Browse > Article
http://dx.doi.org/10.14317/jami.2020.375

EFFECT OF FEAR ON A MODIFIED LESLI-GOWER PREDATOR-PREY ECO-EPIDEMIOLOGICAL MODEL WITH DISEASE IN PREDATOR  

PAL, A.K. (Department of Mathematics, Seth Anandram Jaipuria College)
Publication Information
Journal of applied mathematics & informatics / v.38, no.5_6, 2020 , pp. 375-406 More about this Journal
Abstract
The anti-predator factor due to fear of predator in eco- epidemiological models has a great importance and cannot be evaded. The present paper consists of a modified Lesli-Gower predator-prey model with contagious disease in the predator population only and also consider the fear effect in the prey population. Boundedness and positivity have been studied to ensure the eco-epidemiological model is well-behaved. The existence and stability conditions of all possible equilibria of the model have been studied thoroughly. Considering the fear constant as bifurcating parameter, the conditions for the existence of limit cycle under which the system admits a Hopf bifurcation are investigated. The detailed study for direction of Hopf bifurcation have been derived with the use of both the normal form and the central manifold theory. We observe that the increasing fear constant, not only reduce the prey density, but also stabilize the system from unstable to stable focus by excluding the existence of periodic solutions.
Keywords
Modified Lesli-Gower Predator-Prey Model; Fear effect; Stability; Permanence; Direction of Hopf Bifurcation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H.I. Freedman and S. Ruan, Uniform Persistence in Functional Differential Equations, J. Diff. Eq. 115 (1995), 173-192.   DOI
2 T.C. Gard and T.G. Hallam, Persistence in food web-1, Lotka- Volterra food chains, Bull. Math. Bio. 41 (1979), 302-315.
3 D. Greenhalgh and M. Haque, A predator-prey model with disease in the prey species only, Math. Meth. Appl. Sci. 30 (2006), 911-929, DOI: 10.1002/mma.815.   DOI
4 J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, NY, 1983.
5 R. Gupta and P. Chandra, Bifurcation analysis of modified Lesli-Gower predator-prey model with Michaelis-Menten type harvesting, J. Math. Anal. Appl. 398 (2013), 278-295.   DOI
6 K.P. Hadeler and H.I. Freedman, Predator-prey populations with parasitic infection, J. Math. Biol. 27 (1989), 609-631.   DOI
7 L. Han, Z. Ma and H.W. Hethcote, Four predator prey models with infectious disease, Math. Comp. Model 34 (2001), 849-858.   DOI
8 M. Haque, S. Sarwardi, S. Preston and E. Venturino, Effect of delay in a Lotka-Volterra type predator-prey model with a transmission disease in the predator species, Math. Biosci. 234 (2011), 47-57.   DOI
9 H. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey, Theor. Popul. Biol. 66 (2004), 259-268.   DOI
10 F. Hua, K.E. Sieving, R.J. Fletcher, et al., Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance, Behav. Ecol. 25 (2014), 509-519.   DOI
11 T.K. Kar, A. Gorai and S. Jana, Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide, J. Theor. Biol. 310 (2012), 187-198.   DOI
12 P.H. Lesli, A Stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika 45 (1958), 16-31.   DOI
13 P.H. Lesli, Some further notes on the use of matrices in population mathematics, Biometrika 35 (1948), 213-245.   DOI
14 A. Maiti and G.P. Samanta, Deterministic and stochastic analysis of a prey-dependent predator-prey system, Int. J. Math. Educ. Sci. Technol. 36 (2005), 65-83.   DOI
15 A. Mondal, A.K. Pal and G.P. Samanta, On the dynamics of evolutionary Lesli-Gower predator-prey eco-epidemiological model with disease in predator, Ecol. Genet. Genom. 10 (2019), 100034. doi: 10.1016/j.egg.2018.11.002.
16 A. Nindjin, M. Aziz-Alaoui and M. Cadivel, Analysis of a predator-prey model with modified Lesli-Gower and Holling-type II schemes with time delay, Nonlinear Anal. R. World Appl. 7 (2006), 1104-1118.   DOI
17 J.L. Orrock and R.J. Fletcher, An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey, Proceed. of the Royal Soc. of London B: Biol. Sc. 281 (2014), 1784, 2014039. doi: 10.1098/rspb.2014.0391.
