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MEAN SQUARE STABILITY IN A MODIFIED LESLIE-GOWER AND

HOLLING-TYPE II PREDATOR-PREY MODEL
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Abstract. Of concern in the paper is a Holling-Tanner predator-prey model with
modified version of the Leslie-Gower functional response. Dynamical behaviours such
as stability, permanence and Hopf bifurcation have been carried out deterministically.
Using the normal form theory and center manifold theorem, the explicit formulae
determining the stability and direction of Hopf bifurcation have been derived . The
deterministic model is extended to a stochastic one by perturbing the growth equation
of prey and predator by white and colored noises and finally the mean square stability
of the stochastic model systems is investigated analytically. An extensive quantitative
analysis has been performed based on numerical computation so as to validate the
applicability of the proposed mathematical model.
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1. Introduction

Lotka-Volterra model is the simplest model of predator-prey interaction. The simplic-
ity of Lotka-Volterra model relies on certain assumptions. First it is supposed that the
prey population has unlimited food supply and will grow exponentially in the absence of
the predator. It is also supposed that the predator species feeds on prey only and on noth-
ing else, and will starve and become extinct in the absence of prey, rather than switch
to a different types of food. Other simplifying assumptions are also made upon prey
searching, prey consumption and environmental complexity. In spite of that, it plays
important roles in the history of mathematical ecology to describe various dynamical
characteristics of population interaction. The Lotka-Volterra model is one of the earliest
predator-prey models based on sound mathematical and ecological principles. It forms
the basis of many models used now a day in the analysis of population dynamics and
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received extensive attentions from mathematicians and ecologists (cf. [15, 21, 22] and ref-
erences cited therein). Based on experiments, Holling [12] suggested three different kinds
of functional responses for different species to model the phenomena of predation, which
made the standard Lotka-Volterra system more realistic. Many authors investigated the
mathematical properties of these models and explained their implication in biology (cf.
[13, 26, 27]). Biologically, it is quite natural to study the existence and asymptotic sta-
bility of equilibria, and limit cycles for autonomous predator-prey systems with these
functional responses. This prompted us to study the predator-prey system with Holling
type-II functional response. For Holling type-II functional response, the predation rate
increases as prey density rises, eventually levels off due to the predators handling time.
The model also incorporates a modified version of the Leslie-Gower functional response
(cf. [2, 3, 14, 18, 19, 32]). The Leslie-Gower predator-prey model formulation is based on
the assumption that reduction in a predator population has a reciprocal relationship with
per capita availability of its preferred food. Indeed, Leslie [16] introduced a predator-
prey model where the carrying capacity of the predators environment is proportional to
the number of prey. This interesting formulation for the predator dynamics has been
discussed in [17] and [24].

Major works in this direction are based on deterministic models of differential or dif-
ference equations. The deterministic approach has some limitations in mathematical
modelling of ecological systems. It is quite difficult to predict the future dynamics of the
system accurately. This happens due to the fact that deterministic models in ecology
do not incorporate the effect of fluctuating environment (cf. [9, 23, 26]) based upon
the idea that in case of large populations, stochastic deviations are small enough to be
ignored. Stochastic differential equation models (cf. [4, 5, 8, 25, 28, 29, 30, 31]) play a
significant role in various branches of applied sciences including biology and population
dynamics, as they provide some additional degree of realism compared to their deter-
ministic counterpart. In reality, demographic parameters involved with the modelling
approach of ecological systems are not absolute constants, they always fluctuate around
some average value due to continuous fluctuation in environment (e.g. variation in in-
tensity of sunlight, temperature, water level etc.). As a result, the population density
never attains a fixed value with advancement of time rather exhibit continuous oscilla-
tion around some average values. Based upon these factors, we extend our deterministic
model to a stochastic one with the assumption that fluctuations in the environment will
manifest themselves mainly as fluctuations in the natural growth rate of both the prey
and predator species. These fluctuations are taken in terms of both white and colored
noises followed by Wiener and Ornstein-Uhlenbeck processes. In this paper, an attempt
has also been made to study the mean square stability of the model system in presence
of both white and colored noises showing that the colored noise has a stabilizing effect
with respect to white noise.

The paper is organized as follows: In Section 2, we present a mathematical model of
the Holling-Tanner predator-prey model with modified Leslie-Gower functional response
and discuss the boundedness and permanence of the model system. In Section 3, we
study the local asymptotic stability, Hopf-bifurcation and Global stability for the model
system. Also in this section, the direction of the Hopf bifurcation and the stability of
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the bifurcating periodic solutions are determined analytically by using the normal form
and the center manifold theory. In Section 4, we consider the effect of multiplicative
white noise and find an estimation of the noise intensities to investigate the exponential
mean square stability of the stochastic model system. Section 5 consists of the effect of
multiplicative colored noise to investigate stability in mean square sense. We present a
comparative analysis of stability properties in the concluding section.

2. The Model : Boundedness and Permanence

We consider the following predator-prey model as proposed by Aziz-Alaoui et al. [3].

dN

dτ
= rN

(
1− N

K

)
− bNP

N +K1
, (2.1a)

dP

dτ
= P

(
a− cP

N +K2

)
, (2.1b)

where N(τ) and P (τ) are the number of prey and predator species at time τ . The model
system is subject to the initial conditions N(0) > 0 and P (0) > 0. The parameters
r,K, b,K1,K2, a, c involved with the model system (2.1) are all positive and the sign
(+ or −) in front of each term indicates an increase or loss in the growth rate. In [3]
Aziz-Alaoui et al., have discussed stability analysis of the model system (2.1) leaving
the analysis of boundedness and permanence. In this present paper, we prove the same
results and also extend the model system (2.1) in a random environment.

