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Abstract. Virotherapy is an effective method for the treatment of cancer. The oncolytic

virus specifically infects the lyse cancer cell without harming normal cells. There is a

time delay between the time of interaction of the virus with the tumor cells and the time

when the tumor cells become infectious and produce new virus particles. Several types of

viruses are used in virotherapy and the delay varies with the type of virus. This delay can

play an important role in the success of virotherapy. Our present study is to explore the

impact of this delay in cancer virotherapy through a mathematical model based on delay

differential equations. The partial success of virotherapy is guarenteed when one gets a

stable non-trivial equilibrium with a low level of tumor cells. There exits Hopf-bifurcation

by considering the delay as bifurcation parameter. We have estimated the length of delay

which preserves the stability of the non-trivial equilibrium point. So when the delay is

less than a threshold value, we can predict partial success of virotherapy for suitable sets

of parameters. Here numerical simulations are also performed to support the analytical

findings.

1. Introduction

Cancer is a disease which is caused by unusual cell growth. It is one of the
leading cause of death in the world. There are several types of cancer, and they are
generally described by the body part they originate in. Most cancers are curable if
detected early enough. Cancer is a very complex disease to treat and treatment of
cancer varies. The choice of treatment depends on the location of the tumor, size
of the tumor, cell type and most importantly the overall health of the patient. For
the small size malignant tumors, surgery is often recommended. Chemotherapy,
radiotherapy, immunotherapy, gene therapy, virotherapy, hormone therapy etc. are
treatment methods which are used alone or in combination depending upon the
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size of the cancer and patient’s health. Mathematical modeling is an important
tool which is being used in treatment of several diseases including cancer. As our
human body is very complex, the success of any therapy not only depends upon the
types of treatment but also at the duration of treatment, frequency of treatment
and effectiveness of a specific therapy. Mathematical modeling and simulation help
in designing suitable personalized therapy for a patient. There are several research
findings based on mathematical models on cancer growth and treatment of cancer
[19, 21, 9, 6, 2, 22, 18, 12, 11]. In [19], the authors formulated and analyzed a math-
ematical model for a malignant tumor system by considering prey-predator type
interactions. Here the authors investigated both deterministic and stochastic mod-
els and obtained thresholds which play a key role in the control of malignant tumor
growth. In [21], the author investigated a mathematical model for tumor growth
with quiescence by incorporating delay. In [9], the authors considered a kinetic the-
ory approach to model the growth of tumors and macrophages heterogeneity and
plasticity by incorporating diffusion. A mathematical model for tumor-immune
interaction with delay is formulated and analyzed in [2]. Here the authors have
estimated the length of the delay parameter which preserve the stability of the sys-
tem. In [22], the authors presented a competition model for the growth of a malig-
nant tumor by incorporating immune response. Here the authors demonstrated the
presence of a Hopf-bifurcation. A delayed model for tumor-immune response with
chemoimmunotherapy and optimal control is investigated in [18]. Here the authors
have emphasized the importance of combination therapy and optimal control. In
[12], the authors described fundamentals of modeling of tumor growth and discussed
different approaches to model tumor growth. Modeling tumor-immune dynamics
with treatment is investigated in [11]. Mathematical modeling of the treatment of
cancer using virotherapy by considering a system of ordinary differential equations
is reported in [1, 4, 7, 20, 15, 17]. In [16], the authors have formulated and analyzed
a delay differential equation model for the treatment of cancer using virotherapy.
Here the authors have considered the delay in tumor cells to become infectious after
getting infected with viruses. This work is an extension of the author’s own work in
[15] where the ordinary differential equation model was formulated and analyzed.
In both papers, the authors considered logistic growth of the tumor cells whereas a
generalized logistic growth model is more suitable to describe the dynamics of the
tumor cells. Keeping this in mind in [17], the authors formulated and analyzeda
mathematical model for the treatment of cancer using virotherapy by considering
generalized logistic growth of the tumor cells. Some existing models are derived
using the framework of population dynamics and others include space dynamics
which is an important feature. With these two approaches of population dynamics
and system dynamics, existing mathematical models can be further extended by
including space dynamics through diffusion [10] as it shows a key role in delaying
the dynamics, or through reaction-diffusion [3] as it relates to the dynamic linked
with angiogenesis.