18 P. Panday, N, Pal, S. Samanta, et. al., Stability and bifurcation analysis of a three-species food chain model with fear, Int. J. Bifurc. Chaos Appl. Sci. Eng. 28 (2018), 1850009. doi: 10.1142/S0218127418500098.   DOI
19 A.K. Pal and G.P. Samanta, A Ratio-dependent Eco-epidemiological Model Incorporating a Prey Refuge, Univ. J. Applied Maths. 1 (2013), 86-100, doi: 10.13189/ujam.2013.010208.   DOI
20 A.K. Pal and G.P. Samanta, Stability analysis of an eco-epidemiological model incorpo-rating a prey refuge, Nonlinear Anal. Model. Contrl. 15 (2010), 473-491.   DOI
21 S. Pal, S. Majhi, S. Mandal, et. al., Role of fear in a predator-prey model with Beddington-DeAngelis functional response, Z. Naturforsh. A 74 (2019), 301-327.
22 J.P. Tripathi and S. Abbas, Almost Periodicity of a Modified Lesli-Gower Predator-Prey System with Crowley-Martin functional Response, Springer Proceedings in Mathematics and Statistics 143 (2015).
23 S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J Appl. Math. 61 (2001), 1445-1472.   DOI
24 S. Sarwardi, M. Haque and E. Venturino, A Leslie-Gower Holling-type II ecoepidemic model, Journal of Applied Mathematics and Computing 35 (2011), 263-280.   DOI
25 S.K. Sasmal and Y. Takeuchi, Dynamics of a predator-prey system with fear and group defense, J. Math. Anal. Appl. 481 (2020), doi: 10.1016/j.jmaa.2019.123471.
26 A. Sha, S. Samanta, M. Martcheva, et al., Backward bifurcation, oscillations and chaos in an eco-epidemiological model with fear effect, J. Biol. Dyn. 13 (2019), 301-327.   DOI
27 B.K. Singh and J. Chattopadhyay, The role of virus infection in a simple phytoplankton zooplankton system, J. Theor. Biol. 231 (2004), 545-559.
28 E. Venturino, Epidemics in predator-prey models: disease in the prey, In: O. Arino, D. Axelrod, M. Kimmel, M. Langlais, editors, Mathematical population dynamics: analysis of heterogeneity, Theory of epidemics 1 (1995), 381-393.
29 E. Venturino, Epidemics in predator-prey models: disease in the predators, IMA J. Math. Appl. Med. Biol. 19 (2002), 285-205.   DOI
30 L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, NY, 2001.
31 X. Wang, L.Y. Zanette and X. Zou, Modeling the fear effect in predator-prey interactions, J. Math. Biol. 73 (2016), 1179-1204.   DOI
32 X. Wang and X. Zou, Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators, Bull. Math. Biol. 79 (2017), 1325-1359.   DOI
33 J. Wang, Y. Cai, S. Fu, et. al., The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge, Chaos 29 (2019), doi: 10.1063/1.5111121.
34 S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Second Edition, Springer, New York, 2003.
35 A. Wolf, J.B. Swift, H.L. Swinney and J.A. Vastano, Determining Lyapunov exponents from a time series, Physica D 16 (1985), 285-317.   DOI
36 Y. Xiao and L. Chen, Modelling and analysis of a predator-prey model with disease in the prey, Mathematical Biosciences 171 (2001), 59-82.   DOI
37 L.Y. Zanette, A.F. White, M.C. Allen, et al. Perceived predation risk reduces the number of offspring songbirds produce per year, Science 334 (2011), 1398-1401.   DOI
38 Y. Zhu and K. Wang, Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Lesli-Gower Holling-type II schemes, J. Math. Anal. Appl. 384 (2011), 445-454.
39 M.A. Aziz-Alaoui and M.D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling type II schemes, Appl. Math. Lett. 16 (2003), 1069-1075.   DOI
40 R.M. Anderson and R.M. May, Regulation and stability of host-parasite population interactions: I. Regulatory processes, Journal of Animal Ecology 47 (1978), 219-247.   DOI
41 G. Birkhoff and G.C. Rota, Ordinary Differential Equations, Ginn, Boston, 1982.
42 J. Carr, Applications of Center Manifold Theory, Springer, New York, 1982.
43 J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Analysis 36 (1999), 747-766.   DOI
44 S. Creel, D. Christianson, S. Liley, and J.A. Winnie, Predation risk affects reproductive physiology and demography of elk, Science 315 (2007), pp 960.   DOI
45 Das, K.P., Disease-induced chaotic oscillations and its possible control in a predator-prey system with disease in predator, Differ. Equ. Dyn. Syst. (2015), doi:10.1007/s12591-015-0249-7.
46 H.I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.