−5, ǫ3 = 1.2 · 10−4 and ǫ4 = 6 · 10−4. In this case
the initial data contains only one critical point (xc, yc) = (277.9433, 62.4113).
Snapshots of the spatial distribution are shown in Fig. 1 for t = 0, 1000, 2000,
3000, 4000, 12000. We find that distributions of prey and predator species
are always of the same type, except in the early stages of the process when
the influence of the initial condition is dominant. Hence, spatial patterns of
predator species are shown. A spiral wave emerges in Fig. 1(c). After the
formation of the spiral wave, it grows slightly for a certain time, with their
spatial structure becoming more distinct (Fig. 1(d) and Fig. 1(e)). Moreover,
the scale of spiral wave increases with the time and it eventually prevails to the
whole domain. As the time goes on, the structure of the spatial pattern will
sustain the spiral wave and the width of the spiral wave will be thin.

In the second case, the initial distribution of species is given in the following
form:

u1(x, y, t) = u∗

1 − ǫ1(x− 0.1y − 225)(x− 0.1y − 675),

u2(x, y, t) = u∗

2 − ǫ2(x− 450)− ǫ3(y − 150),



SPIRAL WAVE GENERATION 1119

Figure 1. Spatial distribution of predator for (a) t = 0, up
and left location, (b) t = 1000, up and right location, (c) t =
2000, middle and left location, (d) t = 3000, middle and right
location, (e) t = 4000, below and left location, (f) t = 12000,
below and right location. Parameters are given in (3.1). From
(a)-(f), a spiral generates and prevails to the whole domain.

where ǫ1 = 2 · 10−7, ǫ2 = 3 · 10−5, and ǫ3 = 1.2 · 10−4. In this case, the
initial data contains only one critical points (xc, yc) = (684.1463, 245.1219) and
(91.4634, 201.2195). Snapshots of the spatial distribution are shown in Fig. 2
for t = 0, 1000, 2000, 3000, 4000, 36000. Two spiral waves simultaneously



1120 WENZHEN GAN AND PENG ZHU

Figure 2. Spatial distribution of predator for (a) t = 0, up
and left location, (b) t = 1000, up and right location, (c) t =
2000, middle and left location, (d) t = 3000, middle and right
location, (e) t = 4000, below and left location, (f) t = 36000,
below and right location. Parameters are given in (3.1). From
(a)-(f), two spirals generate and prevail to the whole domain.

emerge in Fig. 2(c). After the formation of spiral waves, they grow slightly for
a certain time, and get closer (Fig. 2(d) and Fig. 2(e)). Moreover, the scales of
two spiral waves also increase with the time and they eventually prevail to the
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whole domain. As the time goes on, the structure of spatial patterns will also
sustain the spiral wave and the width of spiral waves will be thin.

4. Discussion

In this paper, we have developed a theoretical framework for studying the
phenomenon of pattern formation in a 2D reaction-diffusion system with two
time delays. Applying a stability analysis and suitable numerical simulations,
we investigate the Hopf bifurcation, the pattern parameter space and the spiral
wave pattern. We have shown that time delays can induce the existence of the
Hopf bifurcation at the positive equilibrium and the system (1.1) can generate
the spiral wave pattern under some special initial conditions. The stability of
the positive uniform equilibrium is determined in parameter spaces (H1) and
(H2). In a biological sense, the existence of stability switch induced by the time
delay is found in the region of the spatial pattern space of the large conversion
rate of predator species.

Numerical studies have been employed to support and extend the obtained
theoretical results. When interaction coefficients of two species are fixed and
the conversation rate of predator species is large, the numerical simulations
illustrate the existence of both stable and unstable equilibrium near the crit-
ical point of the time delay which is in good agreement with our theoretical
analysis results. Our numerical results also show that spiral wave patterns are
asymptotically stable, whereas in a plankton system spiral wave patterns are
not stable [16]. Our study of PDE model simplifies the real ecological processes,
which may not always be satisfactory. However, the mathematical model can
help to clarify patterns of species interactions and guide further experiments.
The proposed approach has applicability to other reaction-diffusion systems
including time delays, such as competitive models and mutualistic models.
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