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REAL HYPERSURFACES WITH x-RICCI TENSORS IN
COMPLEX TWO-PLANE GRASSMANNIANS

XIAOMIN CHEN

ABSTRACT. In this article, we consider a real hypersurface of complex
two-plane Grassmannians G2 (C™12),m > 3, admitting commuting *-
Ricci and pseudo anti-commuting *-Ricci tensor, respectively. As the
applications, we prove that there do not exist *-Einstein metrics on Hopf
hypersurfaces as well as *-Ricci solitons whose potential vector field is the
Reeb vector field on any real hypersurfaces.

1. Introduction

A complex two-plane Grassmannian G (C™%2) consists of all complex two
dimensional linear subspaces of C™*2, which is the unique compact, irreducible,
Kiébhler, quaternionic Kéhler manifold which is not a hyper Kéahler manifold (see
Berndt and Suh [1, 2]). Let M be a real hypersurface of Go(C™*2). The Kéhler
structure J on Ga(C™*2) induces a structure vector field ¢ called Reeb vector
fieldon M by & := —JN, where N is the local unit normal vector field of M in
G>(C™*+2). For the quaternionic Kéhler structure J of Go(C™*2), its canonical
basis {J1, Jo2, J3} induces the almost contact structure vector fields {&1, &2, &3}
on M by &, :=—J,N,v=1,2,3. It is well known that for the real hypersurface
M there exist two natural geometrical conditions that [¢] = Span{¢} or D+ =
Span{¢i,&2,&3} is invariant under the shape operator A of M. Denote the
distribution ® by the orthogonal complement of the distribution ®+. By using
such geometrical conditions, Berndt and Suh in [1] proved that the Reeb vector
field ¢ either belongs to ® or ®1 and gave the following classification:

Theorem 1.1. Let M be a connected real hypersurface of G2(C™+2), m > 3.
If ®+ and [€] are invariant under the shape operator, then

(A) M is an open part of a tube around a totally geodesic Go(C™T1) in
G2(C™F2) for £ € DL, or

(B) M is locally congruent to an open part of a tube around a totally geo-
desic QP™ in Go(C™2) for £ € D, where m = 2n.
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If the Reeb vector field € is invariant by the shape operator, M is said to be a
Hopf hypersurface. Based on the classification of Theorem 1.1 Berndt and Suh
later gave a new characterization for the type (B) hypersurfaces of Ga(C™*2).

Theorem 1.2 ([9]). Let M be a connected orientable Hopf real hypersurface in
G2(C™*2),m > 3. Then the Reeb vector field & belongs to the distribution D
if and only if M is locally congruent to an open part of a tube around a totally
geodesic QP™ in Go(C™*2), where m = 2n.

As the real hypersurfaces in complex space forms M,,(¢) or in quaternionic
space forms Qn,(c) with commuting Ricci tensor were considered (cf. [7, 8,
10]), Suh [12] also studied the real hypersurfaces of Go(C™*2) with commuting
Ricci tensor, i.e., S¢ = ¢S, where S and ¢ denote the Ricci operator and the
structure tensor of real hypersurfaces in G5(C™%2), respectively, and showed
that the Hopf hypersurfaces in Go(C™%2) are of type (A).

Recently Suh [5] introduced a new notion called as pseudo anti-commuting
Ricci tensor, i.e., it satisfies the following formula:

¢S + S¢ = 2k,

where k = constant. In this case, it is proved that & = 4m+24§(h—a), where
h denotes the mean curvature, or M is the hypersurface of type (B). Since there
are no Hopf Einstein real hypersurfaces in Go(C™*?) (see Corollary in [12]),
Suh in [5] further considered a real hypersurface M in Go(C™*?2) with a Ricci
soliton. The notion of Ricci soliton, introduced firstly by Hamilton in [4], is
the generalization of Einstein metric, that is, a Riemannian metric g satisfying

1
§£Wg + Ric — A\g =0,

where A is a constant and Ric is the Ricci tensor of M. The vector field W
is called potential vector field. Moreover, the Ricci soliton is called shrinking,
steady and expanding according as A is positive, zero and negative respectively.
In [5], it is proved that if M is a Hopf hypersurface with potential vector
field being the Reeb vector field ¢ and Ricci soliton constant A = k, then
k =4(m+ 1) > 0, namely the Ricci soliton is shrinking.

