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PATTERN FORMATION IN A GENERAL DEGN-HARRISON

REACTION MODEL
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Abstract. In this paper, we study the pattern formation to a general

Degn-Harrison reaction model. We show Turing instability happens by
analyzing the stability of the unique positive equilibrium with respect to

the PDE model and the corresponding ODE model, which indicate the
existence of the non-constant steady state solutions. We also show the

existence periodic solutions of the PDE model and the ODE model by

using Hopf bifurcation theory. Numerical simulations are presented to
verify and illustrate the theoretical results.

1. Introduction

In the early 1950s, the British mathematician Turing [5] proposed a model
that accounts for pattern formation in morphogenesis. Turing showed mathe-
matically that a system of coupled reaction-diffusion equations could give rise to
spatial concentration patterns of a fixed characteristic length from an arbitrary
initial configuration due to so-called diffusion-driven instability, that is, diffu-
sion could destabilize an otherwise stable equilibrium of the reaction-diffusion
system and lead to non-uniform spatial patterns.

The so called Degn-Harrison reaction model is proposed by Degen and Har-
rison in [1] to explain the observed oscillatory behavior of respiration rate in
the continuous cultures of the bacteria Klebsiella aerogenes, which follows the
form of the three-step reaction scheme:

(1.1) A→ Y, B � X, X + Y → P,

where X and Y represent oxygen and nutrient respectively, which are the inter-
mediate reactants; A and B account for “sources”or external parameters whose
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concentrations are to kept at a constant level all over the reactor vessel; P is
the final product whose concentration is also assumed to be constant. In the
reaction process, the last step is considered to be inhibited by excess of oxygen
in the reactor. The first and last steps are assumed to be irreversible whereas
the second is reversible.

If the last step followed a nonlinear rate equation of the type XY/(1 +
qX2), where q measures the strength of the inhibitory law, the above Degn-
Harrison reaction scheme is governed by the following coupled nonlinear space-
time differential equation in a dimensionless form:

(1.2)


Xt −DX∆X = k2B − k3X − k4

(
X

1 + qX2

)
Y,

Yt −DY ∆Y = k1A− k4
(

X

1 + qX2

)
Y,

where A,B,X and Y denote dimensionless concentrations of the reactants;
the four constant ki, i = 1, 2, 3, 4, are reaction rates; DX and DY , respectively,
denote the Fickian molecular diffusion coefficients of X and Y , and they are as-
sumed to be positive constant all over the reactor vessel. The rate and diffusion
constants are parameters characteristic for a given system, and the concentra-
tions A and B are variable parameters which can be controlled in the reaction
process. Problem (1.2) with homogeneous Neumann boundary condition was
studied in [3, 4], where the stability of the positive constant equilibrium, Tur-
ing instability, Hopf bifurcation and the existence or nonexistence of positive
constant steady state were obtain.

In this paper, we generalized the last step of (1.1) by using f(X)Y to replace
XY/(1 + qX2). After resealing, we get the following reaction-diffusion system:

(1.3)


ut − d1∆u = a− u− rf(u)v, x ∈ Ω, t > 0,

vt − d2∆v = b− rf(u)v, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

where Ω ⊂ RN , N ≥ 1, is a bounded domain with smooth boundary ∂Ω, ν
is the outward unit normal vector of the boundary ∂Ω, a, b, r, d1 and d2 are
positive constants and f is always assumed to satisfy

(Hf ): f ∈ C1(0,∞) ∩ C[0,∞), f(0) = 0 and f(s) > 0 for s > 0.

Example 1.1. A typical choice is f(u) = up

1+κuq with p, q ≥ 1 and κ > 0. Then

model (1.3) is a generalized model of (1.2).

Obviously, problem (1.3) admits a unique positive constant equilibrium:

(1.4) (u, v) =

(
a− b, b

rf(a− b)

)
=: (u∗, v∗/r)

if and only if a > b.
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In this paper, we always assume a > b holds and consider the stability of
(u∗, v∗/r), Turing instability and Hopf bifurcation near (u∗, v∗/r). Throughout
this paper, N is the set of natural numbers and N0 = N ∪{0}. The eigenvalues
of operator −∆ with homogeneous Neumann boundary condition in Ω are
denoted by 0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · · , and the eigenfunction
corresponding to µn is φn(x).

2. Analysis of the local system

For system (1.3), the local system is an ordinary differential equation in the
form of

(2.1)


du

dt
= a− u− rf(u)v, t > 0,

dv

dt
= b− rf(u)v, t > 0.

