Bull. Korean Math. Soc. **54** (2017), No. 3, pp. 975–992

https://doi.org/10.4134/BKMS.b160414 pISSN: 1015-8634 / eISSN: 2234-3016

REAL HYPERSURFACES WITH *-RICCI TENSORS IN COMPLEX TWO-PLANE GRASSMANNIANS

XIAOMIN CHEN

ABSTRACT. In this article, we consider a real hypersurface of complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2}), m \geq 3$, admitting commuting *-Ricci and pseudo anti-commuting *-Ricci tensor, respectively. As the applications, we prove that there do not exist *-Einstein metrics on Hopf hypersurfaces as well as *-Ricci solitons whose potential vector field is the Reeb vector field on any real hypersurfaces.

1. Introduction

A complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ consists of all complex two dimensional linear subspaces of \mathbb{C}^{m+2} , which is the unique compact, irreducible, Kähler, quaternionic Kähler manifold which is not a hyper Kähler manifold (see Berndt and Suh [1, 2]). Let M be a real hypersurface of $G_2(\mathbb{C}^{m+2})$. The Kähler structure J on $G_2(\mathbb{C}^{m+2})$ induces a structure vector field ξ called Reeb vector field on M by $\xi := -JN$, where N is the local unit normal vector field of M in $G_2(\mathbb{C}^{m+2})$. For the quaternionic Kähler structure \mathfrak{J} of $G_2(\mathbb{C}^{m+2})$, its canonical basis $\{J_1, J_2, J_3\}$ induces the almost contact structure vector fields $\{\xi_1, \xi_2, \xi_3\}$ on M by $\xi_v := -J_v N$, v = 1, 2, 3. It is well known that for the real hypersurface M there exist two natural geometrical conditions that $[\xi] = \operatorname{Span}\{\xi\}$ or $\mathfrak{D}^{\perp} = \operatorname{Span}\{\xi_1, \xi_2, \xi_3\}$ is invariant under the shape operator A of M. Denote the distribution \mathfrak{D} by the orthogonal complement of the distribution \mathfrak{D}^{\perp} . By using such geometrical conditions, Berndt and Suh in [1] proved that the Reeb vector field ξ either belongs to \mathfrak{D} or \mathfrak{D}^{\perp} and gave the following classification:

Theorem 1.1. Let M be a connected real hypersurface of $G_2(\mathbb{C}^{m+2})$, $m \geq 3$. If \mathfrak{D}^{\perp} and $[\xi]$ are invariant under the shape operator, then

- (A) M is an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$ for $\xi \in \mathfrak{D}^{\perp}$, or
- (B) M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{Q}P^n$ in $G_2(\mathbb{C}^{m+2})$ for $\xi \in \mathfrak{D}$, where m=2n.

Received May 12, 2016; Revised August 9, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C40, 53C15.

Key words and phrases. commuting *-Ricci tensor, pseudo anti-commuting *-Ricci tensor, Hopf hypersurfaces, complex two-plane Grassmannians, *-Ricci soliton.

If the Reeb vector field ξ is invariant by the shape operator, M is said to be a *Hopf hypersurface*. Based on the classification of Theorem 1.1 Berndt and Suh later gave a new characterization for the type (B) hypersurfaces of $G_2(\mathbb{C}^{m+2})$.

Theorem 1.2 ([9]). Let M be a connected orientable Hopf real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$. Then the Reeb vector field ξ belongs to the distribution \mathfrak{D} if and only if M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{Q}P^n$ in $G_2(\mathbb{C}^{m+2})$, where m=2n.

As the real hypersurfaces in complex space forms $M_m(c)$ or in quaternionic space forms $Q_m(c)$ with commuting Ricci tensor were considered (cf. [7, 8, 10]), Suh [12] also studied the real hypersurfaces of $G_2(\mathbb{C}^{m+2})$ with commuting Ricci tensor, i.e., $S\phi = \phi S$, where S and ϕ denote the Ricci operator and the structure tensor of real hypersurfaces in $G_2(\mathbb{C}^{m+2})$, respectively, and showed that the Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ are of type (A).