As the corresponding of Ricci tensor, Hamada in [3] defined the #-Ricci
tensor by

(1) Ric*(X,Y) = %trace{qﬁ oR(X,¢Y)}, VX,Y €TM,

and if the *-Ricci tensor is a constant multiple of g(X,Y") for all X,Y orthog-
onal to &, then M is said to be a x-Finstein manifold. Furthermore, Hamada
gave a complete classification of x-Einstein Hopf hypersurfaces in non-flat com-
plex space forms. As the generalization of %-Einstein metric Kaimakamis and
Panagiotidou ([6]) introduced a so-called *-Ricci soliton, that is, a Riemannain
metric g on M satisfying

1
(2) §£Wg + Ric* — A\g =0,



REAL HYPERSURFACES WITH #RICCI TENSORS IN G, (C™*?) 977

where A is constant and Ric* is the *-Ricci tensor of M. They considered the
case where W is the Reeb vector field £ and obtained that a real hypersurface
in a complex projective space does not admit a *-Ricci soliton as well as that
a real hypersurface of complex hyperbolic space admitting a *-Ricci soltion is
locally congruent to a geodesic hypersphere.

Motivated by the present work, in this paper we first consider the hyper-
surfaces of Ga(C™*2) with commuting *-Ricci tensor, i.e., the *-Ricci oper-
ator S* satisfies ¢S* = S*¢, where the *-Ricci operator S* is defined by
Ric*(X,Y) = g(S*X,Y) for any vector fields X,Y’, and the following result is
proved.

Theorem 1.3. Let M be a Hopf hypersurface in Go(C™2), m > 3, with com-
muting *-Ricci tensor. Then M is locally congruent to an open part of a tube
around a totally geodesic QP™ in G2(C™*?), where m = 2n.

In particular, making use of Theorem 1.3 we obtain:

Corollary 1.4. There do not exist any *-FEinstein Hopf hypersurfaces in
GQ((Cm+2), m Z 3.

For the *-Ricci soliton we further get a similar conclusion with the real
hypersurfaces in complex projective space CP", n > 2.

Theorem 1.5. There do not exist real hypersurfaces of Go(C™+2), m > 3,
admitting a *-Ricci soliton, with potential vector field being the Reeb wvector

field €.

Finally we introduce the notion of pseudo anti-commuting *-Ricci tensor, i.e.
the relation ¢S* + S*¢ = 2k¢ holds for constant k, and prove the following:

Theorem 1.6. Let M be a Hopf hypersurface in Go(C™2),m > 3, with
pseudo anti-commuting *-Ricci tensor. Then a =0 and k = 4m + 6.

This article is organized as follows: In Section 2, some notations and for-
mulas for real hypersurfaces in complex two-plane Grassmannians Ga(C™12)
are presented. In Section 3 we consider Hopf hypersurfaces with commuting
x-Ricci tensor and give the proofs of Theorem 1.3, Corollary 1.4 and Theo-
rem 1.5. Finally, in Section 4 we study the real Hopf hypersurfaces admitting
pseudo anti-commuting *-Ricci tensor and prove Theorem 1.6.

2. Preliminaries

In this section we will summarize some basic notations and formulas about
the complex two-plane Grassmannian Go(C™%2). For more detail please refer
to [1, 2, 11, 12, 13]. Let G2(C™*2) be the complex Grassmannian manifold
of all complex 2-dimensional linear spaces of C™*2. In fact Go(C™%2) can
be identified with a homogeneous space SU(m + 2)/(S(U(2) x U(m)). Up to
scaling there exists the unique S(U(2) x U(m))-invariant Riemannian metric g
on G2(C™*?). The Grassmannian manifold Go(C™%2) equipped such a metric
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becomes a symmetric space of rank two, which is both Kéahler and quaternionic
Kahler. From now on we always assume m > 3 because it is well known that
G>(C3) is isometric to CP? and Go(C*) is isometric to the real Grassmannian
manifold G5 (R®) of oriented 2-dimensional linear subspaces of RS.

Denote J and J be the Kéahler structure and quaternionic Kéhler structure
on G(C™*+?), respectively. A canonical local basis {J1, Jo, J3} of J consists of
almost Hermitian structures J, such that J,J,11 = Jyp2 = —Jy41Jy, where
the index is taken modulo three. As is well known the Kéahler structure J and
quaternionic Kahler structure J satisfy the following relations:

JJ, = JyJ, trace(JJ,) =0, v=123.