The present work is an extension of the work in [17] which does not incorpo-
rate latent delay. It is a proven fact that delay is capable of changing the whole
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dynamics of the system under consideration [21, 14, 13]. The remaining part of
this paper is organized as follows: Section 2 describes the proposed mathematical
model; Section 3 discusses the reproduction numbers and equilibria of the model;
Section 4 demonstrates the stability analysis of the non-trivial equilibrium point of
the model. Section 5 demonstrates the Hopf-bifurcation analysis. Section 6 exhibits
the numerical simulation results. Finally, we summarize our results in Section 7.

2. Mathematical Model

As delay plays an important role in the dynamics of cancer growth and treat-
ment, here we extend the model by Rajalakshmi and Ghosh [17] by incorporating
latent delay. It is assumed that after the interaction of tumor cells with viruses,
tumor cells get infected and produce new viruses. We refer to the time between
interaction and production of new viruses as ‘delay’, The tumor cells are divided
into two disjoint classes: uninfected tumor cells with population y(t), and infected
tumor cells with population x(t). The population of free virus particles is denoted
by v(t) and CTLs by z(t). Here we incorporate the delay (τ) that describes the
time between virus attack on uninfected tumor cells and the production of new virus
particles by the virus infected tumor cells. The growth of uninfected tumor cells
follows generalized logistic growth. Keeping in view the above fact, we formulate
our delay model as follows:

dy

dt
= ry

(

1−

(

y + x

K

)ǫ)

− βy(t− τ)v(t− τ) − ρxy − ν1yz,

dx

dt
= βy(t− τ)v(t − τ)− δx− ν2xz,

dv

dt
= αx − ωv − βyv,(2.1)

dz

dt
= γ1yz + γ2xz − µz.

Let C([−τ, 0],R4
+) denote the Banach space of continuous functions mapping

the interval [−τ, 0] into R4
+ where R4

+ = {(x1, x2, x3, x4) : xi ≥ 0, i = 1, 2, 3, 4}.
The initial conditions for the system (2.1) are given by y(θ), x(θ), v(θ), z(θ) ∈
C([−τ, 0],R4

+).

Here r is the intrinsic growth rate of uninfected tumor cells, K is the carrying
capacity of uninfected tumor cells, ǫ is the parameter which determines the shape of
the sigmoidal growth curve in the generalized logistic growth of uninfected tumor
cells, and βxy is the rate at which uninfected tumor cells are becoming infected
due to interaction with virus particles. The term ρxy corresponds to the rate at
which uninfected tumor cells become infected through fusion with infected cells
either single or in syncytia. The uninfected tumor cells and infected tumor cells are
removed by CTLs at the rates ν1yz and ν2xz respectively. The CTL population
increases at rate γ1yz + γ2xz and is removed at the rate µz. δx denotes the death
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rate of infected tumor cells and αx corresponds to the rate of release of virions
by infected tumor cells. The term ωv corresponds to to the rate of elimination
of virus particles due to various causes which includes non-specific bindings and
defective particles. The term βyv in the third equation of this model is based on
the assumption that by infecting tumor cells, the virus particles will be lost. We
can note here that although the value of ǫ can be less than one or greater than one,
in practice it is taken as the order of 1 i.e. 0. As K is the carrying capacity, x+ y
is at most K.

3. The Reproduction Number and Equilibria of the Model

As delay does not change the equilibria of the system, we get, for this delay
model, the same equilibria as obtained for the model discussed in [17]. The basic
reproduction number R0 and the immune response reproduction number R1 are
computed using the next generation matrix method as described in [5, 8]. First we
consider the basic reproduction R0 corresponding to virus infection. The virus-free
equilibrium or a therapy failure equilibrium is given by E3 (ŷ, 0, 0, ẑ) with ŷ = µ

γ1

and ẑ = r (1− (ŷ/K)
ǫ
) /ν1. Following the same notations as in [5, 8], we find the

matrix F and V as follows:

F =





βyv
0
0



 and V =





δx+ ν2xz
−αx+ ωv + βyv
γ1yz + γ2xz − µz



 .