For the dynamical system (2.1), the basic assumptions and the significance of param-
eters are as follows:
(A1) In the absence of predation, the prey population grows logistically with carrying
capacity K(∈ R+) and intrinsic growth rate r(∈ R+) as follows:

dN

dt
= r

(
1− N

K

)
.

(A2) The predator species consumes the prey according to the functional response
bN

N +K1
and ‘a’ denotes the growth rate of predator P . K1 is the measure of the extent to which
environment provides protection to prey N .
(A3) K2 measures the extent to which the environment provides protection to the preda-
tor.
(A4) b is the maximal predator per capita consumption rate, i.e., the maximum number
of preys that can be captured by a predator in each unit time.
(A5) c is a measure of the food quality that the prey provides for conversion into predator
births.

We non-dimensionalize our model system (2.1) with the following scaling

t = rτ, x =
N

K
, y =

cP

aK
,
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and this results into

dx

dt
= x

(
1− x

)
− αxy

x+ δ
= F1(x, y) (2.2a)

dy

dt
= βy

(
1− y

x+ γ

)
= F2(x, y) (2.2b)

where x(0) > 0, y(0) > 0 and

α =
ab

cr
, β =

a

r
, γ =

K2

K
, δ =

K1

K
.

Considering the biological significance, we investigate the dynamical system (2.2) in

the region R2
+ where R2

+ =

{
(x, y) ∈ R2 : x ≥ 0, y ≥ 0

}
.

Theorem 1. R2
+ is an invariant set.

Proof. From the first equation of (2.2) it follows that x = 0 is an invariant subset i.e
x ≡ 0 if and only if x = 0 for some time t. This imply that x(t) > 0 ∀ t if x(0) > 0. The
same argument follows for the second equation of the system (2.2) i.e., any trajectory
starting in R2

+, cannot cross the coordinate planes. Hence the theorem. ¤

Theorem 2. The prey population is always bounded above.

Proof. The first equation of (2.2) gives

dx

dt
≤ x

(
1− x

)
.

Therefore lim sup
t→∞

x(t) ≤ 1. Hence the theorem. ¤

Theorem 3. All the solutions of (2.2) that commences in R2
+ are uniformly bounded.

Proof. Let us define a function W (t) : R+ → R+ by W = x+ y.
The time derivative gives

dW

dt
=

dx

dt
+

dy

dt
= x

(
1− x

)− αxy

x+ δ
+ βy

(
1− y

x+ γ

)
.

For any ρ > 0, we get

dW

dt
+ ρW ≤ x

(
1 + ρ− x

)
+ y

(
β + ρ− βy

1 + γ

) ≤ (1 + ρ)2

4
+

(1 + γ)(β + ρ)2

4β
. (2.3)

Thus we can define a constant η > 0, such that

η =
(1 + ρ)2

4
+

(1 + γ)(β + ρ)2

4β
> 0.

This shows
dW

dτ
+ ρW ≤ η.
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By applying Gronwall’s inequality [7], we get

0 < W (x, y) ≤ η

ρ
(1− e−ρt) + e−ηtW (x(0), y(0)).

Thus for t → ∞, we have 0 < W (x, y) < η
ρ . Hence all the solutions (x(t), y(t)) of (2.2)

that commence in R2
+ are restricted in the region

H =

{
(x, y) ∈ R2

+ : W =
η

ρ
+ ϑ, ∀ ϑ > 0

}

for all t ≥ T , where T depends on the initial values (x(0), y(0)). ¤

Definition 1. The model system (2.2) is said to be permanent if there exist ξ1, ξ2,
0 < ξ1 < ξ2, such that for all solutions of (2.2) with the initial conditions x(0) > 0 and
y(0) > 0,

min{lim inf
t→∞

x(t), lim inf
t→∞

y(t)} ≥ ξ1,

and

max{lim sup
t→∞

x(t), lim sup
t→∞

y(t)} ≤ ξ2.

Theorem 4. The model system (2.2) is permanent if α(1 + γ) < δ.

Proof. We have x(t) ≤ 1 for all values of t. Now from the second equation of (2.2), we
get

dy

dt
= βy

(
1− y

x+ γ

)
= βy

(
x+ γ − y

x+ γ

)
≤ βy

(
1 + γ − y

x+ γ

)
. (2.4)

Therefore,

lim sup
t→∞

y(t) ≤ 1 + γ.

From the prey equation of the system (2.2), we have

dx

dt
= x

[
1− x− αy

x+ δ

]
≥ x

{
(1− x)− α(1 + γ)

δ(1 + x
δ )

}
≥ x

{
(1− x)− α(1 + γ)

δ

}
. (2.5)

Therefore, if we choose x = 1− α(1 + γ)

δ
, then

lim inf
t→∞

x(t) ≥ x if x > 0 i.e if
α(1 + γ)

δ
< 1.

Hence for large t, we have x(t) > x.
Also for large t,

dy

dt
= βy

(
1− y

x+ γ

)
≥ βy

(
1− y

x+ γ

)
. (2.6)

Let y be the root of the equation

1− y

x+ γ
= 0,
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and this equation gives

y =
(
x+ γ

)
= y > 0.

Choosing a positive number ε such that ε < min
{
x, y

}
, we arrive at the following con-

clusion

lim inf
t→∞

x(t) > ε, and lim inf
t→∞

y(t) > ε.