We denote V by the Livi-Civita connection with respect to g, and there exist
1-forms q1, g2, g3 such that

VxJo = quia(X) Jor1 = qor1(X) Jugs
for any vector field X on Go(C™*2).
Let M be an immersed real hypersurface of G2(C™*?) with induced metric
g. There exists a local defined unit normal vector field NV on M and we write
&:=—JN

by the structure vector field of M. An induced one-form 7 is defined by 7(-) =
g(J+, N), which is dual to £&. For any vector field X on M the tangent part of
JX is denoted by ¢X = JX —n(X)N. Moreover, the following identities hold:

(3) ¢ =—Id+n®E nop=0, ¢o&=0, n(E) =1,
where XY € X(M). By these formulas, we know that (¢, 7,&, g) is an almost

contact metric structure on M. Similarly, for every almost Hermitian structure
Jy, it induces an almost contact structure (¢, 1y, &y, g) on M by

fv:_JvNa UU(X)ZEJ(&;,X), (bUX:JUX_TI’U(X)N’

for any vector field X. Thus the relations (3) and (4) hold for (¢y, N, &v, 9)-

Denote V, A by the induced Riemannian connection and the shape operator
on M, respectively. Then the Gauss and Weigarten formulas are respectively
given by

(5) VxY =VxY + g(AX,Y)N, VxN =—AX,

where V is the connection on G (C™*+2) with respect to g. Also, we have

(6) (Vx@)Y =n(Y)AX —g(AX,Y)§, Vx&=pAX.
Moreover, the following equations are proved (see [5]):

(7) Pvt1§o = = Evt2,  Pubor1 = Euta,

(8) P& =hu&, 1(&0) = nw(§),

(9) ¢¢UX :¢U¢X + UU(X)f - U(X)gvv
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(10) Vx&o =qu2(X)&r1 — Qop1(X)&vy2 + P AX,
(11) Vx (¢v£) =quv+2 (X)¢U+1€ - QU+1(X)¢U+2§
+ PP AX — g(AX, )&, +n(80)AX

The curvature tensor R and Codazzi equation of M are respectively given as
follows:

(12)  R(X,Y)Z
=9(Y,Z)X — g(X, Z)Y + g(8Y, Z)pX — g(¢X, 2)9Y +29(X, ¢Y)9Z

+ Z{ (6.Y. 2)6,X ~ g(6uX, Z2)00Y —29(60X,Y)6,2 |
+ Z{ (6u0Y, 2)6u0X — g(000X, Z)0u0Y |
*Z{U 2)pud X — n(X)nu(Z)ugY }

- Z (10906107, 2) ~n(V)g(0,0X. 2) 6,
+ g(AY, Z)AX — g(AX, Z)AY,
(13) (VxA)Y — (VyA)X

= n(X )¢Y—n( )X —29(pX,Y)E
+Z{m )Y — 10o(Y)do X — 29(6,X, Y)E,}

+ Z{m(aﬁX)q%(bY — 0o ($Y) by X }

+Z{n )00 (8Y) = (Y )0y (X))},

for any vector fields X, Y, Z on M.
Recall that the %-Ricci operator S* of M is defined by

1
9(S*X,Y) = Ric*(X,Y) = §trace{¢ o R(X,¢Y)}
for all X,Y € TM. Taking a local frame {e;} of M such that e; = £ and using

(4), we derive from (12) that

4m—1

Z g(R(Xv (by)eia d)ez)

i=1
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=g(¢°Y, X) — g(8Y, 6X) + 9(6X, 8°Y) — g(¢*Y, ¢°X) — 2(4m — 2)g($X, ¢Y)
3
+ Z { = 9(600Y,06,X) = 9(66,X, 6,6 ) + 29(6, X, 6 )trace(é,) }
3
Z{ (606X, 66,67 ) — g(606?Y, 06,0 X) | + " n(X)g(9u6?Y, 6,)
v=1
- Z 1(X)g(&0, 06u8°Y) + g(AX, pAGY) — g(AY, pAX)

—_ 8mg(¢X BY) + 29(AX, pAPY)

- 22 { (600Y, 900 X) — 29(60 X, ¢Y)nv(§)}
- zz{ (600X, 66,Y) = 966X, 60uE)n(Y) |

722{ (60, 60) = (Y )g(660, 60€) f(X).

In view of (1), the *-Ricci tensor is given by

(14)  Ric"(X.Y) = 4mg(¢X, ¢Y) — g(AX, pApY)

Z{ (600Y, 66,X) = 29(60X, 6Y ). €) }
Z{ (609X, 66,Y) = 9(6,6X, 60, n(Y) |

Z{ (6,Y.66,) = n(Y)g(660, 6,8 pn(X)
— (4m+ 6)g(6X, 6Y) - g(AX, 6A6Y)
+ 22 { = 0o(0X )0 (PY) — 0o (X) 10 (Y')
Y6 () — (60X oY) (6)}.