By (1.4), (u∗, v∗/r) is the unique positive equilibrium of (2.1). In the following
we fix the parameters a > b > 0, i.e., u∗ and v∗ are fixed, and use r as the
main bifurcation parameter. The Jacobian matrix of (2.1) at (u∗, v∗/r) is

(2.2) L0(r) =

(
−1− f ′(u∗)v∗ −f(u∗)r
−f ′(u∗)v∗ −f(u∗)r

)
.

The characteristic equation of L0(r) is

(2.3) ξ2 − T (r)ξ +D(r) = 0,

where
T (r) = −1− f ′(u∗)v∗ − f(u∗)r, D(r) = f(u∗)r > 0.

Since D(r) > 0, then (u∗, v∗/r) is locally asymptotically stable if T (r) < 0 and
it is unstable if T (r) > 0. Let

(2.4) r0 := −1 + f ′(u∗)v∗
f(u∗)

,

then r = r0 is the only root of T (r) = 0. The equilibrium (u∗, v∗) is stable if
r > r0, and it is unstable if r < r0.

When r = r0, the characteristic equation has a pair of imaginary roots
±i
√
D(r0). Let ξ = α(r) ± iβ(r) be the roots of the characteristic equation.

Then

α(r) =
T (r)

2
, β(r) =

√
4D(r)− T (r)2

2
and α′(r0) =

1

2
T ′(r0) = −f(u∗) < 0.

This shows that the transverse condition holds. By Poincaré-Andronov-Hopf
Bifurcation Theorem [7, Theorem 3.1.3], r = r0 is the unique Hopf bifurcation
point for (2.1). From Poincaré-Bendixson theory, the system (2.1) possess a
periodic orbit when r < r0.

Theorem 2.1. Let (u∗, v∗/r) be the unique positive equilibrium of (2.1) defined
in (1.4), and r0 be the constant defined in (2.4). Then
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Figure 1. When r = 1.5 > r0 = 1, the solution trajectories
spiral toward the positive equilibrium (1, 4/3) (left). When
r = 0.8 < r0 = 1, there is a limit cycle surrounding the positive
equilibrium (1, 2.5) (right).

(1) The equilibrium (u∗, v∗/r) is locally asymptotically stable if r > r0;
(2) The equilibrium (u∗, v∗) is unstable if r < r0;
(3) r = r0 is the unique Hopf bifurcation value for system (2.1), and system

(2.1) possess a periodic orbit when r < r0.

Example 2.2. Let f(u) be the function defined in Example 1.1 with κ = p = 1,
q = 5, a = 2 and b = 1. Then

r0 = −κ(a− b)q+1 − κb(q − p)(a− b)q + (a− b) + bp

(a− b)p+1
= 1,

and we get the following system:

(2.5)


du

dt
= 2− u− ruv

1 + u5
, t > 0,

dv

dt
= 1− ruv

1 + u5
, t > 0.

It follows from Theorem 2.1 that the positive equilibrium (u∗, v∗/r) = (1, 2/r)
is locally asymptotically stable when r > 1 and it is unstable when r < 1.
Moreover when r passes through 1 from the right side of 1, (u∗, v∗/r) will lose
its stability and Hopf bifurcation occurs, that is, a family of periodic solutions
bifurcate from (u∗, v∗/r). Numerical simulations are presented in Figure 1. The
left of Figure 1 shows the stable behavior when r > r0. The right of Figure 1
is the phase portrait of the problem (2.5) which depicts the limit cycle arising
out of Hopf bifurcation around (1, 2.5).

3. Analysis of the PDE model (1.3)

In this section, we consider the PDE model (1.3). The main studies are sta-
bility, Turing instability and Hopf bifurcation from the unique positive constant
equilibrium (u∗, v∗/r) defined by (1.4).
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3.1. Stability

The stability of (u∗, v∗/r) is determined by the following eigenvalue problem,
which is got by linearizing the steady state of the system (1.3) about (u∗, v∗/r):

(3.1)

L(r)

(
φ
ψ

)
= µ

(
φ
ψ

)
, x ∈ Ω,

∂νφ = ∂νψ = 0, x ∈ ∂Ω,

where

(3.2) L(r) =

(
d1∆− 1− f ′(u∗)v∗ −f(u∗)r
−f ′(u∗)v∗ d2∆− f(u∗)r

)
.

For each n ∈ N0, we define a 2× 2 matrix

(3.3) Ln(r) =

(
−d1µn − 1− f ′(u∗)v∗ −f(u∗)r

−f ′(u∗)v∗ −d2µn − f(u∗)r

)
.

The following statements hold true by using Fourier decomposition:

(1) If µ is an eigenvalue of (3.1), then there exists n ∈ N0 such that µ is
an eigenvalue of Ln(r).