Recently Suh [5] introduced a new notion called as *pseudo anti-commuting* Ricci tensor, i.e., it satisfies the following formula:

$$\phi S + S\phi = 2k\phi$$
,

where k = constant. In this case, it is proved that $k = 4m + 2 + \frac{\alpha}{2}(h - \alpha)$, where h denotes the mean curvature, or M is the hypersurface of type (B). Since there are no Hopf Einstein real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ (see Corollary in [12]), Suh in [5] further considered a real hypersurface M in $G_2(\mathbb{C}^{m+2})$ with a Ricci soliton. The notion of Ricci soliton, introduced firstly by Hamilton in [4], is the generalization of Einstein metric, that is, a Riemannian metric g satisfying

$$\frac{1}{2}\mathcal{L}_W g + Ric - \lambda g = 0,$$

where λ is a constant and Ric is the Ricci tensor of M. The vector field W is called potential vector field. Moreover, the Ricci soliton is called shrinking, steady and expanding according as λ is positive, zero and negative respectively. In [5], it is proved that if M is a Hopf hypersurface with potential vector field being the Reeb vector field ξ and Ricci soliton constant $\lambda = k$, then k = 4(m+1) > 0, namely the Ricci soliton is shrinking.

As the corresponding of Ricci tensor, Hamada in [3] defined the *-Ricci tensor by

(1)
$$Ric^*(X,Y) = \frac{1}{2}trace\{\phi \circ R(X,\phi Y)\}, \quad \forall X,Y \in TM,$$

and if the *-Ricci tensor is a constant multiple of g(X,Y) for all X,Y orthogonal to ξ , then M is said to be a *-Einstein manifold. Furthermore, Hamada gave a complete classification of *-Einstein Hopf hypersurfaces in non-flat complex space forms. As the generalization of *-Einstein metric Kaimakamis and Panagiotidou ([6]) introduced a so-called *-Ricci soliton, that is, a Riemannain metric g on M satisfying

(2)
$$\frac{1}{2}\mathcal{L}_W g + Ric^* - \lambda g = 0,$$

where λ is constant and Ric^* is the *-Ricci tensor of M. They considered the case where W is the Reeb vector field ξ and obtained that a real hypersurface in a complex projective space does not admit a *-Ricci soliton as well as that a real hypersurface of complex hyperbolic space admitting a *-Ricci soliton is locally congruent to a geodesic hypersphere.

Motivated by the present work, in this paper we first consider the hypersurfaces of $G_2(\mathbb{C}^{m+2})$ with commuting *-Ricci tensor, i.e., the *-Ricci operator S^* satisfies $\phi S^* = S^*\phi$, where the *-Ricci operator S^* is defined by $Ric^*(X,Y) = g(S^*X,Y)$ for any vector fields X,Y, and the following result is proved.

Theorem 1.3. Let M be a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with commuting *-Ricci tensor. Then M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{Q}P^n$ in $G_2(\mathbb{C}^{m+2})$, where m=2n.

In particular, making use of Theorem 1.3 we obtain:

Corollary 1.4. There do not exist any *-Einstein Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2}), m \geq 3$.

For the *-Ricci soliton we further get a similar conclusion with the real hypersurfaces in complex projective space $\mathbb{C}P^n$, $n \geq 2$.

Theorem 1.5. There do not exist real hypersurfaces of $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, admitting a *-Ricci soliton, with potential vector field being the Reeb vector field \mathcal{E} .

Finally we introduce the notion of pseudo anti-commuting *-Ricci tensor, i.e. the relation $\phi S^* + S^* \phi = 2k\phi$ holds for constant k, and prove the following:

Theorem 1.6. Let M be a Hopf hypersurface in $G_2(\mathbb{C}^{m+2}), m \geq 3$, with pseudo anti-commuting *-Ricci tensor. Then $\alpha = 0$ and k = 4m + 6.

This article is organized as follows: In Section 2, some notations and formulas for real hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ are presented. In Section 3 we consider Hopf hypersurfaces with commuting *-Ricci tensor and give the proofs of Theorem 1.3, Corollary 1.4 and Theorem 1.5. Finally, in Section 4 we study the real Hopf hypersurfaces admitting pseudo anti-commuting *-Ricci tensor and prove Theorem 1.6.

