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Abstract. In this paper, we take into account a parasite-host system with reaction-

diffusion. Firstly, we derive conditions for Hopf, Turing, and wave bifurcations of the

system in the spatial domain by means of linear stability and bifurcation analysis. Sec-

ondly, we display numerical simulations in order to investigate Turing pattern formation.

In fact, the numerical simulation discloses that typical Turing patterns, such as spotted,

spot-stripelike mixtures and stripelike patterns, can be formed. In this study, we show

that typical Turing patterns, which are well known in predator-prey systems ([7, 18, 25]),

can be observed in a parasite-host system as well.

1. Introduction

It is widely known that parasites play an important role in reducing host density
and in extinctionizing the host population in some cases([2, 8]). In order to describe
such phenomena by means of mathematical models, Ebert et al. [8] suggested the
following microparasite model

(1.1)


dS

dt
= a(S + bI)(1− c(S + I))− eS − βSI,

dI

dt
= −(e+ α)I + βSI,

where S and I represent the densities of uninfected and infected hosts, respectively.
The constant a is the maximum per capita birth rate of uninfected hosts, b(0 ≤ b ≤
1) is the relative fecundity of an infected host, c measures the per capita density-
dependent reduction in birth rate, e is the parasite-independent host background
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mortality, and α is the parasite-induced excess death rate and β is the constant
infection rate.

From simple local stability analysis, we know that system (1.1) satisfying a > d
has always the saddle equilibrium O(0, 0), which implies that extinction of host is
impossible under a > d. In addition, in [12], they have shown that system (1.1)
predicts the existence of a globally attractive positive steady state. Thus it is not
a suitable model to explain the extinction situation of the uninfected host.

After carefully investigating the infection term βSI, Hwang and Kuang [12]
obtained the following system by replacing the mass action incidence function βSI
with a standard incidence function β SI

S+I .

(1.2)


dS

dt
= a(S + bI)(1− c(S + I))− eS − β SI

S + I
,

dI

dt
= −(e+ α)I + β

SI

S + I
,

where β represents the maximum number of infections that an infected host can
cause per unit time. In [12, 21], the authors have studied about various dynamical
behaviors of the revised system (1.2) including the fact that the host extinction and
reduction dynamics can be exhibited.

Now, for simplicity, we nondimensionalizes the system (1.2) with the following
scaling

(1.3) t̄ = at, S̄ = cS, Ī = cI,

and dropping the bar notation, then we have the following system:

(1.4)


dS

dt
= (S + bI)(1− S − I)− δS − h SI

S + I
≡ P (S, I),

dI

dt
= −(δ + r)I + h

SI

S + I
≡ Q(S, I),

where h = β
a , δ = d

a , r = α
a .

Since lim(S,I)→(0,0) P (S, I) = lim(S,I)→(0,0)Q(S, I) = 0 we define that P (0, 0) =
Q(0, 0) = 0. With this assumption, we know that both P and Q are continuous on
the closure of R2

+ and C1 smooth in R2
+ where R2

+ = {(x, y)|x > 0, y > 0}. Thus,
standard arguments yields that the solutions of system (1.4) are positive, bounded
and defined on [0,∞).

Although system (1.4) has been investigated by researchers [12, 16, 21] about its
dynamics as an ordinary differential systems, one cannot infer any information about
spatial distributions from such systems. Thus, it is needed to investigate spatial
system. In fact, recently, many researchers have investigated spatiotemporal pattern
formations and bifurcation analysis of spatiotemporal predator-prey systems [1, 3,
4, 5, 10, 15, 18, 20, 19, 25, 23, 22, 24, 26]. Thus, in this paper, we will take into
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account the following a parasite-host system with reaction-diffusion:

(1.5)


dS

dt
= D1∇2S + (S + bI)(1− S − I)− δS − h SI

S + I
in Ω,

dI

dt
= D2∇2I − (δ + r)I + h

SI

S + I
in Ω,

where D1 and D2 are diffusion coefficients, ∇2 = ∂2

∂S2 + ∂2

∂I2 is the usual Laplacian
in two-dimensional space Ω and S, I stand for the space . Throughout the paper,
we assume that system (1.5) has the Neumann boundary conditions as follows:

(1.6)
∂S

∂n
=
∂I

∂n
= 0 on ∂Ω,

which means that no external input is imposed from outside.