Hence the theorem. ¤

3. Local Asymptotic Stability

The equilibrium points for the model system (2.2) are given by (i) E0(0, 0) (trivial
equilibrium), (ii)E1(1, 0) (axial equilibrium) (iii) E2(0, γ) (axial equilibrium) and (iv)
E∗(x∗, y∗) (positive equilibrium), where y∗ = x∗ + γ and x∗ is the positive root of the
quadratic equation

x∗2 + (α+ δ − 1)x∗ + αγ − δ = 0. (3.1)

The quadratic equation (3.1) has a positive root if δ > αγ and is given by

x∗ =
1− α− δ +

√
(1− α− δ)2 + 4(δ − αγ)

2
. (3.2)

In order to find the stability of the above mentioned equilibria we have to determine
the Jacobian matrix J(x, y) or simply J for the dynamical system (2.2) at the point (x, y)
within the first quadrant of x-y plane and is given by

J =




1− 2x− αyδ
(x+δ)2

− αx
x+δ

β y2

(x+γ)2
β − 2 β y

x+γ


 . (3.3)

At E0(0, 0) the eigenvalues of the corresponding Jacobian matrix are 1 and β both of
which are positive. Therefore, E0 is unstable.

At E1(1, 0) the eigenvalues of the corresponding Jacobian matrix are −1 < 0 and
β > 0 and consequently E1 is a saddle point.

At E2(0, γ) the eigenvalues of the corresponding Jacobian matrix are 1− αγ
δ and −β.

Therefore, E2 is either a stable-node or a saddle according as δ < αγ or δ > αγ.
Let J∗ be the Jacobian matrix at E∗. Now we study the stability of the positive

equilibrium E∗(x∗, y∗).

Theorem 5. The positive equilibrium E∗ of the model system (2.2) is stable if β >

−x∗ +
αx∗y∗

(x∗ + δ)
2 with δ > γ.

Proof. The characteristic equation of the Jacobian matrix J∗ is

λ2 +Qλ+R = 0,
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where

Q = −trace(J∗) = x∗ − αx∗y∗

(x∗ + δ)
2 + β, R = det(J∗) = βx∗

{
1 +

α(δ − γ)

(x∗ + δ)2

}
.

According to Routh-Hurwitz criterion the necessary and sufficient conditions for local
asymptotical stability are trace of J∗ < 0 and det(J∗) > 0. Hence the theorem. ¤

Theorem 6. Suppose E∗ exists with δ > γ, then the model system (2.2) undergoes a

Hopf bifurcation around E∗ whenever β = β∗ = −x∗ +
αx∗y∗

(x∗ + δ)
2 .

Proof. We see that

(i) Trace of J∗ = 0, if β = β∗ = −x∗ +
αx∗y∗

(x∗ + δ)
2 .

(ii) det(J∗)|β=β∗ > 0, if δ > γ.

(iii) At β = β∗ eigenvalues are purely imaginary.

(iv)
d

dβ
(trace of J∗)|β=β∗ = −1 6= 0.

Therefore, all the conditions of Hopf-bifurcation are satisfied and hence the theorem. ¤

Theorem 7. If α < min

(
β,

2δ

γ

)
, local asymptotical stability of E∗ ensures its global

stability.

Proof. Let us consider a function h(x, y) of the form h(x, y) =
1

xy
. Then h(x, y) > 0 for

x, y > 0. Now

∆(x, y) =
∂

∂x
(F1h) +

∂

∂y
(F2h) = −1

y
− (β − α)x2 + x(2δ − αγ) + δ2

x(x+ γ)(x+ δ)2
.

Thus it follows that ∆(x, y) < 0 if α < β and 2δ > αγ. Therefore, by Bendixon-Dulac

criterion there will be no limit cycle when α < min

(
β,

2δ

γ

)
. ¤

3.1. Direction and stability of the Hopf bifurcation. In Theorem 6, we have
obtained the conditions which guarantee that the system undergoes a Hopf bifurcation
at the interior equilibrium E∗(x∗, y∗) when β takes some critical values β∗. Now, we
shall study the direction and stability of Hopf bifurcation by applying the techniques
from normal form and center manifold theory introduced by Hassard et al. [10].
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Based on the analysis in Appendix, we can compute the following values:

C1(0) =
i

2ω0
(g11g20 − 2|g11|2 − |g02|2

3
) +

g21
2

, (3.4a)

µ2 = −Re{C1(0)}
Re{λ′(0)} , (3.4b)

β2 = 2Re{C1(0)}, (3.4c)

τ2 = −Im{C1(0)}+ µ2Im(λ′(0))
ω0

, (3.4d)

where gij are given in (8.7) (Appendix), µ2 determines the direction of the Hopf bifur-
cation, β2 determines the stability of the bifurcating periodic solution, τ2 determines the
period of the bifurcating periodic solution and for the explanations of all the notations
involved here we refer to Hassard et al. [10].

Therefore we are in a position to summarize the properties of the Hopf bifurcation at
the critical value of β = β∗ in the following theorem:

Theorem 8. (i) If µ2 > 0 (< 0); the Hopf bifurcation is supercritical (subcritical),
(ii) If β2 < 0 (> 0); the bifurcated periodic solutions are stable (unstable),
(iii) If τ2 > 0 (< 0); period of the bifurcating periodic solution increases (decreases).

4. The Model with White Noise: Mean Square Stability

In this section we study the effect of random fluctuation on the model system after
introducing stochastic perturbation terms in the growth equation of prey and predator
species. Here we assume that the stochastic perturbations of the variables around their
value at E∗ are of Gaussian white noise type, which are proportional to the distances
of x, y from the values x∗, y∗ (cf. [6]). So the stochastic version corresponding to the
deterministic model system (2.2) takes the following form:

dx = F1(x, y)dt+ σ1(x− x∗)dξt
(1), (4.1)

dy = F2(x, y)dt+ σ2(y − y∗)dξt
(2), (4.2)

where σ1, σ2 are real constants known as the intensity of environmental fluctuations and

ξt
(1), ξt

(2) are independent standard Wiener process (standard Brownian motion) (cf.
[6]).