F is the Jacobian of F at therapy failure equilibrium E3 =





0 βȳ 0
0 0 0
0 0 0





and

V is the Jacobian of V at therapy failure equilibriumE3 =





δ + ν2z̄ 0 0
−α ω + βȳ 0
γ2z̄ 0 −µ



 .

The largest eigenvalue of FV −1 is called the basic reproduction number R0 and is
obtained as follows:

R0 =
βαȳ

(δ + ν2z̄)(ω + βȳ)
=

βα
µ

γ1








δ +

ν2r

(

1−

(

µ

γ1K

)ǫ)

ν1









(

ω +
βµ

γ1

)

.

Next we compute the immune response reproduction number R1, (say) using the
same next generation matrix method by considering all the variables y, x, v, z. Here
it can be noted that the CTL-free equilibrium is given by E4 ( y

∗, x∗, v∗, 0). Here
we find the matrix F and V as follows:
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F =









0
0
0

γ1yz + γ2xz









and V =











−ry
(

1−
(

y+x
K

)ǫ
)

+ βyv + ρxy + ν1yz

−βyv + δx+ ν2xz
−αx+ ωv + βyv

µz











.

F is the Jacobian of F at E4 =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 γ1y

∗ + γ2x
∗









and

V is the Jacobian of V at E4 =









v11 v12 v13 v14
−βv∗ δ −βy∗ ν2x

∗

βv∗ −α ω + βy∗ 0
0 0 0 µ









,

where

v11 = −r

(

1−

(

y∗ + x∗

K

)ǫ)

+ ry∗ǫ

(

y∗ + x∗

K

)ǫ−1
1

K
+ βv∗ + ρx∗,

v12 = ry∗ǫ

(

y∗ + x∗

K

)ǫ−1
1

K
, v13 = βy∗, and v14 = ν1y

∗.

Now the largest eigenvalue of FV −1 corresponds to immune response reproduction
number R1 and is given by

R1 =
γ1y

∗ + γ2x
∗

µ
=

γ1
ωδ

β(α− δ)
+ γ2x

∗

µ
,

where 0 < x∗ <
(

K − ωδ
β(α−δ)

)

. The model system (2.1) has five equilibria as

follows:
(i) E1(0, 0, 0, 0), a trivial equilibrium,
(ii) E2(K, 0, 0, 0), a boundary equilibrium
(iii) E3 (ŷ, 0, 0, ẑ) with ŷ = µ/γ1 and ẑ = r(1 − (ŷ/K)ǫ)/ν1, a therapy failure
equilibrium,
(iv) E4 ( y

∗, x∗, v∗, 0) with y∗ = ωδ/(β(α − δ)), a CTL-free equilibrium and (v)
E5 (ȳ, x̄, v̄, z̄), an endemic equilibrium which may corresponds to partial success of
therapy. Here it is assumed that the parameter α is greater than the parameter
α which is reasonable. Here v∗ = (α − δ)x∗/ω and x∗ is the positive root of the
following equation:

g(x) =

(

rωδ

β(α− δ)

)

[

1−

(

ωδ
β(α−δ) + x

K

)ǫ]

− δx−
ρωδx

β(α− δ)
= 0,
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which exists for K > ωδ
β(α−δ) ,

x̄ =
µ− γ1ȳ

γ2
, v̄ =

α(µ− γ1ȳ)

γ2(ω + βȳ)
, z̄ =

(α− δ)(ω + βȳ)− ωα

ν2(ω + βȳ)
.

It is easy to observe that for v̄ and z̄ to be positive we need the following condition:

ωδ

β(α − δ)
< ȳ <

µ

γ1
,

where ȳ is the positive root of the following equation:

h(y) = r

[

1−

(

(γ2 − γ1)y + µ

γ2K

)ǫ]

− βα

(

µ− γ1y

γ2(ω + βy)

)

− ρ

(

µ− γ1y

γ2

)

−
ν1 [(α− δ)(ω + βy)− αω]

ν2(ω + βy)
= 0.