The purposes of this paper are to investigate three bifurcation phenomena, Hopf,
Turing and wave bifurcations, of system (1.5) and to give numerical simulations in
order to observe Turing patterns caused by Turing bifurcation. In fact, in section ,
we establish the conditions for Hopf, Turing and wave bifurcations by using linear
stability theory and bifurcation analysis and, in section 3, we analyze numerically
typical Turing patterns via numerical simulations.

2. Linear Stability Analysis and Hopf Bifurcation of System (1.4)

In order to investigate bifurcation phenomena of system (1.5), first we have to
consider the nonspatial system (1.4) of system (1.5). In fact, by setting P (S, I) =
0, Q(S, I) = 0 in system (1.4), we figure out that the nonspatial system (1.4) has at
most three nonnegative equilibria as follows;

(i) E0 = (0, 0) ,

(ii) E1 = (1− δ, 0) if 0 < δ < 1,

(iii) E∗ = (S∗, I∗) if h > δ + r and bh+ (δ + r)(r + 1) > (b+ h)(δ + r),

where

(2.1)

S∗ =
δ + r

h− δ − r
I∗,

I∗ =
(h− δ − r)(b(h− δ − r)− (δ + r)(h− r − 1))

h(bh+ (1− b)(δ + r))
.

Here E1 represents that there are no infected hosts and E∗ implies that host is in-
fected chronically. Since the local stability of equilibria E0, E1 and E∗ is determined
by the eigenvalues of the variational matrix, we need to consider the variational ma-
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trix of system (1.5) at a point (x, y) ∈ Ω given by
(2.2)

J(x, y) =

(
∂P
∂S

∂P
∂I

∂Q
∂S

∂Q
∂I

)
(x,y)

=

(
1− δ − 2x− (1 + b)y − hy2

(x+y)2 b− (1 + b)x− 2by − hx2

(x+y)2

hy2

(x+y)2 −(δ + r) + hx2

(x+y)2

)
.

From [12], the stability of the equilibrium E0 can be obtained as shown in the
following proposition.

Proposition 2.1. For system (1.4), the following statements are true.

(a) If h ≤ δ + r and δ ≥ 1, then E0 is globally asymptotically stable.

(b) If h > r+1 and bh+(δ+ r)(r+1) < (b+h)(δ+ r), then E0 is globally stable.

Now we consider the stability of the equilibrium E1 in the following proposition.

Proposition 2.2. Let 0 < δ < 1 in system (1.4). Then the following statements
are true.

(a) If h < δ + r, then E1 is globally asymptotically stable.

(b) If h > δ + r, then E1 is a saddle point.

(c) If h = δ + r, then E1 is a saddle node.

Proof. Parts (a) and (b) follow from [12] and the variational matrix defined by

(2.3) J(E1) =

(
δ − 1 b

0 h− (δ + r)

)
.

Now, let h = δ + r for the part (c). Then the trace of the matrix J(E1) is not
zero, one of the eigenvalues of the matrix J(E1) is zero and the other is nonzero.
Thus in order to determine the dynamics of system (1.4) in the neighborhood of
the equilibrium E1, we transform the equilibrium E1 to the origin and then expand
the right hand side of system (1.4) as a Taylor series. Then system (1.4) can be
written as

(2.4)


dS

dt
=(δ − 1)S + (bδ − r − 1)I − S2 +

b(1− δ)− δ − r
δ − 1

I2

− (b+ 1)SI + P1(S, I),

dI

dt
=
δ + r

δ − 1
I2 +Q1(S, I),

where P1(S, I) and Q1(S, I) are C∞ functions of order at least three in (S, I). Let
S = x − (bδ − r − 1)y, I = (δ − 1)y and τ = (δ − 1)t, then system (2.4) can be
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transformed into the following system:

(2.5)



dx

dτ
= x− 1

δ − 1
x2 +

(b(δ + 1)− δ − 2r − 1)

δ − 1
xy

+
((−1 + b)δ2 + (b− 2r − 1)r − δ(b2 + 3r + 1− 2b(r + 1)))

δ − 1
y2

+ P2(x, y),

dy

dτ
=

(δ + r)

δ − 1
y2 +Q2(x, y),

where P2(x, y) and Q2(x, y) are C∞ functions of order at least three in (x, y). Now
using Theorem 7.1 of Chapter 2 in [27] , we can obtain that E1 is a saddle node. 2

In the following proposition, we mention the local stability of the equilibrium
E∗ obtained from [12].

Proposition 2.3. For system (1.4), the following statements are true.

(a) If δ + r < h ≤ r + 1, then E∗ is globally asymptotically stable.

(b) If h > r+1 and bh+(δ+r)(r+1) > (b+h)(δ+r), then E∗ is globally stable.

Now we can investigate Hopf-bifurcation phenomenon around the equilibrium
E∗ in the following theorem.

Theorem 2.4. System (1.4) can have a Hopf-bifurcation around E∗ at b = bH if

(2.6) Γ1 − Γ2 − Γ3 6= 0

where bH satisfies the following equality of b

1− 2δ + h− r − 2h

θ + 1
− γ = 0

and

θ =
δ + r

h− δ − r
,

γ =
(−δ + h− r)(−(−1 + h− r)(δ + r)− b(δ − h+ r))(1 + b+ 2θ)

h(bh− (−1 + b)(δ + r))
,

Γ1 =
(h− r)(δ + r)(δ − h+ r)(δ − bHδ + h+ bHh+ r − bHr)

h(δ − bHδ + bHh+ r − bHr)2
,

Γ2 =
2(h− r)(δ + r)(δ − h+ r)(δ + r + (δ − h+ r)θ)

Γ3((−1 + bH)δ − bHh+ (−1 + bH)r)2(1 + θ)2
,

Γ3 =
(h− δ − r)(bH(h− δ − r)− (δ + r)(h− r − 1))

h(bHh+ (1− bH)(δ + r))
.
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Proof. Consider the characteristic equation at the equilibrium point E∗ as follows:

(2.7) λ2 − tr(J(E∗))λ+ det(J(E∗)) = 0

where tr(J(E∗)) and det(J(E∗)) is the trace and the determinant of the of the
variational matrix J(E∗) of the point E∗, respectively. If tr(J(E∗)) = 0 at b =
bH , then both the eigenvalues, the solutions of the equation (2.7), become purely
imaginary under the condition det(J(E∗)) > 0. Now, replacing λ = λ1 + iλ2 into
the equation (2.7) and then from separating real and imaginary parts we can get
the followings:

(λ21 − λ22)− tr(J(E∗))λ1 + det(J(E∗)) = 0,(2.8a)

2λ1λ2 − tr(J(E∗))λ2 = 0.(2.8b)

From elementary differentiation of (2.8b) with respect to b and considering λ1 = 0,
we get

dλ1
db

∣∣∣
b=bH

= Γ1 − Γ2 − Γ3

where

θ =
δ + r

h− δ − r
,

Γ1 =
(h− r)(δ + r)(δ − h+ r)(δ − bHδ + h+ bHh+ r − bHr)

h(δ − bHδ + bHh+ r − bHr)2
,

Γ2 =
2(h− r)(δ + r)(δ − h+ r)(δ + r + (δ − h+ r)θ)

Γ3((−1 + bH)δ − bHh+ (−1 + bH)r)2(1 + θ)2
,

Γ3 =
(h− δ − r)(bH(h− δ − r)− (δ + r)(h− r − 1))

h(bHh+ (1− bH)(δ + r))
.