Thus the *-Ricci operator S* is expressed as

3
(15)  §7X == (4m+6)¢°X — (9A)2X +2 Y {n(6X)06, = nu(X)&

v=1

(€)M (X)E +1(E) 96, X |
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for all X € TM. From which a straightforward computation gives:

Proposition 2.1. For a real hypersurface M of G2(C™*2) the following for-
mulas hold:

(16) (65" — S*)X = ¢[(49)” — (pA4)*]X — 4Zm X) ¢,
17 §€=—(¢4) «5+4Z{ V()& + (&I ()¢ }-

If M is a Hopf hypersurface in Go(C™%2), i.e., AS = af, then taking inner
product of the Codazzi equation (13) with & implies

(18)  —29(¢X,Y)+ > {no(X)n(¢sY) — 1o (Y)1(¢0 X) — 29(60 X, Y )n(E0)}

v=1

+ > {mu(@X)n(¢udY) — nu(8Y In(dvdX)}

v=1

+Z{n )1 (8Y) = 1(Y )0 (6X) (€0

= —29(¢X,Y) + 2Z{m<X n(60Y) = m(Y)n(du X) — g(¢u X, Y)n(&0)}

— G(TxAY — (VyA)X.)
= X(an(Y) =Y(a)n(X) + ag(ApX + pAX,Y) — 2g(ApAX,Y)

for any vector fields X,Y. From (18), by a straightforward computation we
have:

Proposition 2.2 ([2]). If M is a Hopf hypersurface such that « is constant,
then

(19) ApAX = la(AqbX + ¢AX) + 6 X
+ Z{m )6 + (S X)Ew + 1(E0)Pu X }.

3. Real hypersurfaces with commuting *-Ricci tensor

In this section we will study the real hypersurface M of complex two-plane
Grassmannian Go(C™*1) admitting commuting *-Ricci tensor, namely for ev-
ery vector field X € T M, the *-Ricci operator S* satisfies

PpS*X = S"pX.
We first prove the following key lemma.
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Lemma 3.1. Let M be a Hopf real hypersurface of Go(C™H) with ¢S* = S*¢.
Then the following statements hold:

(i) the principal curvature « is constant;

(i) & belongs to D.

Proof. By assumption, we take an inner product of (16) with Y and put X = ¢,
then

3
> n©n(g.Y) = 0.

From this, by replacing Y by ¢Y, we conclude

3 3

(20) Do mEnY) = n(En.(Y).

v=1 v=1

For any Y € ® it follows n(Y) 23:1 n2(¢) = 0. That means that either £ € D
or £ € DL,
Next let us put X = ¢ in (18), thus we have

3

(21) Y(a) =&a)m(Y) =4 n&)n(g.Y).

v=1
Since we have proved that either ¢ € D or £ € D+, then the formula (21) yields
(22) grad(a) = {(a)¢.
Differentiating (22) along vector field X gives
Vx(grada) = Vx (§(@))€ + £(a)pAX.

Since d?a = 0, for any vector Y it follows

0 = g(Vx(grada),Y) - g(X, Vy (grad a))

= Vx (§(@)n(Y) = Vy (§(@))n(X) + £(@)[g(pAX, Y) + g(X, pAY)].
Replacing X and Y by ¢X and ¢Y in the above equation, respectively, we find
§(a)g((Ap — 9A)X,Y) =0

for any vector fields X,Y. That means that either £(«) = 0, which implies
grada = 0 from (22), hence « is constant, or Ap = ¢pA. The latter equation
yields (L£eg)(X,Y) = g(X, pAY ) + g(Y, pAX) = 0 for all vectors X,Y", namely
the Reeb flow is isometric. In terms of [2, Proposition 6], « is also constant,
thus the statement (i) holds.

If ¢ € D+ = Span{¢y, &, &3}, then in this case there exists an Hermitian
structure J; € J such that J;N = JN, that is £ = & . From (7) we have

(23) @82 = $281 = —&3, ¢1&2 =&3, P&z = 381 = o,
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(Notice that the last equal sign of the formula (5.1) in [5] is wrong, which is
easily followed from (7) or see Section 5 in [1].) and from (16) the relation
$S* = 5% yields

B(Ag)* — ($A)*]X =4 " n,(En(X)gé, = 0.

Since A = a&, the previous equation implies
(24) (40)2X = ($4)°X.