For more details about the existence of these equilibria one can refer [17].
Our aim is to investigate the success or failure of virotherapy. Hence we need to

concentrate on the stability of the partial success equilibrium point E5. One time
injection of oncolytic viruses may not kill all tumor cells, so we need to see whether
it can cause significant reduction in the tumor cells or not. Additionally, we should
understand that whether the partial success equilibrium is stable or not. In the
next section we shall investigate the stability of partial success equilibrium E5 in
presence of delay.

4. Stability Analysis

We linearize the system (2.1) about the equilibrium point E5 as follows:

S′(t) = AS(t) +BS(t− τ),

where S(t) = (y(t), x(t), v(t), z(t))T and

A =









ā11 ā12 0 −ν1ȳ
0 −(δ + ν2z̄) 0 −ν2x̄

−βv̄ α −(ω + βv̄) 0
γ1z̄ γ2z̄ 0 γ1ȳ + γ2x̄− µ









,

B =









−βv̄ 0 −βȳ 0
βv̄ 0 βȳ 0
0 0 0 0
0 0 0 0









,

a11 = r
(

1−
(

x̄+ȳ
K

)ǫ
)

− rȳǫ
K

(

x̄+ȳ
K

)ǫ−1
− ρx̄− ν1z̄, a12 = − rȳǫ

K

(

x̄+ȳ
K

)ǫ−1
− ρȳ. Here

the matrices A and B are computed at the equilibrium under consideration i.e. E5.
The stability is determined by computing the roots of the following characteristic
equation

det(A+Be−λt − λI) = 0.(4.1)
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The characteristic equation can be written as,

P (λ) + e−λτQ(λ) = 0,(4.2)

(λ4 + λ3M1 + λ2M2 + λM3 +M4) + e−λτ (N1λ
3 +N2λ

2 +N3λ+N4) = 0(4.3)

where

P (λ) =
{

λ4 + λ3M1 + λ2M2 + λM3 +M4

}

, Q(λ) =
{

λ3N1 + λ2N2 + λN3 +N4

}

,

and

M1 = −ā11 + ν2z̄ + ω + βȳ

M2 = −δā11 − ā11ν2z̄ − ā11ω + δω + δβȳ + βȳz̄ν2 + βȳ + γ2ν2x̄z̄ − γ1ν1ȳz̄

M3 = −δω ¯a11− δβā11ȳ − ων2ā11z̄ − βȳā11z̄ν2− ā11βȳ − ā11ν2x̄γ2z̄ + ν2γ2ωx̄z̄

+ν2βȳγ2z̄x̄+ ā12ν2γ1z̄x̄− δγ1ν1ȳz̄ − γ1ν1ν2ȳz̄
2 − ωγ1ν1ȳz̄ − βγ1ν1z̄ȳ

2

M4 = −ν2ā11z̄γ2ω − ν2ā11γ2βȳx̄z̄ + ā12ωγ1ν2x̄z̄ + βν2γ1z̄x̄ȳā12 + δων1γ1ȳz̄

+δβν1γ1z̄ȳ
2 + ωγ1ν1ν2ȳȳ

2 + βγ1ν1ν2ȳ
2z̄2

N1 = βv̄

N2 = δβv̄ + ν2βz̄v̄ + ωβv̄ + βδv̄ + αβȳ − βv̄ ¯a12 + β2ȳv̄

N3 = ¯a11αβȳ + δωβv̄ + δβ2ȳv̄ + βων2v̄z̄ + β2v̄ȳz̄ν2 + β2ȳv̄ + βγ2ν2v̄x̄z̄

−βā12ωv̄ − β2ȳv̄ā12 − ā12β
2v̄ȳ + β2v̄δȳ + β2ν2z̄v̄ȳ + βν1γ2z̄ȳ

N4 = ν2βv̄x̄γ2z̄ω + ν2x̄z̄γ2β
2ȳv̄ − γ2β

2ν2x̄ȳv̄z̄ − αγ1βx̄ȳz̄ − βωγ2v̄z̄ȳν1

−β2ν1γ2z̄v̄ȳ
2 + γ2ν1β

2v̄ȳ2z̄ + αβν1γ1z̄ȳ
2.