Thus it follows from (2.6) that dλ1

db

∣∣
b=bH

6= 0. Therefore, by Poincaré-Andronov-

Hopf Theorem [11], system (1.4) goes through a Hopf-bifurcation at b = bH around
E∗. 2

3. Turing and Wave Bifurcations of System (1.5)

In this section we consider the spatiotemporal parasite-host system (1.5) in
order to look into Turing and wave bifurcations. For this, we will perform a linear
stability analysis for system (1.5) around the nontrivial stationary state (S∗, I∗)
by linearizing the dynamical system (1.5) around the spatially homogeneous fixed
point (S∗, I∗) for small space- and time-dependent fluctuations and expand them
in Fourier space. Now, let

(3.1)
S(~x, t) ∼ S∗eλtei~k·~x,

I(~x, t) ∼ I∗eλtei~k·~x,
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where ~x = (S, I), λ is the growth rate of perturbation in time t and ~k = (kS , kI)

is the wave number vector. Let ~k · ~k = k2S + k2I ≡ k2. Then we can obtain the
corresponding characteristic equation as follows:

(3.2) |Jk − λE| = 0,

where Jk = J(E∗) − k2D, E is the identity matrix and D = diag(D1, D2) is the
diffusion matrix and J(E∗) is given in (2.2) as

(3.3) J(E∗) =

(
∂P
∂S

∂P
∂I

∂Q
∂S

∂Q
∂I

)
(S∗,I∗)

≡
(

PS PI
QS QI

)
.

Equation (3.2) can be solved, yielding the characteristic polynomial

(3.4) λ2 − tr(Jk)λ+ det(Jk) = 0,

where

(3.5)
tr(Jk) = PS +QI − k2(D1 +D2) and

det(Jk) = PSQI − PIQS − k2(D1QI +D2PS) + k4D1D2.

The solutions of equation (3.4) yield the dispersion relation

(3.6) λ±k =
1

2

(
tr(Jk)±

√
tr(Jk)2 − 4det(Jk)

)
.

The reaction-diffusion systems have led to the characterization of three basic types
of symmetry-breaking bifurcations-Hopf , Turing and wave bifurcation, which are
responsible for the emergence of spatiotemporal patterns [1, 5, 6, 10, 14, 15, 18, 20,
19, 25, 23, 22, 24]).

3.1. Turing Bifurcation

Turing bifurcation(or called Turing instability) is a phenomenon that causes
certain reaction-diffusion system to lead to spontaneous stationary configuration.
It is why Turing instability is often called diffusion-driven instability. Turing in-
stability is not dependent on the geometry of the system but only on the reaction
rates and diffusion. It can occur only when the inhibitor(S) diffuses faster than the
activator(I) [15, 25, 23].

In fact, Turing instability sets in when at leat one of the solutions of equation
(3.4) crosses the imaginary axis. In other words, the spatially homogeneous steady
state will become unstable due to heterogeneous perturbation when at least one
solution of equation (3.4) is positive. For the reason, at least one out of the following
two inequalities is violated to occur the Turing instability phenomenon:

(3.7)
tr(Jk) = PS +QI − (D1 +D2)k2 < 0,

det(Jk) = D1D2k
4 − (D1QI +D2PS)k2 + PSQI − PIQS > 0.
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Thus we can get the conditions for Turing bifurcation in the following theorem.