Because the principal curvature « is constant, the formula (19) holds, and by
replacing X by ¢X in this, the relation (24) becomes

3
LaAGX + 3 ((6X )66 +n(6u0X)6u +1(E)6.0X)

v=1

3
= %astAX + > {m(X)$% + (¢ X )by + (&) by X }.

v=1

Moreover, by substituting (9) into this and a straightforward calculation, we
conclude that

3
D {n0(6X)& — 060 X)d + 20(X)N(E0)&0 — 200(X )0, ()€} = 0.

Now since & € D+, we find 7,(£) = 0 for v = 2,3. Hence the above equation
yields

> {n0(6X)E0 — n(puX)dE,} = 0.

Moreover, we get n(¢,X) = 0 since &, is orthogonal to ¢, for all v, thus
12(X) = n3(X) = 0 for any vector field X by (23), which is impossible. There-
fore & can not belong to ®+ and we complete the proof of statement (ii). [

Next we apply Lemma 3.1 to prove Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3. Suppose that M is a Hopf real hypersurface of Go(C™"2)
admitting commuting *-Ricci tensor. According to Lemma 3.1, the Reeb vector
field ¢ belongs to ©. By Theorem 1.2, M is the real hypersurface of type (B),
i.e., it is locally congruent to an open part of a tube around a totally geodesic
QP" in G2(C™*?), where m = 2n.

In the following we remaind to show that a hypersurface of type (B) in
G2(C™*+2) admits actually commuting *Ricci tensor. Notice that for a real
hypersurface of type (B) Berndt and Suh [1] proved the following:

Proposition 3.2. Let M be a connected real hypersurface of G2(C™*+2). Sup-
pose that AD C D, AE = o, and £ is tangent to ©. Then the quaternionic



984 X. M. CHEN

dimension m of Go(C™*2) is even, say m = 2n, and M has five distinct con-
stant principal curvatures

a=—2tan(2r), B =2cot(2r), v=0, §=-cot(r), u=—tan(r)
with some r € (0,%). The corresponding multiplicities are
m(a) =1, m(B)=3=m(y), m(d)=4m—4=m(n),
and the corresponding eigenspaces are
To =R, T =3JE, T,=3¢ Ts, Ty,
where
Ts® T, = (HCO:, ITs=Ts5, IJT,=T,, JT5="T,..
Since £ € D, by (16) the condition ¢S* = S*¢ is equivalent to
(25) Bl(A6)? — (6A4)*]X = 0.
Now by Proposition 3.2 we check the formula (25) as follows:
Case I. X = ¢ € ®. It is obvious.
Case II. X = & € T, then A¢&; = 0.
$[(Ad)* — (0A)?*J&1 = —¢(pA)*&1 = BAYE = 0.
It is easy to see that the formula (25) holds for &9, 3.
Case IIL. X = ¢& € T,y =0, i.e., Ap&i = 0.
0l(A9)” — (¢A)*]0&61 = PAPA(—E1 +1(61)€) = —BAGE = 0.
Case IV. X € T5,0 = cotr. Then AX =6X, ApX = upX. We compute
Ol(A0)* — (DA)’]X = GlUAG®X — 56APX] = Gl—i6X — g X] = 0.
Case V. X € T},,t = —tanr. Then AX = uX and ApX = dpX. We also
have
P[(A9)* — (pA)*]X = ¢[0AP* X — ppApX] = ¢p[—6puX — ud¢*X] = 0.
Therefore we see the formula (25) holds for all X € TM and the proof of
Theorem 1.3 is completed. (I

Proof of Corollary 1.4. Suppose that M is a x-Einstein Hopf hypersurface, i.e.,
S*X = aX, a = const. for any vector field X € &1, where £+ denotes the
orthogonal complement of £ in TM. Since ¢S*X = S*¢pX = a¢X, by virtue
of Lemma 3.1, £ tangents to ©, then M is the real hypersurface of type (B) by
Theorem 1.3, and the equation (15) can be simplified as

(26)

3
aX = —(4m + 6)¢*X — (pA)PX +2° {m(6X)o€, — (X6, }, ¥X € ¢t

v=1
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Let us consider X € T then ¢X € T}, by Proposition 3.2. In such a case we
derive from the formula (26)

aX =— (4m+6+6u)p*X = (4m +5)X, ie., a=4m+5.
However, if let X =&, € T in (26) then A¢&, = 0. We obtain
aly :(4m +4)&, — BoAGE, = (4m +4)&, e, a=4m+4.

It leads to a contradiction, thus we complete the proof of Corollary 1.4 in
introduction. (I

Proof of Theorem 1.5. In order to prove Theorem 1.5 we first give the following
lemma.