When τ = 0 we get

[

λ4 + (M1 +N1)λ
3 + (M2 +N2)λ

2 + (M3 +N3)λ+ (M4 +N4)
]

= 0.

Using Routh-Hurwitz criteria, all the roots of the above biquadratic equation will
have negative real parts provided following conditions hold:

(M1 +N1) > 0, (M4 +N4) > 0, (M1 +N1) (M2 +N2)− (M3 +N3) > 0,

(M1 +N1) (M2 +N2) (M3 +N3)− (M1 +N1)
2
(M4 +N4)− (M3 +N3)

2
> 0.

Hence in absence of delay the equilibrium point E5 is locally asymptotically stable
provided above mentioned conditions are satisfied.

5. Hopf-bifurcation

Now let us discuss the case when delay is not zero. When τ 6= 0, let us assume
λ = iω, (ω > 0) is the purely imaginary root of the equation (4.3). Substituting



126 M. Rajalakshmi and M. Ghosh

λ = iω in the equation (4.3) and equating the real and imaginary parts we get the
following two equations:

ω4 − ω2M2 +M4 = cosωτ
[

ω2N2 −N4

]

+ sinωτ
[

ω3N1 − ωN3

]

(5.1)

ωM3 − ω3M1 = cosωτ
[

ω3N1 − ωN3

]

− sinωτ
[

ω2N2 −N4

]

(5.2)

Now squaring and adding equations (5.1) and (5.2), we get the following trancen-
dental equation:

ω8 + ω6
(

M2
1 − 2M2 −N2

1

)

+ ω4
(

M2
2 + 2M4 − 2M1M3 + 2N1N3 −N2

2

)

+ω2
(

M2
3 − 2M2M4 + 2N2N4 −N2

3

)

+M2
4 −N2

4 = 0(5.3)

Assuming ω2 = c we have

L(c) = c4 + a1c
3 + a2c

2 + a3c+ a4 = 0,(5.4)

where

a1 =
[

M2
1 − 2M2 −N2

1

]

,

a2 =
[

M2
2 + 2M4 − 2M1M3 + 2N1N3 −N2

2

]

,

a3 =
[

M2
3 − 2M2M4 + 2N2N4 −N2

3

]

,

a4 =
[

M2
4 −N2

4

]

.

Now we have the following theorems based on the roots of the equation L(c) = 0.

Theorem 5.1. If the coefficients a1, a2, a3, a4 in L(c) satisfy the conditions of
Routh-Hurwitz criterion (i.e. a1 > 0, a4 > 0, a1a2−a3 > 0 and a1a2a3−a21a4−a23 >
0), then the interior equilibrium point E5(ȳ, x̄, v̄, z̄) if it exists is asymptotically sta-
ble for all delay τ > 0 provided it is stable in absence of delay.

Theorem 5.2. If the coefficients a1, a2, a3, a4 in L(c) satisfy Routh-Hurwitz crite-
rion (i.e. a1 > 0, a4 > 0, a1a2−a3 > 0 and a1a2a3−a21a4−a23 > 0), and the interior
equilibrium point E5(ȳ, x̄, v̄, z̄) is unstable at τ = 0, then it will remain unstable for
all τ ≥ 0.

If L(c) = 0 has a positive root, then we can have the following result.