Theorem 3.1. Suppose that h > δ+ r and bh+ (δ+ r)(r+ 1) > (b+h)(δ+ r) hold.
Then Turing bifurcation occurs if

− 1

4D1D2

(
D1(δ − h+ 2η − η2

h
+ r) +D2(δ − 1 +

η2

h
+
θ2
θ1

(2 +
η

h
(b− 1)))

)2
+
θ2
θ1

(
2(δ − h) + (5− b)η + 2r +

(b− 1)η

h
(δ + 3η + r)

)
+(δ − 1)(δ + 2η + r − h) +

η2

h
(1− b+ r) < 0

is satisfied. Here η = h− δ − r, θ1 = bη + δ + r, θ2 = θ1 − (h− η)(h− r).
Proof. From the hypotheses and Proposition , we know that there exists the positive
non-spatial steady state E∗ which is stable. Thus tr(J(E∗)) = PS + QI < 0 and
det(J(E∗)) = PSQI − PIQS > 0 are satisfied. It is seen from these facts that the
first condition in (3.7) always holds. Hence we are left only one for the instability
condition, i.e.,T (k2) ≡ det(Jk) < 0. Elementary calculations yield that

(3.8)

T (k2) =
(
D1(δ − h+ 2η − η2

h
+ r) +D2(δ − 1 +

η2

h
+
θ2
θ1

(2 +
η

h
(b− 1)))

)
k2

+
θ2
θ1

(
2(δ − h) + (5− b)η + 2r +

(b− 1)η

h
(δ + 3η + r)

)
+ (δ − 1)(δ + 2η + r − h) +

η2

h
(1− b+ r) +D1D2k

4

where

η = h− δ − r, θ1 = bη + δ + r, θ2 = θ1 − (h− η)(h− r).

Thus the minimum of T (k2) occurs at the critical wavenumber k2T , where
(3.9)

k2T = − 1

2D1D2

(
D1(δ − h+ 2η − η2

h
+ r) +D2(δ − 1 +

η2

h
+
θ2
θ1

(2 +
η

h
(b− 1)))

)
,

η = h− δ − r, θ1 = bη + δ + r, θ2 = θ1 − (h− η)(h− r).

By substituting k2 = k2T into T (k2), we can get a sufficient condition for the Turing
instability as follows:
(3.10)

T (k2) =
(
D1(δ − h+ 2η − η2

h
+ r) +D2(δ − 1 +

η2

h
+
θ2
θ1

(2 +
η

h
(b− 1)))

)
k2

+
θ2
θ1

(
2(δ − h) + (5− b)η + 2r +

(b− 1)η

h
(δ + 3η + r)

)
+ (δ − 1)(δ + 2η + r − h) +

η2

h
(1− b+ r) +D1D2k

4 < 0. 2
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Remark 3.2. We can find out the critical value of bifurcation parameter δ for
Turing bifurcation by replacing the inequality in (3.10) with the equality. Thus the
critical value δT has to be satisfied with the following equation;
(3.11)

1

4D1D2

(
D1(δT − h+ 2η − η2

h
+ r) +D2(δT − 1 +

η2

h
+
θ2
θ1

(2 +
η

h
(b− 1)))

)2
= (δT − 1)(δT + 2η + r − h) +

η2

h
(1− b+ r)

+
θ2
θ1

(
2(δT − h) + (5− b)η + 2r +

(b− 1)η

h
(δT + 3η + r)

)
.

At the Turing threshold δT , the spatial symmetry of the system is broken and the
patterns are stationary in time and oscillatory in space with the wavelength

(3.12) λT =
2π

kT
.

3.2. Wave Bifurcation

The wave instability caused by the wave bifurcation plays an important part in
pattern formations in many areas [20, 19, 26]. Similar to the Hopf bifurcation the
wave bifurcation take places when a pair of imaginary eigenvalues across the real
axis from the negative the positive side for k = kw 6= 0 in equation (3.4). Thus we
can get the conditions for the wave bifurcation in the following theorem.

Theorem 3.3. Wave bifurcation occurs if δ > δw, where

δw =
L+ h

√
M

2(b− 1)(b+ h− r − 1)
.

Here,

L = h(D1 +D2)(b− 1)k2

+ 2(b2(h− r) + (h− r − 1)r + b(h2 + r(r + 2)− h(2r + 1))),

M = ((D1 +D2)(b− 1))2k4 + 4b(h− r)(b+ h− r − 1).