Equations (4.1) and (4.2) can be represented as an Ito stochastic differential system
of the type

dXt = f(t,Xt)dt+ g(t,Xt)dξt, Xt(t = 0) = X0 (4.3)

whose solution Xt, for all positive time t is an Ito process and the components of (4.3)
are given by

Xt =

[
x

y

]
, ξt =

[
ξ
(1)
t

ξt
(2)

]
, f(t,Xt) =

[
F1 (x, y)

F2 (x, y)

]
, (4.4)
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and

g(t,Xt) =

[
σ1 (x− x∗) 0

0 σ2 (y − y∗)

]
. (4.5)

The function f(t,Xt) is a slowly varying continuous component called as ‘drift co-
efficient’ and g(t,Xt) is the rapidly varying continuous random component called as

‘diffusion coefficient’ and ξt is a 2-dimensional Wiener process whose increments ∆ξt
j =

ξj(t+∆t)− ξj(t), j = 1, 2 are independent Gaussian random variables x(0,∆t).
Since the diffusion matrix g(t,Xt) depends on the solution vector Xt, the stochastic

system (4.1) - (4.2) is said to have multiplicative noise. Moreover, due to diagonal form
of the diffusion matrix g(t,Xt), the system (4.1) - (4.2) is said to have diagonal noise.

It is quite tricky to obtain the stability conditions for stochastic differential equations
(4.1) - (4.2) in mean square sense by means of an appropriate Lyapunov functions method
working on the complete nonlinear equations(4.1) − (4.2). For the sake of simplicity,
we consider the linearized version of stochastic differential equations (4.1) - (4.2) by
introducing new variables u1 = x− x∗, and u2 = y − y∗.

The linearized version of (4.1) - (4.2) around E∗(x∗, y∗) is given by

du(t) = f(u(t))dt+ g(u(t))dξ(t), (4.6)

where

u(t) =

[
u1 (t)

u2 (t)

]
, f(u(t)) =

[
−a11u1 − a12u2

a21u1 − a22u2

]
and g(u(t)) =

[
σ1u1 0

0 σ2u2

]
. (4.7)

In (4.7), the constants aij are given by

a11 = x∗ − αx∗y∗

(x∗ + δ)2
, a12 =

αx∗

x∗ + δ
, a21 = β, a22 = β. (4.8)

Clearly, in (4.6) the positive equilibrium E∗ corresponds to the trivial solution (u1, u2) =
(0, 0).
We consider a set Ω =

{
(t ≥ t0)×R2, t0 ∈ R+

}
. If V ∈ C2(Ω) is a twice continuously

differentiable function with respect to u and a continuous function with respect to t, then
we state the following theorem due to Afanasev [1] regarding the mean square stability
of the stochastic model system governed by (4.6).

Theorem 9. Suppose there exists a function V (u, t) ∈ C2(Ω) satisfying the inequalities

K1|u|p ≤ V (t, u) ≤ K2|u|p, (4.9)

LV (t, u) ≤ K3|u|p, (4.10)

where Ki > 0, i = 1, 2, 3 and p > 0 are some suitable constants. Then the trivial
solution of (4.6) is exponentially p-stable for all t ≥ 0. If p = 2, then the trivial solution
of (4.6) is exponentially mean square stable. Moreover, the trivial solution of (4.6) is
globally asymptotically stable in probability. Note that |u| represents the modulus of u, L
is the differential operator associated with the equation (4.6) and defined by

LV (t, u) =
∂V (t, u)

∂t
+ fT (u(t))

∂V (t, u)

∂u
+

1

2
Tr[gT (u(t))

∂2V (t, u)

∂u2
g(u(t))], (4.11)
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where T means usual matrix transposition and the first and second order partial deriva-
tives of V with respect to u are defined as follows:

∂V (t, u)

∂u
=




∂V

∂u1

∂V

∂u2


 ,

∂2V (t, u)

∂u2
=




∂2V

∂u1
2

∂2V

∂u1∂u2

∂2V

∂u2∂u1

∂2V

∂u2
2


 . (4.12)

Now we can prove the following theorem,

Theorem 10. Assume that ω1(2a11−σ2
1) > (a21ω2−a12ω1) with a11 > 0 and ω2(2a22−

σ2
2) > (a21ω2 − a12ω1), then the zero solution of the system (4.6) is asymptotically mean

square stable.

Proof. Let us consider the Lyapunov function

V (u) =
1

2
[ω1u1

2 + ω2u2
2], (4.13)

where ω1 and ω2 are real positive constant to be chosen latter. Then (4.12) gives

∂V (t, u)

∂u
=

[
ω1u1

ω2u2

]
,

∂2V (t, u)

∂u2
=

[
ω1 0

0 ω2

]
, (4.14)

gT (u(t))
∂2V (t, u)

∂u2
g(u(t)) =

[
ω1σ1

2u1
2 0

0 ω2σ2
2u2

2

]
, (4.15)

and

1

2
Tr[gT (u(t))

∂2V (t, u)

∂u2
g(u(t))] =

1

2
[ω1σ1

2u1
2 + ω2σ2

2u2
2]. (4.16)

Therefore,

LV (u(t)) = ω1(−a11u1 − a12u2)u1 + ω2(a21u1 − a22u2)u2 +
1

2
[ω1σ1

2u1
2 + ω2σ2

2u2
2]

= −u1
2

{
a11 − σ1

2

2

}
ω1 − u2

2

{
a22 − σ2

2

2

}
ω2 − u1u2

{
a12ω1 − a21ω2

}
.