2. Preliminaries

In this section we will summarize some basic notations and formulas about the complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$. For more detail please refer to [1, 2, 11, 12, 13]. Let $G_2(\mathbb{C}^{m+2})$ be the complex Grassmannian manifold of all complex 2-dimensional linear spaces of \mathbb{C}^{m+2} . In fact $G_2(\mathbb{C}^{m+2})$ can be identified with a homogeneous space $SU(m+2)/(S(U(2)\times U(m)))$. Up to scaling there exists the unique $S(U(2)\times U(m))$ -invariant Riemannian metric \widetilde{g} on $G_2(\mathbb{C}^{m+2})$. The Grassmannian manifold $G_2(\mathbb{C}^{m+2})$ equipped such a metric

becomes a symmetric space of rank two, which is both Kähler and quaternionic Kähler. From now on we always assume $m \geq 3$ because it is well known that $G_2(\mathbb{C}^3)$ is isometric to $\mathbb{C}P^2$ and $G_2(\mathbb{C}^4)$ is isometric to the real Grassmannian manifold $G_2^+(\mathbb{R}^6)$ of oriented 2-dimensional linear subspaces of \mathbb{R}^6 .

Denote J and \mathfrak{J} be the Kähler structure and quaternionic Kähler structure on $G_2(\mathbb{C}^{m+2})$, respectively. A canonical local basis $\{J_1, J_2, J_3\}$ of \mathfrak{J} consists of almost Hermitian structures J_v such that $J_v J_{v+1} = J_{v+2} = -J_{v+1} J_v$, where the index is taken modulo three. As is well known the Kähler structure J and quaternionic Kähler structure \mathfrak{J} satisfy the following relations:

$$JJ_v = J_v J$$
, $trace(JJ_v) = 0$, $v = 1, 2, 3$.

We denote $\widetilde{\nabla}$ by the Livi-Civita connection with respect to \widetilde{g} , and there exist 1-forms q_1, q_2, q_3 such that

$$\widetilde{\nabla}_X J_v = q_{v+2}(X) J_{v+1} - q_{v+1}(X) J_{v+2}$$

for any vector field X on $G_2(\mathbb{C}^{m+2})$.

Let M be an immersed real hypersurface of $G_2(\mathbb{C}^{m+2})$ with induced metric g. There exists a local defined unit normal vector field N on M and we write

$$\xi := -JN$$

by the structure vector field of M. An induced one-form η is defined by $\eta(\cdot) = \widetilde{g}(J\cdot,N)$, which is dual to ξ . For any vector field X on M the tangent part of JX is denoted by $\phi X = JX - \eta(X)N$. Moreover, the following identities hold:

(3)
$$\phi^2 = -Id + \eta \otimes \xi, \quad \eta \circ \phi = 0, \quad \phi \circ \xi = 0, \quad \eta(\xi) = 1,$$

(4)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X),$$

where $X, Y \in \mathfrak{X}(M)$. By these formulas, we know that (ϕ, η, ξ, g) is an almost contact metric structure on M. Similarly, for every almost Hermitian structure J_v , it induces an almost contact structure $(\phi_v, \eta_v, \xi_v, g)$ on M by

$$\xi_v = -J_v N$$
, $\eta_v(X) = g(\xi_v, X)$, $\phi_v X = J_v X - \eta_v(X) N$,

for any vector field X. Thus the relations (3) and (4) hold for $(\phi_v, \eta_v, \xi_v, g)$.

Denote ∇ , A by the induced Riemannian connection and the shape operator on M, respectively. Then the Gauss and Weigarten formulas are respectively given by

(5)
$$\widetilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)N, \quad \widetilde{\nabla}_X N = -AX,$$

where $\widetilde{\nabla}$ is the connection on $G_2(\mathbb{C}^{m+2})$ with respect to \widetilde{g} . Also, we have

(6)
$$(\nabla_X \phi) Y = \eta(Y) A X - g(AX, Y) \xi, \quad \nabla_X \xi = \phi A X.$$

Moreover, the following equations are proved (see [5]):

(7)
$$\phi_{v+1}\xi_v = -\xi_{v+2}, \quad \phi_v\xi_{v+1} = \xi_{v+2},$$

(8)
$$\phi \xi_v = \phi_v \xi, \quad \eta(\xi_v) = \eta_v(\xi),$$

(9)
$$\phi \phi_v X = \phi_v \phi X + \eta_v(X) \xi - \eta(X) \xi_v,$$

(10)
$$\nabla_X \xi_v = q_{v+2}(X)\xi_{v+1} - q_{v+1}(X)\xi_{v+2} + \phi_v AX,$$

(11)
$$\nabla_X(\phi_v \xi) = q_{v+2}(X)\phi_{v+1}\xi - q_{v+1}(X)\phi_{v+2}\xi + \phi_v \phi AX - g(AX, \xi)\xi_v + \eta(\xi_v)AX.$$

