• Title/Summary/Keyword: Hopf hypersurface

Search Result 37, Processing Time 0.023 seconds

NOTE ON REAL HYPERSURFACES OF NONFLAT COMPLEX SPACE FORMS IN TERMS OF THE STRUCTURE JACOBI OPERATOR AND RICCI TENSOR

  • KIM, NAM-GIL;LI, CHUNJI;KI, U-HANG
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.487-504
    • /
    • 2005
  • Let M be a real hypersurface with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g) in a nonflat complex space form $M_n(c)$. We denote by A and S be the shape operator and the Ricci tensor of M respectively. In the present paper we investigate real hypersurfaces with $g(SA{\xi},\;A{\xi})=const$. of $M_n(c)$ whose structure Jacobi operator $R_{\xi}$ commute with both ${\phi}$ and S. We give a characterization of Hopf hypersurfaces of $M_n(c)$.

  • PDF

SEMI-INVARINAT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING ${\nabla}_{{\phi}{\nabla}_{\xi}{\xi}}R_{\xi}=0$ IN A COMPLEX SPACE FORM

  • Ki, U-Hang
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.41-77
    • /
    • 2021
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (��, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ = R(·, ξ)ξ and A(i) be Jacobi operator with respect to the structure vector field ξ and be the second fundamental form in the direction of the unit normal C(i), respectively. Suppose that the third fundamental form t satisfies dt(X, Y ) = 2��g(��X, Y ) for certain scalar ��(≠ 2c)and any vector fields X and Y and at the same time Rξ is ��∇ξξ-parallel, then M is a Hopf hypersurface in Mn(c) provided that it satisfies RξA(1) = A(1)Rξ, RξA(2) = A(2)Rξ and ${\bar{r}}-2(n-1)c{\leq}0$, where ${\bar{r}}$ denotes the scalar curvature of M.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM IN TERMS OF THE STRUCTURE JACOBI OPERATOR

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.229-257
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, 𝜉, 𝜂, g) in a complex space form Mn+1(c), c ≠ 0. We denote by A and R𝜉 the shape operator in the direction of distinguished normal vector field and the structure Jacobi operator with respect to the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(< 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉A = AR𝜉 and at the same time ∇𝜉R𝜉 = 0 on M, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

STRUCTURE JACOBI OPERATORS OF SEMI-INVARINAT SUBMANIFOLDS IN A COMPLEX SPACE FORM II

  • Ki, U-Hang;Kim, Soo Jin
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (φ, ξ, η, g) in a complex space form Mn+1(c). We denote by Rξ the structure Jacobi operator with respect to the structure vector field ξ and by ${\bar{r}}$ the scalar curvature of M. Suppose that Rξ is φ∇ξξ-parallel and at the same time the third fundamental form t satisfies dt(X, Y) = 2θg(φX, Y) for a scalar θ(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξφ = φRξ, then M is a Hopf hypersurface of type (A) in Mn+1(c) provided that ${\bar{r}-2(n-1)c}$ ≤ 0.

ON THE STRUCTURE JACOBI OPERATOR AND RICCI TENSOR OF REAL HYPERSURFACES IN NONFLAT COMPLEX SPACE FORMS

  • Kim, Soo-Jin
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.747-761
    • /
    • 2010
  • It is known that there are no real hypersurfaces with parallel structure Jacobi operator $R_{\xi}$ (cf.[16], [17]). In this paper we investigate real hypersurfaces in a nonflat complex space form using some conditions of the structure Jacobi operator $R_{\xi}$ which are weaker than ${\nabla}R_{\xi}$ = 0. Under further condition $S\phi={\phi}S$ for the Ricci tensor S we characterize Hopf hypersurfaces in a complex space form.

REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WHOSE SHAPE OPERATOR IS OF CODAZZI TYPE IN GENERALIZED TANAKA-WEBSTER CONNECTION

  • Cho, Kyusuk;Lee, Hyunjin;Pak, Eunmi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.57-68
    • /
    • 2015
  • In this paper, we give a non-existence theorem of Hopf hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m{\geq}3$, whose shape operator is of Codazzi type in generalized Tanaka-Webster connection $\hat{\nabla}^{(k)}$.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.101-115
    • /
    • 2017
  • In this paper, we study three types of lightlike hypersurfaces, which are called recurrent, Lie recurrent and Hopf lightlike hypersurfaces, of an indefinite Kaehler manifold with a semi-symmetric non-metric connection. We provide several new results on such three types of lightlike hypersurfaces of an indefinite Kaehler manifold or an indefinite complex space form, with a semi-symmetric non-metric connection.

REAL HYPERSURFACES WITH ∗-RICCI TENSORS IN COMPLEX TWO-PLANE GRASSMANNIANS

  • Chen, Xiaomin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.975-992
    • /
    • 2017
  • In this article, we consider a real hypersurface of complex two-plane Grassmannians $G_2({\mathbb{C}}^{m+2})$, $m{\geq}3$, admitting commuting ${\ast}$-Ricci and pseudo anti-commuting ${\ast}$-Ricci tensor, respectively. As the applications, we prove that there do not exist ${\ast}$-Einstein metrics on Hopf hypersurfaces as well as ${\ast}$-Ricci solitons whose potential vector field is the Reeb vector field on any real hypersurfaces.

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A NONFLAT COMPLEX SPACE FORM WHOSE STRUCTURE JACOBI OPERATOR IS ξ-PARALLEL

  • Kim, Nam-Gil
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.185-201
    • /
    • 2009
  • Let M be a real hypersurface with almost contact metric structure $({\phi},{\xi},{\eta},g)$ of a nonflat complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In this paper, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant.

THE RICCI TENSOR OF REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS

  • Perez Juan De Dios;Suh Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.211-235
    • /
    • 2007
  • In this paper, first we introduce the full expression of the curvature tensor of a real hypersurface M in complex two-plane Grass-mannians $G_2(\mathbb{C}^{m+2})$ from the equation of Gauss and derive a new formula for the Ricci tensor of M in $G_2(\mathbb{C}^{m+2})$. Next we prove that there do not exist any Hopf real hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ with parallel and commuting Ricci tensor. Finally we show that there do not exist any Einstein Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$.