Proof. In order that system (1.5) has a wave bifurcation, equation (3.4) must have
purely imaginary roots when k 6= 0. In other words, the wave bifurcation occurs if
the following conditions are satisfied:

(3.13) Im(λk) 6= 0 and Re(λk) = 0 at k = kw 6= 0.

Thus, from elementary calculation, the critical value of wave bifurcation parameter
δ can be obtained as

(3.14) δw =
L+ h

√
M

2(b− 1)(b+ h− r − 1)
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where

L = h(D1 +D2)(b− 1)k2w(3.15)

+ 2(b2(h− r) + (h− r − 1)r + b(h2 + r(r + 2)− h(2r + 1))),

M = ((D1 +D2)(b− 1))2k4w + 4b(h− r)(b+ h− r − 1). 2

Remark 3.4. In fact, at the wave threshold δ2, both spatial and temporal symme-
tries are broken and the patterns are oscillatory in space and time with the wave
length λw satisfying

λw =
2π

kw
, k2w =

1

D1 +D2
(PS +QI)(tr(Jk) = 0).

4. Numerical Simulation : Turing pattern

Figure 1: Snapshots of contour pictures of the time evolution of the unin-
fected population in system (1.5) when δ = 0.5 : (a) 0 iteration; (b) 30000
iterations; (c) 49000 iterations

In this section, we display numerical simulations of the spatiotemporal parasite-
host system (1.5) to investigate spatiotemporal pattern formations caused by Turing
bifurcation.

For this, we adopt a finite difference numerical method for the spatial deriva-
tives, an explicit Euler method for the time integration and no-flux boundary con-
dition for the boundary condition. Also we use a finite nondimensional domain of
[0, 200]× [0, 200], and the space step ∆x = ∆y = 0.25 and the time step ∆t = 0.01
which satisfy the CFL(Courant - Friedrichs-Lewy) stability criterion for two dimen-
sional diffusion equations [9, 13]. It is well known that spatiotemporal dynamics
of a diffusion-reaction system depends on the choice of initial conditions [17]. It
seems to be reasonable from the biological point of view that the initial density
distribution is taken as a small amplitude random perturbation around the steady
state E∗ = (S∗, I∗). We run the numerical simulations until the numerical solutions
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Figure 2: Snapshots of contour pictures of the time evolution of the unin-
fected population in system (1.5) when δ = 0.7 : (a) 0 iteration; (b) 15000
iterations; (c) 49000 iterations

Figure 3: Snapshots of contour pictures of the time evolution of the unin-
fected population in system (1.5) when δ = 0.9 : (a) 0 iteration; (b) 15000
iterations; (c) 49000 iterations

either reach a stationary state or show a behavior that does not seem to change
its characteristic anymore. In the numerical simulation, we have figured out that
the distributions of uninfected and infected population are always of the same type.
Thus we pay attention to the pattern formation of the uninfected population.

In order to illustrate Turing patterns numerically, first, we fix parameter values
in system (1.5) as follows;

(4.1) b = 0.1, h = 1.1, r = 0.1, D1 = 0.1, D2 = 1.0.

If we take the parameter value δ = 0.5, we can observe that the random initial
distribution is transformed into a regular spotted pattern, as shown in Figure 1. On
the other hand, in Figure 2, we can see the existence of the steady state having the
spotted pattern and the stripelike pattern simultaneously when the value δ = 0.7
is chosen. Also Figure 3 shows that stripelike spatial patterns are prevalent in the
whole domain eventually for the value δ = 0.9.

Thus from these figures we can infer that Turing bifurcation causes three typical
Turing patterns such as spotted, spot-stripe mixture, and stripelike patterns of the
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uninfected population in system (1.5) accordingly to the value δ. In this study, we
show that typical Turing patterns, which are well known in a predator-prey system
[7, 18, 25], can be investigated in a parasite-host system as well.
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