(2) The constant equilibrium (u∗, v∗/r) is locally asymptotically stable
with respect to (1.3) if and only if for every n ∈ N0, all eigenvalues of
Ln(r) have negative real part.

(3) The constant equilibrium (u∗, v∗/r) is unstable with respect to (1.3) if
there exists an n ∈ N0 such that Ln(r) has at least one eigenvalue with
positive real part.

The characteristic equation of Ln(r) is

(3.4) µ2 − Tn(r)µ+Dn(r),

where

Tn(r) = −(d1 + d2)µn − f(u∗)(r − r0),(3.5)

Dn(r) = d1d2µ
2
n + f(u∗)(d1r − d2r0)µn + f(u∗)r.(3.6)

Here r0 is defined by (2.4). Then (u∗, v∗/r) is locally asymptotically stable
if Tn(r) < 0 and Dn(r) > 0 for all n ∈ N0, and it is unstable if there exists
n ∈ N0 such that Tn(r) > 0 or Dn(r) < 0.

If r0 ≤ 0, then (u∗, v∗/r) is locally asymptotically stable.
Next, we consider the case that r0 > 0. We define

T (r, µ) := −(d1 + d2)µ− f(u∗)(r − r0),(3.7)

D(r, µ) := d1d2µ
2 + f(u∗)(d1r − d2r0)µ+ f(u∗)r,(3.8)

and

H = {(r, µ) ∈ (0,∞)× [0,∞) : T (r, µ) = 0} ,(3.9)

S = {(r, µ) ∈ (0,∞)× [0,∞) : D(r, µ) = 0} .(3.10)
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Then H is the Hopf bifurcation curve and S is the state bifurcation curve.
Furthermore, the sets of H and S are graphs of functions defined as follows:

rH(µ) = −d1 + d2
f(u∗)

µ+ r0,(3.11)

rS(µ) =
−d1d2µ2 + d2f(u∗)r0µ

(d1µ+ 1)f(u∗)
.(3.12)

We have the following properties of the functions rH(µ) and rS(µ):

(1) The function rH(µ) is strictly decreasing for µ ≥ 0 such rH(0) =
rH(µH0) = 0,

(3.13) µH0 :=
f(u∗)r0
d1 + d2

.

(2) Let

(3.14) µc :=

√
1 + f(u∗)r0 − 1

d1
<
f(u∗)r0
d1

=: µS0.

Then µ = µc is the unique critical value of rS(µ), the function rS(µ)
is strictly increasing for µ ∈ (0, µc), and rS(µ) is strictly decreasing for
µ > µ∗. rS(0) = rS(µS0) = 0, r∗ = supµ∈(0,+∞) rS(µ), where

(3.15) r∗ = rS(µc) =
d2
d1


(√

1 + f(u∗)r0 − 1
)2

f(u∗)

 .
Furthermore, r∗ > (=, <)r0 if and only if d2/d1 > (=, <)χ, where

(3.16) χ :=
f(u∗)r0(√

1 + f(u∗)r0 − 1
)2 .

(3) rH(µ) and rS(µ) cross at only one point (µcro, λH(µcro)), where

(3.17) µcro :=
−[(d2−d1)f(u∗)r0+d1+d2]+

√
[(d2−d1)f(u∗)r0+d1+d2]2+4d21f(u∗)r0

2d21
.

Now we can give a stability result regarding to the constant equilibrium
(u∗, v∗/r) by the analysis above. We define

(3.18) r := max
n∈N

rS(µn) ≤ r∗,

and we get Tn(r) < 0 and Dn(r) > 0 for all n ∈ N0 if

(3.19) r > max{r0, r}.
On the other hand, if

(3.20) r < max{r0, r},
then there exists n ∈ N0 such that Tn(r) > 0 or Dn(r) < 0. The above
discussions lead to the following theorem:
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Theorem 3.1. Assume a, b, d1, d2 are fixed. Let r0, r∗ and r be the constants
defined by (2.4), (3.15) and (3.18) respectively. Then

(1) the constant equilibrium (u∗, v∗/r) is locally asymptotically stable with
respect to (1.3) if
(a) r0 ≤ 0; or
(b) r0 > 0 and (3.19) holds. In particular (3.19) holds if

r > max{r0, r∗};
(2) the constant equilibrium (u∗, v∗/r) is unstable with respect to (1.3) if

r0 > 0 and (3.20) holds.