If we chose
a21
a12

>
ω1

ω2
> 0, Using the inequality u1u2 <

u2
1+u2

2

2 we can rewrite the above

expression as

LV (u(t)) = −1

2

[ ((
2 a11 − σ1

2
)
w1 + w1a12 − w2a21

)
u2
1 +

((
2 a22 − σ2

2
)
ω2 + ω1a12 − w2a21

)
u2
2

]
,

which can be written as

LV (u(t)) = −1

2
[uTQu], (4.17)

where

Q =

[
q11 0

0 q22

]
. (4.18)
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with

q11 = (2 a11 − σ1
2)ω1 + ω1a12 − ω2a21, q22 = (2 a22 − σ2

2)ω2 + ω1a12 − ω2a21.

The eigenvalues, say λ1, and λ2 of the matrix Q will be positive if the following conditions
hold:

ω1(2a11 − σ2
1) > (a21ω2 − a12ω1), ω2(2a22 − σ2

2) > (a21ω2 − a12ω1). (4.19)

Now we define λm = min(λ1, λ2), then from (4.14) we get the subsequent result

LV (u(t)) ≤ −λm|u|2. (4.20)

Hence the theorem. ¤

5. The Model with Colored Noise: Mean Square Stability

In the previous section we have perturbed the system (2.2) by independent white
noises due to randomly fluctuating environment but in real ecosystems the external
random perturbations, because of interaction with the environment, are correlated within
a finite correlation time. When the time scale of random fluctuations is larger than the
characteristic time scale of the ecosystem the external noise cannot be considered white
noise. A strongly correlated noise, for example, emerges as the result of a coarse graining
over a hidden set of slow variables. With this consideration we will study the effect
of colored noise perturbation on the system (2.2). Proceeding as earlier the linearized
version of the model system (2.2) in presence of colored noise takes the form

du1

dt
= −a11u1 − a12u2 + η1(t)u1, (5.1a)

du2

dt
= a21u1 − a22u2 + η2(t)u2, (5.1b)

where the perturbed terms η1(t) and η2(t) are independent colored noises modeled by
Ornstein - Uhlenbeck processes (which are more realistic noises than white noises) and
satisfies the following Langevin equation

dηi(t)

dt
= −αiηi(t) + σiξi(t), t > 0, ηi(0) = ηi0 i = 1, 2, (5.2)

where αi > 0, σi > 0 are constants. The mathematical expectations and correlation
functions of the processes ηi(t) are given by

E{ηi(t)} = 0, E{ηi(s), ηi(t)} =
σi

2

2αi
e−αi|t−s|, i = 1, 2, (5.3)

where σi
2 is the intensity of white noise process ξi(t). ξi(t), i = 1, 2 are independent

standard Gaussian white noises having the following expectations and correlation func-
tions:

E{ξi(t)} = 0, E{ξi(t), ξi(s)} = δ(s− t), i = 1, 2, (5.4)

where δ(t) denotes the Dirac delta function. It is to be noted that for αi → ∞, the
Ornstein - Uhlenbeck noise approaches to white-noise limit ξi(t). The stochastic dynamic
system (5.2) considered separately is not a Markov process but the four component
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process (x(t), y(t), η1(t), η2(t)) taken together is Markovian. Now we are in a position to
derive the sufficient conditions for exponential mean square stability.
Rewriting (5.1) as

du(t)

dt
= Au(t) + η(t)u(t) (5.5)

where A =

[
−a11 −a12

a21 −a22

]
, η(t) =

[
η1 (t) 0

0 η2 (t)

]
and u(t) is defined in (4.7).

Let us assume a11 + a22 > 0, so that in absence of multiplicative colored noise, the
zero solution of (5.1) is always locally asymptotically stable. We also assume that a211 +

a222 6= 2
(
a11a22 + 2a12a21

)
, so that all the eigenvalues of the coefficient matrix A are

distinct and have negative real parts. Let us denote the eigenvalues of the matrix A
as λ1 and λ2 and using similarity transformation the matrix A can be transformed
into a (2× 2) diagonal matrix with the eigenvalues of A as the entries on the main
diagonal. Under these conditions it can be proved that the first moment exponential
stability, even moment exponential stability, p-th mean exponential stability and almost
sure exponential stability are equivalent to the same properties for the two first order
systems

dui

dt
= λiui + uiηi(t), i = 1, 2. (5.6)

The solution of the decoupled SDEs (5.6) is given by

ui(t) = ui(0) exp

{
λit+

∫ t

0

ηi(s)ds

}
, i = 1, 2. (5.7)

Therefore

|ui(t)|p = |ui(0)|p exp
{
p(Reλi)t+ p

∫ t

0

ηi(s)ds

}
, i = 1, 2. (5.8)

Then the p-th moment of |ui(t)|, i = 1, 2 is given by

E{|ui(t)|p} = |ui(0)|p exp {p(Reλi)t}E
[
exp

{
p

∫ t

0

ηi(s)ds

}]
, i = 1, 2. (5.9)

For a Gaussian stochastic process θ(t), we have

E{exp(θ(t))} = exp

{
E(θ(t)) +

1

2
E(θ2(t))

}
, i = 1, 2. (5.10)

Using (5.10) in (5.9), we get

E{|ui(t)|p} = |ui(0)|p exp {p(Reλi)t} exp
{
pE

(∫ t

0

ηi(s)ds

)
+

p2

2
E(µ2

i (t))