The curvature tensor R and Codazzi equation of M are respectively given as follows:

(12)
$$R(X,Y)Z$$

 $= g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y + 2g(X,\phi Y)\phi Z$
 $+ \sum_{v=1}^{3} \left\{ g(\phi_{v}Y,Z)\phi_{v}X - g(\phi_{v}X,Z)\phi_{v}Y - 2g(\phi_{v}X,Y)\phi_{v}Z \right\}$
 $+ \sum_{v=1}^{3} \left\{ g(\phi_{v}\phi Y,Z)\phi_{v}\phi X - g(\phi_{v}\phi X,Z)\phi_{v}\phi Y \right\}$
 $- \sum_{v=1}^{3} \left\{ \eta(Y)\eta_{v}(Z)\phi_{v}\phi X - \eta(X)\eta_{v}(Z)\phi_{v}\phi Y \right\}$
 $- \sum_{v=1}^{3} \left\{ \eta(X)g(\phi_{v}\phi Y,Z) - \eta(Y)g(\phi_{v}\phi X,Z) \right\} \xi_{v}$
 $+ g(AY,Z)AX - g(AX,Z)AY,$

(13)
$$(\nabla_{X}A)Y - (\nabla_{Y}A)X$$

$$= \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi$$

$$+ \sum_{v=1}^{3} \{\eta_{v}(X)\phi_{v}Y - \eta_{v}(Y)\phi_{v}X - 2g(\phi_{v}X, Y)\xi_{v}\}$$

$$+ \sum_{v=1}^{3} \{\eta_{v}(\phi X)\phi_{v}\phi Y - \eta_{v}(\phi Y)\phi_{v}\phi X\}$$

$$+ \sum_{v=1}^{3} \{\eta(X)\eta_{v}(\phi Y) - \eta(Y)\eta_{v}(\phi X)\}\xi_{v}$$

for any vector fields X, Y, Z on M.

Recall that the *-Ricci operator S^* of M is defined by

$$g(S^*X,Y) = Ric^*(X,Y) = \frac{1}{2}trace\{\phi \circ R(X,\phi Y)\}\$$

for all $X, Y \in TM$. Taking a local frame $\{e_i\}$ of M such that $e_1 = \xi$ and using (4), we derive from (12) that

$$\sum_{i=1}^{4m-1} g(R(X, \phi Y)e_i, \phi e_i)$$

$$\begin{split} &= g(\phi^2Y, X) - g(\phi Y, \phi X) + g(\phi X, \phi^3Y) - g(\phi^2Y, \phi^2X) - 2(4m-2)g(\phi X, \phi Y) \\ &+ \sum_{v=1}^3 \Big\{ - g(\phi_v \phi Y, \phi \phi_v X) - g(\phi \phi_v X, \phi_v \phi Y) + 2g(\phi_v X, \phi Y) trace(\phi \phi_v) \Big\} \\ &+ \sum_{v=1}^3 \Big\{ g(\phi_v \phi X, \phi \phi_v \phi^2 Y) - g(\phi_v \phi^2 Y, \phi \phi_v \phi X) \Big\} + \sum_{v=1}^3 \eta(X) g(\phi_v \phi^2 Y, \phi \xi_v) \\ &- \sum_{v=1}^3 \eta(X) g(\xi_v, \phi \phi_v \phi^2 Y) + g(AX, \phi A \phi Y) - g(A \phi Y, \phi A X) \\ &= -8mg(\phi X, \phi Y) + 2g(AX, \phi A \phi Y) \\ &- 2\sum_{v=1}^3 \Big\{ g(\phi_v \phi Y, \phi \phi_v X) - 2g(\phi_v X, \phi Y) \eta_v(\xi) \Big\} \\ &- 2\sum_{v=1}^3 \Big\{ g(\phi_v \phi X, \phi \phi_v Y) - g(\phi_v \phi X, \phi \phi_v \xi) \eta(Y) \Big\} \\ &- 2\sum_{v=1}^3 \Big\{ g(\phi_v Y, \phi \xi_v) - \eta(Y) g(\phi \xi_v, \phi_v \xi) \Big\} \eta(X). \end{split}$$