Theorem 5.3. The endemic equilibrium point E5 of the system (2.1) is condi-
tionally stable if and only if all the roots of the characteristic equation (4.3) have
negative real parts at τ = 0 and there exist some positive value of the delay τ such
that the characteristic equation (4.3) has a pair of purely imaginary roots ±iω0

(say). The system will undergo a stability change for an infinite number of values
of τ say τ∗n, where

τ
∗

n =
1

ω0

cos
−1

[

(ω0M3 − ω3

0M1P2)(ω
3

0N1 − ω0N3) + (ω2

0N2 −N4)(ω
4

0 − ω2

0M2 +M4)

(ω2

0
N2 −N4)2 + (ω3

0
N1 − ω0N3)2

]

+
2nπ

ω0

, n = 0, 1, 2, . . .(5.5)
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Here it can be noted that if the equilibrium point E5 is locally asymptotically

stable in absence of delay then it remains stable for delay τ < τ∗0 with n = 0. At
delay τ = τ∗0 Hopf-bifurcation occurs and system undergoes periodic oscillations.

5.1. Analysis of Hopf-bifurcation

Now, we shall investigate the Hopf bifurcation of the model system (2.1), for

which we need to verify the transversality condition d(Reλ)
dτ

|τ=τ0 > 0 i.e. dξ
dτ
|ξ=0 >

0 for λ(τ) = ξ(τ) + iω(τ). This will designates that there exists at least one
eigenvalue with nonnegative real part for τ > τs . Also, the conditions for Hopf
bifurcation are necessary to prove the existence of periodic solutions. Firstly, we
are interested for purely complex roots λ = iω0 of (4.3). Equation (4.3) implies
that |P (iω0)| = |Q(iω0)| and this determines the possible set of values of ω0. Now
our goal is to observe the direction of motion of λ as τ is varied, for which we find,

Ω = sign

[

d(Reλ)
dτ

]

|τ = τn = sign

[

d(Reλ)
dτ

]

−1

|τ = τn.

On differentiating (4.3) with respect to τ , we get
[

(3λ3 + 2λ2
M1 + 2λM2 +M3) + e

−λτ (3λ2
N1 + 2λN2 +N3)− τe

−λτ
(

λ
3
N1 + λ

2
N2

+λN3 +N4)]

(

dλ

dτ

)

− λe
−λτ (λ3

N1 + λ
2
N2 + λN3 +N4) = 0

which leads to

(

dλ

dt

)

−1

=
eλτ (3λ3 + 2λ2M1 + 2λM2 +M3)

λ(λ3N1 + λ2N2 + λN3 +N4)
+

(3λ2N1 + 2λN2 +N3)

λ(λ3N1 + λ2N2 + λN3 +N4)
−

τ

λ
.

Since λ(τ0) = iω0 is a simple root of the characteristic equation (4.3), we can
evaluate the expressions involved in the above derivative at τ = τ0 as follows:

{

eλτ (3λ3 + 2λ2M1 + 2λM2 +M3)
}

|τ=τ0 = δ1 + iδ2,
{

λ(λ3N1 + λ2N2 + λN3 +N4)
}

|τ=τ0 = δ3 + iδ4,
{

(3λ2N1 + 2λN2 +N3)
}

|τ=τ0 = δ5 + iδ6,

where

δ1 = (M3 − 2ω2M1) cosω0τ0 + (3ω3 − 2ωM2) sinω0τ0,
δ2 = (2ωM2 − 3ω3) cosω0τ0 + (M3 − 2ω2M1) sinω0τ0,
δ3 = ω2

0(ω
2N1 −N3),

δ4 = ω(N4 − ω2N2)
δ5 = N3 − 3ω2N1

δ6 = 2ωN2.

Now
(

dλ

dτ

)

−1

|τ=τ0 =

(

d

dτ
Reλ(τ0)

)

−1

=
δ1δ3 + δ2δ4 + δ5δ3 + δ4δ6

δ23 + δ24
.
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Using the equations in (5.1) and (5.2), we can rewrite above expression as follows:

(

dλ

dτ

)

−1

|τ=τ0
=

ω2

0

δ2
3
+ δ2

4

[

4ω6

0 + 3(M2

1 − 2M2 −N
2

1 )ω
4

0 + 2
(

M
2

2 + 2M4 − 2M1M3

+2N1N3 −N
2

2

)

ω
2

0 + (M2

3 − 2M2M4 + 2N2N4 −N
2

3 )
]

=
ω2

0

δ2
3
+ δ2

4

(4c3 + 3a1c
2 + 2a2c+ a3)|c=ω2

0

=
ω2

0

δ2
3
+ δ2

4

L
′(c)|

c=ω2

0

Therefore

sign

[(

d

dτ
Reλ(τ0)

)]

= sign

[

(

d

dτ
Reλ(τ0)

)

−1
]

= sign

[

ω2
0

δ23 + δ24
L′(c)|c=ω2

0

]

.