}
, (5.11)

where µi(t) =

∫ t

0

ηi(s)ds, i = 1, 2.
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Now using the properties of Ornstein-Uhlenbeck process we have

E(µi(t)) = 0, (5.12a)

E(µ2
i (t)) =

σ2
i

α2
i

t+
σ2
i

α3
i

(exp(−αit)− 1), i = 1, 2. (5.12b)

From (5.11) and (5.12), we get

E{|ui(t)|p} = |ui(0)|p exp
{
p

(
Re(λi) +

pσ2
i

2α2
i

)
t

}
exp

{
p2σ2

i

2α3
i

(exp(−αit)− 1)

}
, i = 1, 2. (5.13)

We summarize the above fact in the following theorem,

Theorem 11. Let us assume that a11 + a22 > 0 and a211 + a222 6= 2
(
a11a22 + 2a12a21

)
.

Then the model system (5.1) can be transformed into a set of two decoupled SDEs (5.6)
and the null solution of (5.1) is exponentially mean square stable if and only if

Re(λi) +
σ2
i

α2
i

< 0, i = 1, 2. (5.14)

6. Numerical Simulations

In this section we have shown the numerical simulations of our model system in deter-
ministic environment as well as in stochastic environment using Matlab software, in order
to substantiate the analytical results. Here we take the following set of parameter values:
α = 0.4; β = 0.9; γ = 0.3; δ = 0.55. Using the above set, we have estimated the positive
equilibrium point as E∗ = (0.6812202375, 0.9812202375), tr(J∗) = −1.404842999 < 0.
The parameters satisfies the existence and stability condition of E∗. Therefore by The-
orem 5 and 7, E∗ is locally as well as globally asymptotically stable. Visibly, for a large
number of distinct positive starting values, each of the curve converging to E∗ spirally,
[cf. Figure 1].

For parameters α = 1; β = β∗ = 0.721; γ = 0.001; δ = 0.01, E∗(0.09, 0.091) loses its
stability and become unstable. The corresponding phase portraits are shown in Figure
2. Also we get ω0 =

√
R(β∗) = 0.3511281817.

By means of the software Maple, we evaluate from (8.7) (in Appendix),

g11 = −0.4500000000− 0.9778524105i, g02 = −2.360384612 + 1.918204812i

g20 = 1.460384612 + 2.308347236i, g21 = −11.04634404 + 15.11611588i

Then from (8.8) and (3.4), we compute

Reλ′(0) = ρ′(0) = −0.50, Imλ′(0) = ω′(0) = 0.2492129164,

C1(0) = −2.010499160 + 2.145529445i, µ2 = −4.020998320,

β2 = −4.020998320 and τ2 = −3.256488048.

Thus we conclude that since µ2 < 0; the Hopf bifurcation of system (2.2) occurring
at β∗ = 0.721 is subcritical and the bifurcating periodic solution exist when β crosses
β∗ to the left. Also β2 < 0 implies that this hopf bifurcating periodic solutions from
E∗(0.09, 0.091) at β∗ = 0.721 are stable. Since τ2 < 0, the period of the periodic
solutions increases as β decrease.
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Figure 1. The phase portrait showing E∗ is a global attractor

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

Time in years 

pre
y (

u)

0 200 400 600 800 1000
0.05

0.1

0.15

0.2

0.25

Time in years 

pre
da

tor
 (v

)

Figure 2. The Hopf-bifurcating periodic solution
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For the numerical experiments in stochastic environment (cf. [11, 20]) with parametric
white noise, the parameter estimates involved in the stochastic differential equations (4.1)
- (4.2) are taken as α = 0.4; β = 0.9; γ = 0.3; δ = 0.55 and (u(0), v(0)) = (0.6, 0.8).
These parameters shows a stable nature of the system shown in Figure 3, with the value
of noise intensities σ1 = 0.07 and σ2 = 0.11, satisfying the restrictions in (4.19).
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Figure 3. Stochastically stable population distribution for prey and
predator with parametric white noise.

Now if we gradually increase the intensities of fluctuation σ1 and σ2 for which the
system loses its stability. For σ1 = 0.9 and σ2 = 1.1 keeping the remaining parameters
unchanged, we see a large amount of fluctuation in both prey and predator population
as depicted clearly in Figure 4. For these parameter values with ω1 = ω2 = 1, we have

(2 a11 − σ1
2)ω1 + ω1a12 − ω2a21 = −0.0886845224 < 0,

(2 a22 − σ2
2)ω2 + ω1a12 − ω2a21 = −0.4789985244 < 0.

In this case the noise intensities crosses the threshold value presented in (4.19).
The numerical simulation in stochastic environment with parametric color noise has

been performed by taking into account the same parametric values. The results on
stochastic stability and unstability under the same noise intensity have been displayed
in Figures 5 and 6 respectively. It is interesting to note that the stochastic system
becomes stable for σ1 = 0.07, σ2 = 0.11 whereas unstability occurs for σ1 = 0.9, σ2 = 1.1
keeping the values of the remaining parameters unchanged.

7. Discussion

In this paper, we have considered a Holling-Tanner predator-prey model with modified
Leslie-Gower functional response. Our results show that under the condition α(1+γ) < δ
the model system is permanent. It is also observed that the equilibria E0(0, 0) and
E1(1, 0) are always unstable, E2 is conditionally stable but become unstable if the positive
equilibrium E∗ exists. The local asymptotical stability conditions for positive equilibrium
E∗ are derived and are presented in Theorem 5. We have also shown that our model
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Figure 4. Fluctuation in prey and predator population with parametric
white noise.
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Figure 5. Stochastically stable population distribution for prey and
predator under multiplicative colored noise
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Figure 6. Fluctuation in prey and predator population under multi-
plicative colored noise
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system undergoes a Hopf bifurcation, i.e., a small amplitude periodic solution emerges

around E∗ whenever β passes through β = β∗ = −x∗ +
αx∗y∗

(x∗ + δ)
2 . The global stability

analysis around E∗ is carried out by using Bendixon-Dulac criterion and is presented in
Theorem 7. Moreover, the direction and stability of the Hopf bifurcation is investigated
by using center manifold and normal forms theory.