Next we derive conditions for the Turing instability with respect to the
positive equilibrium (u∗, v∗/r), which means that (u∗, v∗/r) is locally asymp-
totically stable with respect to the ODE (2.1) and unstable with respect to the
PDE (1.3). In view of Theorems 2.1 and 3.1, Turing instability happens if r
satisfies

(3.21) r0 < r < r.

Since r ≤ r∗, in view the properties of rS(µ), we need to assume d2/d1 > χ
holds, then the equation rS(µ) = λ0 has two different positive roots µl and µr,
where

µl :=

(
d2
d1
− 1
)
f(u∗)r0 −

√(
d2
d1
− 1
)2

(f(u∗)r0)2 − 4f(u∗)r0
d2
d1

2d2
,

µr :=

(
d2
d1
− 1
)
f(u∗)r0 +

√(
d2
d1
− 1
)2

(f(u∗)r0)2 − 4f(u∗)r0
d2
d1

2d2
.

(3.22)

In view of above analysis and the properties of rS(µ), we know that (3.21)
holds if there exists n ∈ N such that

(3.23) µn ∈ (µl, µr).

The above discussions lead to the following theorem:

Theorem 3.2. Assume a, b, d1, d2 are fixed such that r0 > 0 and d2/d1 > χ,
where χ is defined in (3.16). Let r0, r, µl and µr be the constants defined by
(2.4), (3.18), and (3.22) respectively. Then Turing instability happens if there
exists n ∈ N such that (3.23) holds and r satisfies (3.21).

Example 3.3. We give an numerical example to show Turing instability. Con-
sider the following PDE model related the ODE given in (2.5):

(3.24)


ut − d1∆u = 2− u− ruv

1 + u5
, x ∈ (0, 3π), t > 0,

vt − d2∆v = 1− ruv

1 + u5
, x ∈ (0, 3π), t > 0,

ux(0) = ux(3π) = vx(0) = vx(3π) = 0.
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Then µi = i2/9, i ∈ N0. We can compute r0 = 1, u∗ = 1, v∗ = 2, χ =

1/(5 − 2
√

6) ≈ 9.9, then we choose d2 = 1.5, d1 = 0.1 such that d2/d1 > χ,

and then we can compute µl = (7−
√

19)/3 ≈ 0.88, µr = (7 +
√

19)/3 ≈ 3.79.
Finally we find that

µ2 =
4

9
≈ 0.44 < µl < µ3 = 1 < µ4 ≈ 1.78 < µ5 ≈ 2.78 < µr < µ6 = 4,

then
r = max {rS(µ3), rS(µ4), rS(µ5)} = rS(µ4) ≈ 1.46.

Figure 2 shows the graphs of r = rS(µ) and r = rH(µ) in this case. By Theorem

Figure 2. The graphs of r = rS(µ) and r = rH(µ).

3.2, Turing instability happens when r0 = 1 < r < r ≈ 1.46. We choose r = 1.3,
u0(x) = 1 + 0.1 cosx, v0(x) = 20/13 + 0.1 cosx. The solution trajectories of
the corresponding ODE spiral toward the positive equilibrium (1, 20/13), while
the solution of the PDE converges to a spatially nonhomogeneous steady state
solution (see Figure 3).
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Figure 3. Numerical simulation of problem (3.24). The so-
lution trajectories of the corresponding ODE with r = 1.3
spiral toward the positive equilibrium (1, 20/13) (see left).
The solution of the PDE with d1 = 0.1, d2 = 1.5, r = 1.3,
u0(x) = 1 + 0.1 cosx, v0(x) = 20/13 + 0.1 cosx, converges to
a spatially nonhomogeneous steady state solution (see middle
for u and right for v).
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3.2. Hopf bifurcation

In this part, we study the Hopf bifurcation from the constant equilibrium
(u∗, v∗/r) under the assumption r0 ≥ 0 since (u∗, v∗/r) is stable and there is
no change of stability for r0 ≤ 0. We assume that all eigenvalues µi are simple,
and denote the corresponding eigenfunction by φi(x), i ∈ N0. We use r as the
main bifurcation parameter. To identify possible Hopf bifurcation value rH ,
we recall the following necessary and sufficient condition from [2, 8, 9]:

(HS) There exists n ∈ N0 such that

(3.25)
Tn(rH) = 0, Dn(rH) > 0 and

Tm(rH) 6= 0, Dm(rH) 6= 0 for m ∈ N0 \ {n},
where Tn(r) and Dn(r) are given in (3.5) and (3.6) respectively, and for the
unique pair of complex eigenvalues A(r)± iB(r) near the imaginary axis,

(3.26) A′(rH) 6= 0 and B(rH) > 0.