Lemma 3.3. If the real hypersurface M admits a *-Ricci soliton, then ¢S™* =
S*¢.

Proof. Since Ly g and g are symmetry, the x-Ricci soliton equation (2) implies
the *-Ricci tensor is also symmetry, i.e., Ric*(X,Y) = Ric*(Y,X) for any
vector fields X, Y on M. It yields from (14)

3
13 (X0 = (08 e (6) = [(94)* — (49)*]X

for all X € TM. Thus we get the assertion from (16). O

Proposition 3.4. If M is a real hypersurface in complex two-plane Grassman-
nian Go(C™*2) admitting a x-Ricci soliton with potential vector field &, then
M must be Hopf.

Proof. From the *-Ricci soliton equation (2) it follows
1
S* X = MpX + §(A¢ — pA)pX

and i
OSTX = AGX + S ($A¢ P A)X.

Thus we obtain from Lemma 3.3
(27) N(AX)E +n(X)AE = 20A9X + 2AX.
Taking X = &, we get AS = af, where o = g(AE, €). O

We assume that M is a real hypersurface in Go(C™*2) admitting a *-Ricci
soliton with potential vector field £&. Then M is Hopf by Proposition 3.4.
Moreover, by Lemma 3.3 and Lemma 3.1, the Reeb vector field £ € ©.

On the other hand, by replacing X by ¢X in (27), we find ApX = ¢AX
holds for any vector field X. Thus for any vector fields X,Y, it follows from
(6)
which shows the Reeb flow is isometric, namely £ is Killing. According to the
main theorem in [2] we complete the proof of Theorem 1.5. O
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4. Real hypersurfaces with pseudo anti-commuting *-Ricci tensor
In this section we consider the real hypersurface M admitting pseudo anti-
commuting *-Ricci tensor, i.e. the *-Ricci operator S* satisfies
(28) S*pX + ¢pS* X = 2k¢pX, k = const.
for every vector field X on M. From this condition we have ¢S*¢ = 0, which
further shows S*¢ = 0 since n(S*¢) = 0 followed from (17). Moreover, using

(17) again we also get Eq. (20), thus as the proof of Lemma 3.1 we obtain the
following lemma.

Lemma 4.1. Let M be a Hopf real hypersurface of Go(C™ 1) admitting pseudo
anti-commuting x-Ricci tensor. Then the principle curvature o is constant and
€ either belongs to ® or ®+.

Proof of Theorem 1.6. We first show that the Reeb vector field £ must belong
to D+. Making use of (15), the formula (28) becomes

3

(29) 0= 2(Am+6 - K)oX — (94)°6X — G(pAPX — 43 {m (X8,

+ [0 (X) = n(€IN(X)]B0 — 200 (8X)(E)E + (€D X }.
When ¢ € D, we have
(30) 0=2(4m+6— k)X — (pA)?*pX — ¢p(pA)*X

- 423: {UU(¢X)§U + nv(X)¢£U}_

Now by Proposition 3.2, when X = & € D+, then A¢¢; = 0. It follows
from (30)
2kg&1 = 2(4m + 6)9&1 — Hn2(d€1)&2 + n3(P€1)Es} — 466
= (8m + 8)¢¢:.
That means k& = 4m + 4. However, when X € Ts5,§ = cotr, i.e., AX =
60X, ApX = u¢pX. Using (30), we have
2k¢pX = 2(dm + 6)9pX + (ud + ou)pX = [2(dm + 6) + 25u]pX.
This shows k = 4m+6+du = 4m—+5. From the difference of k we conclude that
there does not exist pseudo anti-commuting *-Ricci tensor in the hypersurfaces
of type (B). Therefore £ € D+ by Lemma 4.1.

Since ¢ € D1 = Span{¢;, &, &3}, without loss general we may put & = ;.
Let us take the covariant derivative of equation (28) along vector X, namely
(B1)  (VxS)OY + 5" (Vxd)Y + (Vxd)S'Y + ¢(VxS")Y = 2k(Vx4)Y.
Since (Vx@)Y =n(Y)AX — g(AX,Y)¢ and S*¢ = 0, we have

S (Vxe)Y
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= (Y)S*AX — g(AX,Y)S*¢
n(Y){ — (dm + 6)$*AX — (¢pA)2AX

3

23 0 (SAX) 8 — u(AX )&, +0(E)(AXE + 10(E)060 AX] .

v=1

By (15), we directly compute

p(VxS™)Y
= (4m+6)[( )¢° AX] — ¢V x (9A)PAY — $(pA)Vx (A)Y

+2 Z { Qo+2(X) 1041 (0Y) = o1 (X)042(4Y)