We then extend the deterministic model into stochastic environment. Undoubtedly,
there are some limitations in biology for the deterministic approach to the model system
because fluctuations are always presented in environment. Also it is a very difficult task to
determine the eventual size of a population above which the deterministic approximations
are reasonable. On the other hand, a stochastic model supplies a realistic illustration to
a great extent of a natural system than its deterministic counterpart. We, in the present
manuscript include fluctuations to our deterministic model system (2.2) in the form of
multiplicative white and colored noises.

In presence of multiplicative white noises, We have obtained conditions for stochastic
stability of the positive equilibrium E∗ in the sense of mean square. Our mathematical
findings indicate that the stochastic stability of the positive equilibrium point depends
upon the magnitude of intensities of the environmental driving forces (σi, i=1,2). This
condition is presented in the equation (4.19). In case of stochastic stability of population
models, it intuitively seems appropriate to refer the systems characterized by large fluctu-
ations in population numbers as ‘unstable’ and to those with relatively small fluctuations
as ‘stable’. If the intensities of environmental fluctuations do not cross their threshold
values defined in (4.19) then it is possible to find a dense smoke cloud of population
distribution within a hypothetical circular shell centered at E∗ with a small radius.

The condition of stochastic stability of E∗ in presence of multiplicative colored noises
is derived in Theorem 11. The result presented in (5.13) shows that the relaxation
of E{|u1(t)|p} and E{|u2(t)|p} to zero is accelerated in presence of colored noise with
compare to white noise, which means colored noise has a stabilizing effect with respect
to white noise. The necessary numerical simulations of the desired quantities in support
of our analytical findings have been performed by using MATLAB software and are pre-
sented through their graphical representations in order to substantiate the applicability
of the proposed model under consideration.

8. Appendix

For the sake of simplicity of notation, β = β∗ + θ, so θ = 0 is the Hopf bifurcation
value for the system (2.2). Let x1 = x− x∗, x2 = y − y∗. Thus, the equilibrium (x∗, y∗)
of system (2.2) is translated to the origin. Now we expand the right side of system(3.2)
in Taylor series expansion and system (2.2) reduces to:

dx1

dt
= −a11x1 − a12x2 +

∑

m+n≥2

Ωmn

m!n!
xm
1 xn

2 , (8.1a)

dx2

dt
= a21x1 − a22x2 +

∑

m+n≥2

Γmn

m!n!
xm
1 xn

2 , (8.1b)
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where m,n ≥ 0; Ωmn =
∂m+n F1

∂mx∂ny

∣∣∣∣∣
E∗

; Γmn =
∂m+n F2

∂mx∂ny

∣∣∣∣∣
E∗

; F1, F2 have the same

expression as given in (2.2) and aij ’s are given in (4.8).
Now we consider the equivalent system (8.1) of the system (2.2). The eigenvector v

associated with eigenvalue λ = ρ+ iω is

v =

[
1

−a11−ρ−iω
a12

]
,

where

ρ = −1

2
(a11 + a22) and ω =

1

2

√
4(a12a21 + a11a22)− (a11 + a22)2.

We define

P = (Re(v)),−Im(v)) =

[
1 0

−a11−ρ
a12

ω
a12

]
and

[
y1

y2

]
= P−1

[
x1

x2

]

Then in terms of variables y1 and y2, the system (8.1) becomes

dy1
dt

= ρy1 − ωy2 +Φ(y1, y2;β), (8.2a)

dy2
dt

= ωy1 + ρy2 +Ψ(y1, y2;β), (8.2b)

where

Φ(y1, y2;β) =
1

2
Ω20y

2
1 +Ω11y1φ(y1, y2) +

1

2
Ω02φ

2(y1, y2) +
1

2
Ω21y

2
1φ(y1, y2)

+
1

2
Ω21y1φ

2(y1, y2) +
1

6
Ω30y

3
1 +

1

6
Ω03φ

3(y1, y2) + h.o.t., (8.3a)

Ψ(y1, y2;β) =
a12
ω

[1
2
Γ20y

2
1 + Γ11y1φ(y1, y2) +

1

2
Γ02φ

2(y1, y2) +
1

6
Γ30y

3
1

+
1

2
Γ21y

2
1φ(y1, y2) +

1

2
Γ21y1φ

2(y1, y2) +
1

6
Γ03φ

3(y1, y2)
]

+
a11 + ρ

ω

[
Ω20y

2
1 +Ω11y1φ(y1, y2) +

1

2
Ω02φ

2(y1, y2) +
1

6
Ω30y

3
1

+
1

2
Ω21y

2
1φ(y1, y2) +

1

2
Ω21y1φ

2(y1, y2) +
1

6
Ω03φ

3(y1, y2)
]
+ h.o.t. (8.3b)

and φ(y1, y2) = −a11 + ρ

a12
y1 +

ω

a12
y2. (8.4)

Here h.o.t. stands for higher order terms. As the system (2.2) undergoes Hopf bifur-
cation at the positive equilibrium E∗(x∗, y∗) at β = β∗, therefore, in the above system
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(8.2),