As δ23 + δ24 > 0, ω2
0 > 0 and L′(c)|c=ω2

0

6= 0, the sign
[(

d
dτ
Reλ(τ0)

)]

will be deter-

mined by the sign
[

L′(c)|c=ω2

0

]

.

We already have Re(λ(τ)) = ξ(τ) and ξ(τ0) = 0. Therefore if sign
[

L′(c)|u=ω2

0

]

< 0,

then there exists a ζ > 0 such that ξ(τ) is decreasing in (τ0 − ζ, τ0) and ξ(τ) = 0 at
τ = τ0. Hence for all τ ∈ (τ0−ζ, τ0), ξ(τ) > 0, which contradicts the fact that roots
of the characteristic equation (4.3) have negative real parts for all τ ∈ [0, τ0] and
τ = τ0 is the minimum value of delay τ for which (4.3) will have purely imaginary

roots. Hence sign
[

L′(c)|c=ω2

0

]

> 0 which shows that there exists at least one λ(τ)

with ξ(τ) > 0 for τ > τ0. Therefore, the transversality condition holds successfully
and the system undergoes Hopf bifurcation at ξ = ξ0, τ = τ0.

6. Numerical Simulations

Here first we simulate our model system (2.1) for the following set of parameters
without delay i.e. when τ = 0:

r = 0.2062,m = 2139.258, ǫ = 1.649, β = 0.001305, ρ = 0.005, ν1 = 0.00673,

ν2 = 0.10095, δ = 0.25, α = 4, ω = 0.285, γ1 = 0.00015, γ2 = 0.027, µ = 0.2.

For this set of parameters we get our non-trivial equilibrium E5 as (195.5, 6.3, 46.8,
16.2) and R0 = 1.78. And this equilibrium is locally asymptotically stable. This
fact is shown in Figure 1. Next we consider our delay parameter τ as 1 and we
find that the system tends to the same equilibrium point E5. This is shown in
Figure 2. Further, we change the delay parameter τ as 2. In this case we observe
that system shows damped oscillations but finally it converges to the equilibrium
point E5. The time taken to converge the equilibrium point E5 increases with the
increase in the delay parameter τ . This is demonstrated in Figure 3. Now when we
take τ = 2.0465, the model system (2.1) undergoes to Hopf-bifurcation and shows
periodic oscillations. This is demonstrated in Figure 4. Here it can be noted that
the critical value of this delay τ = 2.0465 is in fact τ∗0 below which the non-trivial
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Figure 1: Variation of state variables with time with delay τ = 0.
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Figure 2: Variation of state variables with time with delay τ = 1.0.
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Figure 3: Variation of state variables with time with delay τ = 2.0.
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Figure 4: Variation of state variables with time with delay τ = 2.0465.
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equilibrium point E5 is stable. This critical value of delay is very much dependent
on other model parameters too. It is observed that increase in β causes the decrease
in the threshold value of delay i.e. τ∗0 .

7. Conclusions

This paper aims to study the impact of delay on the cancer virotherapy. Here
we formulate a mathematical model by incorporating the time gap between the
time of interaction of virus with tumor cells and the time when the tumor cells
become infectious to produce new virus particles. We analyze the model by keeping
in mind the partial success of virotherapy. There exists a threshold value of delay
below which the equilibrium point corresponding to partial success of virotherapy is
stable. This threshold value is derived analytically and computed numerically. It is
also observed that this threshold value changes with change in the other parameters
such as β and δ etc. We also verify the transversality condition for Hopf-bifurcation.
Numerical simulation is performed to support the analytical findings.
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