+ g(d’vAX, oY) +n(Y)n,(AX) — g(AX, Y)n(&)] 06w
+ 100 (DY )[Gu12(X) (Mo41(€)€ — Eor1) — qui1 (X)) (Mo12(€)€ — Evra)

— Gy AX +m(9AX)E + ()9 AX] }
+2 Z { = a2 (V) = s (X2 () + 9(60 AX. V)]0
=10V )[a0+2(X) 86041 = @41 (X)0€012 + 06, AX] |

+9 Z {7771 ¢2AX + dVx(0¢,)Y } (o)

+ 22{ OuY #1160 )€ F a2 ()M 41(8) = ot (X4 (€)+20(00 AX).
Since A¢ = o€, using the above two formulas with & € ©+, it follows from
(31) with Y = ¢

(32)  2k[AX —an(X)E] = S*AX + ¢(VxS*)E
= —2(4m + 5)¢*AX — (pA)PAX — A(pA)’X

3

3
+4 Z U] (AX)¢2€U -4 Z[QU-FQ (X)nv-i-l (5) — Qu+1 (X)77U+2 (E)](bgv

3
— 2(gs(X)pS2 — q2(X)p&s] + 20V x (61)6 — 4> (o AX )Py
v=1

By (11) and (23), we compute

(33) OV x (001)€ = q3(X)& + q2(X)& + ¢9*AX
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and
3 3
(34) D nu(AX)P%E =) n(¢y AX)gE,.
v=1 v=1
Substituting (33) and (34) into (32), we obtain
(35) 2(4m + 4 — k)¢*AX + A(pA)’ X + (pA)?AX = 0.

Now making use of (19), we compute

(36) (pA)?AX = %a(gbAquX — A2X 4 o®n(X)E) + ¢2AX
3
+ ) {n(AX)P*E + 0 AX)Eu} + ¢ AX
v=1

= S(0AGAX — A°X +a’n(X)E) + ¢*AX
—2{n2(AX)& +n3(AX)E3} + ¢pp1 AX

and

(37) A(PA)PX = %a(AgbAqﬁX + AP?AX) + AP’ X
3
+ ) {no(X) AP, + n(du X )AgEu} + Addr X
v=1

= %a(AngAng — AZX 4 ®n(X)E) + ¢?AX
= 2{n2(X) A& + n3(X)AL} + Agdr X.
By substituting (36) and (37) into (35), we get
(38)  (8m 411 —2k)p?AX + %a(qﬁAquX + ApApX)
+a(=A’X + a®n(X)€) — 2{n2(X) A& +13(X) A&} + App1 X = 0.
Using (19) again, we compute
PAPAX+APADX = a(AP* X +ASX )+20° X —4(na(X)Ea+1a(X)Es)+2061 X,
then the relation (38) becomes
(39) (8m + 11 — 2k + %a2)¢2AX + %a%AqbX + ad’ X + appr X

= 2a(n2(X)& + n3(X)&s) + a(—A*X + o’n(X)¢€)
— 2{m(X)A& + n3(X)A&} 4+ Appr1 X = 0.

Now putting X = & in (39) and using (23), we have

1 1
(40) (8m + 12 — 2k + 5oﬁ)Ag2 + §a2¢Ag3 + 20 + a A% = 0.
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Moreover, taking inner product of the above formula with X € O, we get
(41) (8m +12 — 2k + %aQ)ng(AX)
— %a2n3(Aq§X) +anp(A?X) =0 forall X €D.

In the following we divide into two cases.
Case I. « = 0. Then the relation (40) implies (4m+6—k) A& = 0. Similarly,
taking X = & in (39) and using (23), we get

(4m + 6 — k)Ags = 0.

We claim k = 4m + 6. Otherwise, if k # 4m + 6, A&, = A3 = 0. In view of
the relation 208203 — (B2 + f3) —4 = 0, where A&, = B.€u, 1= 2,3 (see [1,
Lemma 9]), we derive a contradiction.

Case II. a # 0. Since ¢ = & € D1, it yields from (29)
(42) 0=2(4m+6 — k)X — (pA)?0X — ¢p(¢pA)* X

3
B 42 {Uv(ébX)fv + nv(X)¢§v} — 491 X.
v=1

Making use of (23) and (19), the formula (42) becomes
(43) 24m + 7 —k)pX + a(ApX + pAX)
— 4(7]3(X)§2 — 772(X)§3) — 2¢1X =0 forall X € TM.