ρ = 0, ω = ω0 =
√
R =

√
βx∗

{
1 +

α(δ − γ)

(x∗ + δ)2

}
. (8.5)

Then the system (8.2) reduces to

dy1
dt

= −ω0y2 +Φ0(y1, y2;β), (8.6a)

dy2
dt

= ωy1 +Ψ0(y1, y2;β), (8.6b)

where

Φ0(y1, y2) =
1

2
Ω20y

2
1 +Ω11y1φ0(y1, y2) +

1

2
Ω02φ

2
0(y1, y2) +

1

6
Ω30y

3
1

+
1

2
Ω21y

2
1φ0(y1, y2) +

1

2
Ω21y1φ

2
0(y1, y2) +

1

6
Ω03φ

3(y1, y2) + h.o.t.,

Ψ0(y1, y2) =
a12
ω0

[1
2
Γ20y

2
1 + Γ11y1φ0(y1, y2) +

1

6
Γ30y

3
1 +

1

2
Γ02φ

2
0(y1, y2)

+
1

2
Γ21y

2
1φ0(y1, y2) +

1

2
Γ21y1φ

2
0(y1, y2) +

1

6
Γ03φ

3
0(y1, y2)

]

+
a11
ω0

[
Ω11y1φ0(y1, y2) +

1

2
Ω02φ

2
0(y1, y2) + Ω20y

2
1 +

1

6
Ω30y

3
1

+
1

2
Ω21y

2
1φ0(y1, y2) +

1

2
Ω21y1φ

2
0(y1, y2) +

1

6
Ω03φ

3
0(y1, y2)

]
+ h.o.t.,

φ0(y1, y2) = ξy1 + ηy2, ξ = −a11
a12

, η =
ω0

a12
.

Now we calculate the following quantities at

β = β∗ and (y1, y2) = (0, 0).

g11 =
1

4

[∂2Φ0

∂y21
+

∂2Φ0

∂y22
+ i

(∂2Ψ0

∂y21
+

∂2Ψ0

∂y22

)]

=
1

4

[
Ω20 + 2ξΩ11 + (ξ2 + η2)Ω02 + i

(
a12
ω0

(
Γ20 + 2ξΓ11 + (ξ2 + η2)Γ02

)

+
a11
ω0

(
Ω20 + 2ξΩ11 + (ξ2 + η2)Ω02

))]
, (8.7a)

g02 =
1

4

[∂2Φ0

∂y21
− ∂2Φ0

∂y22
− 2

∂2Ψ0

∂y1∂y2
+ i

(∂2Ψ0

∂y21
− ∂2Ψ0

∂y22
+ 2

∂2Φ0

∂y1∂y2

)]

=
1

4

[
Ω20 + 2ξΩ11 + (ξ2 − η2)Ω02 − 2η

a12
ω0

(Γ11 + ξΓ02)− 2η
a11
ω0

(Ω11 + ξΩ02)
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+ i

(
a12
ω0

(
Γ20 + 2ξΓ11 + (ξ2 − η2)Γ02

)
+

a11
ω0

(
Ω20 + 2ξΩ11 + (ξ2 − η2)Ω02

)

+ 2η(Ω11 + ξΩ02)

)]
, (8.7b)

g20 =
1

4

[∂2Φ0

∂y21
− ∂2Φ0

∂y22
+ 2

∂2Ψ0

∂y1∂y2
+ i

(∂2Ψ0

∂y21
− ∂2Ψ0

∂y22
− 2

∂2Φ0

∂y1∂y2

)]

=
1

4

[
Ω20 + 2ξΩ11 + (ξ2 − η2)Ω02 + 2η

a12
ω0

(Γ11 + ξΓ02) + 2η
a11
ω0

(Ω11 + ξΩ02)

+ i

(
a12
ω0

(
Γ20 + 2ξΓ11 + (ξ2 − η2)Γ02

)
+

a11
ω0

(
Ω20 + 2ξΩ11 + (ξ2 − η2)Ω02

)

− 2η(Ω11 + ξΩ02)

)]
, (8.7c)

g21 =
1

8

[∂3Φ0

∂y31
+

∂3Φ0

∂y1∂y22
+

∂3Ψ0

∂y21∂y2
+

∂3Ψ0

∂y32
+ i

(∂3Ψ0

∂y31
+

∂3Ψ0

∂y1∂y22
− ∂3Φ0

∂y21∂y2
− ∂3Φ0

∂y32

)]

=
1

8

[
Ω30 + 3ξΩ21 + (3ξ2 + η2)Ω12 + ξ2Ω03(ξ + η) + η

a12
ω0

(
Γ21 + 2ξΓ12

+ (ξ2 + η2)Γ03

)
+ η

a11
ω0

(
Ω21 + 2ξΩ12 + (ξ2 + η2)Ω03

)
+ i

{
a12
ω0

(
Γ30 + 3ξΓ21

+ (3ξ2 + η2)Γ12 + ξ2(ξ + η)Γ03

)
+ η

a11
ω0

(
Ω30 + 3ξΩ21 + (3ξ2 + η2)Ω12

+ ξ2(ξ + η)Ω03

)
− η

(
Ω21 + 2ξΩ12 + (ξ2 + η2)Ω03

)}]
. (8.7d)

Again

ρ
′
(β) = −1

2
, (8.8a)

ω
′
(β) =

1

4

(
4 αx∗

x∗+δ − 2(β∗ + β)
)

√
4 αx∗β

x∗+δ − 4ββ∗ − (β − β∗)2
, (8.8b)

where β∗ = −x∗ +
αx∗y∗

(x∗ + δ)
2 .
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