For n ∈ N0, we define

(3.27) rn,H = rH(µn),

where the function rH(µ) is given in (3.11). Then Tn(rn,H) = 0 and Tm(rm,H)
6= 0 for m 6= n. By (3.25), we need Dn(rn,H) > 0 to make rn,H as a possible
bifurcation value, which means µn < µcro by the properties of rH(µ) and rS(µ),
where µcro is given in (3.17). Let n0 ∈ N0 such that µn0 < µcro ≤ µn0+1, then
we can see Dm(rn,H) > 0 holds m,n ∈ {0, . . . , n0}. On the other hand, it is
also possible that
(3.28)
Dm(rn,H) = 0 for some n ∈ {0, . . . , n0} and for some m ∈ N and m > n0.

Then (3.25) does not holds for such n. However from an argument in [9], for
N = 1 and Ω = (0, `π), there are only countably many `, such that (3.28)
occurs. For general bounded domains in RN , one can also show that (3.28)
does not occur for generic domains [6].

Finally, we consider the conditions in (3.26). Let the eigenvalues close to
the pure imaginary one at r = rn,H be A(r)± iB(r). Then

A′(rn,H) =
T ′n(rn,H)

2
= −f(u∗) < 0 and

B(rn,H) =
√
Dn(rn,H) > 0 for n = 0, . . . , n0.

Then all conditions in (HS) are satisfied if i ∈ {0, . . . , n0}. Now by using the
Hopf bifurcation theorem in [9], we have:

Theorem 3.4. Assume a, b, d1, d2 are fixed such that r0 > 0, where r0 is
defined by (2.4). Let Ω be a smooth domain so that all eigenvalues µn, n ∈ N0,
are simple, then there exists a n0 ∈ N0 such that µn0 < µcro ≤ µn0+1, where
µcro is given in (3.17). If (3.28) does not hold for some n ∈ {0, . . . , n0}, then
rn,H , defined in (3.27), is a Hopf bifurcation value. At such rn,H , the system
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(1.3) undergoes a Hopf bifurcation, and the bifurcation periodic orbits near
(r, u, v) = (rn,H , u∗, v∗/rn,H) can be parameterized as (rn(τ), un(τ), vn(τ)), so
that rn(τ) is the form of rn(τ) = rn,H + o(τ) for τ ∈ (0, ρ) for some constant
ρ > 0, and

un(τ)(x, t) = u∗ + τan cos(ω(rn,H)t)φn(x) + o(τ),

vn(τ)(x, t) =
v∗
rn,H

+ τbn cos(ω(rn,H)t)φn(x) + o(τ),

where ω(rn,H) =
√
Dn(rn,H) with Dn(r) given in (3.6) is the corresponding

time frequency, φn(x) is the corresponding spatial eigenfunction, and (an, bn)
is the corresponding eigenvector, i.e.,

(L(rn,H)− iω(bn,H)I)

(
anφn(x)
bnφn(x)

)
=

(
0
0

)
,

where L(r) is given in (3.2). Moreover,

(1) The bifurcation periodic orbit from r0,H = r0 is spatially homogeneous;
(2) The bifurcation periodic orbits from rn,H , n ∈ {1, . . . , n0}, are spatially

nonhomogeneous.

Figure 4. The graphs of rH(µ) and rS(µ).

Example 3.5. We give an numerical example to show Hopf bifurcation. Con-
sider the problem (3.24) again. In this case, we choose d2 = d1 = 1 such that

d2/d1 = 1 < χ ≈ 9.9. Then we can compute µcro = (
√

6 − 2)/2 ≈ 0.221 and
find that

µ0 = 0 < µ1 =
1

9
≈ 0.11 < µcro < µ2 =

4

9
≈ 0.44.

Then r1,H ≈ 0.56, since Dm(r0) < 0 and Dm(r1,H) < 0 for m > 1, (3.28) does
not hold. By Theorem 3.4, r0 and r1,H are Hopf bifurcation values. Since the
largest Turing bifurcation value is much smaller than r0 and r1,H (see Figure
4), when b decreases, the first bifurcation point encountered is r0, and a Hopf
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bifurcation occurs. We choose r = 0.65, u0(x) = 1+0.1 cosx, v0(x) = 2/0.65+
0.1 cosx. The solution converges to a spatially nonhomogeneous periodic orbit
(see Figure 5).

Figure 5. Numerical simulation of problem (3.24) with d1 =
d2 = 1, r = 0.65, u0(x) = 1 + 0.1 cosx, v0(x) = 2/0.65 +
0.1 cosx. The solution converges to a spatially nonhomoge-
neous periodic orbit.
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