For every X € ©, we take an inner product of the above formula with &3 and
get

a(n3(A9X) + n3(¢AX)) =0,
which shows
13(AgX) = n2(AX).
Hence the relation (41) becomes
(8m + 12 — 2k)n2(AX) + ana(A?X) =0 for all X € ®.
From this we have (8m + 12 — 2k) A& + aA%& € DL, Write T := (8m + 12 —
2k)A + aA?. Thus Té € D+ and the equation (40) can be rewritten as

TE, + 50%(8A8 + Ag) + 3as = 0.

Taking an inner product of this with & gives

(14) 0(T6,62) + 302(9(AG, &) + g(AE2,£2)) +3a = 0.

On the other hand, putting X = & in (43), we have
(45) (8m + 12 — 2k)& + (A — $AE) = 0.
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Taking an inner product of (45) with {3 and substituting the result into (44),
we have

N | —

9(T§27§2) =

That shows T¢; = uéz, where = a(8m + 12 — 2k) — 3o

Letting X = &3 in (39) and X = & in (43), respectively, we can also derive
that T¢s = pé&s by the same method as before. Actually this shows that
g(TD,D1) = 0since T¢; = T¢ = [(8m~+12—2k)a+a3)¢. Moreover, because of
the fact that AT = T A, there exists a basis X, X5, X3 of O with AX; = \; X;
and TX; = \; X;, 1 = 1,2, 3, which satisfies

a(8m + 12 — 2k) — 3a.

X1 &1
X5 =S03) | & ,
X3 &3

where SO(3) denotes the special orthogonal group. Accordingly, we prove that
g(AD,D+) = 0. That means that the distribution D+ is invariant under the
shape operator A.

Summarizing the above discussion, in view of Theorem 1.1 we prove the
following result.

Proposition 4.2. Let M be a connected real hypersurface of Go(C™2) with
pseudo anti-commuting *-Ricci tensor. Suppose AE = af, then one of following
holds:

(1) Ifa=0, k=4m+6;
(2) If « # 0, M is a real hypersurface of type (A) in Go(C™+2).

Moreover, notice that for a real hypersurface of type (A) the follow conclu-
sion was given by Berndt and Suh [1].

Proposition 4.3. Let M be a connected real hypersurface of Go(C™*2). Sup-
pose that AD C D, A = a&, and £ is tangent to L. Let J, € J be the almost
Hermitian structure such that JN = JiN. Then M has three (if r = T)or four
(otherwise) distinct constant principal curvatures

a=V8cot(V8r), B=+2cot(vV2r), A=—V2tan(v2r), p=0

s

with some r € (0, %). The corresponding multiplicities are
m(a) = 17 m(ﬂ) = 25 m(>‘> =2m-2= m(:u)v
and the corresponding eigenspaces are
T, =R¢=RJN,
Ts = Cte =CtN,
T\ ={X|X LHJX =1 X},
T,={X|X LH{JX =—-J1X}.
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Since Berndt and Suh [2] proved that the Reeb flow on M is isometric if and
only if M is an open part of a tube around some totally geodesic Go(C™*!) in
G2(C™*+2). Thus the relation pA = A¢ is satisfied on M. In view of (16), for
¢ € D the condition S*¢ + ¢S* = 2k¢ implies

3
(46) (4m+6)pX + 426X =23~ {n,(X)66, + 1. (6X)E, | — 201X = ko X.
v=1
Now we consider the following cases for the above formula.
Case I. When X = & in (46), we get

(4m + 6)p&a + B2pEs — 2{pla — &3} — 26160
= [4m + 4 + B%|¢Ca = koo,

ie, k=4m+4+ 52
Case IL. X € Ty, A = —v/2tan(y/2r). We have AX = AX and ApX = \pX
since Ap = ¢A. From (46) we derive

(4m + 6)pX + N2 pX — 20X = ko X.

So in this case k = 4m + 4 + \2.
Case IIL. X € T,, 0 =0, i.e.,, ApX = 0. Thus the relation (46) gives

(4m 4 6)9X + 20X = ko X.

This case gives k = 4m + 8.

In view of Case I and Case II, we derive that A2 = 82, i.e., tan?(v/2r) =
cot2(\/§r). However, together Case II and Case III, we get A2 = 4, that shows
tan?(v/2r) = 2. It comes to a contradiction. Therefore there can not exist
pseudo anti-commuting *-Ricci tensor in the real hypersurfaces of type (A) in
Go(C™+2).

Therefore by virtue of Proposition 4.2 we complete the proof of Theorem
1.6. O
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