In view of (1), the *-Ricci tensor is given by

(14)
$$Ric^{*}(X,Y) = 4mg(\phi X, \phi Y) - g(AX, \phi A\phi Y)$$

$$+ \sum_{v=1}^{3} \left\{ g(\phi_{v}\phi Y, \phi\phi_{v}X) - 2g(\phi_{v}X, \phi Y)\eta_{v}(\xi) \right\}$$

$$+ \sum_{v=1}^{3} \left\{ g(\phi_{v}\phi X, \phi\phi_{v}Y) - g(\phi_{v}\phi X, \phi\phi_{v}\xi)\eta(Y) \right\}$$

$$+ \sum_{v=1}^{3} \left\{ g(\phi_{v}Y, \phi\xi_{v}) - \eta(Y)g(\phi\xi_{v}, \phi_{v}\xi) \right\} \eta(X)$$

$$= (4m + 6)g(\phi X, \phi Y) - g(AX, \phi A\phi Y)$$

$$+ 2\sum_{v=1}^{3} \left\{ -\eta_{v}(\phi X)\eta_{v}(\phi Y) - \eta_{v}(X)\eta_{v}(Y) + \eta(Y)\eta(\xi_{v})\eta_{v}(X) - g(\phi_{v}X, \phi Y)\eta_{v}(\xi) \right\}.$$

Thus the *-Ricci operator S^* is expressed as

(15)
$$S^*X = -(4m+6)\phi^2X - (\phi A)^2X + 2\sum_{v=1}^{3} \left\{ \eta_v(\phi X)\phi\xi_v - \eta_v(X)\xi_v + \eta(\xi_v)\eta_v(X)\xi + \eta_v(\xi)\phi\phi_v X \right\}$$

for all $X \in TM$. From which a straightforward computation gives:

Proposition 2.1. For a real hypersurface M of $G_2(\mathbb{C}^{m+2})$ the following formulas hold:

(16)
$$(\phi S^* - S^* \phi) X = \phi [(A\phi)^2 - (\phi A)^2] X - 4 \sum_{v=1}^3 \eta_v(\xi) \eta(X) \phi \xi_v,$$

(17)
$$S^*\xi = -(\phi A)^2 \xi + 4 \sum_{v=1}^3 \left\{ -\eta_v(\xi)\xi_v + \eta(\xi_v)\eta_v(\xi)\xi \right\}.$$

If M is a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$, i.e., $A\xi = \alpha \xi$, then taking inner product of the Codazzi equation (13) with ξ implies

$$(18) -2g(\phi X,Y) + \sum_{v=1}^{3} \{\eta_{v}(X)\eta(\phi_{v}Y) - \eta_{v}(Y)\eta(\phi_{v}X) - 2g(\phi_{v}X,Y)\eta(\xi_{v})\}$$

$$+ \sum_{v=1}^{3} \{\eta_{v}(\phi X)\eta(\phi_{v}\phi Y) - \eta_{v}(\phi Y)\eta(\phi_{v}\phi X)\}$$

$$+ \sum_{v=1}^{3} \{\eta(X)\eta_{v}(\phi Y) - \eta(Y)\eta_{v}(\phi X)\}\eta(\xi_{v})$$

$$= -2g(\phi X,Y) + 2\sum_{v=1}^{3} \{\eta_{v}(X)\eta(\phi_{v}Y) - \eta_{v}(Y)\eta(\phi_{v}X) - g(\phi_{v}X,Y)\eta(\xi_{v})\}$$

$$= g((\nabla_{X}A)Y - (\nabla_{Y}A)X,\xi)$$

$$= X(\alpha)\eta(Y) - Y(\alpha)\eta(X) + \alpha g(A\phi X + \phi AX,Y) - 2g(A\phi AX,Y)$$

for any vector fields X,Y. From (18), by a straightforward computation we have:

Proposition 2.2 ([2]). If M is a Hopf hypersurface such that α is constant, then

(19)
$$A\phi AX = \frac{1}{2}\alpha(A\phi X + \phi AX) + \phi X + \sum_{v=1}^{3} \{\eta_{v}(X)\phi\xi_{v} + \eta(\phi_{v}X)\xi_{v} + \eta(\xi_{v})\phi_{v}X\}.$$

3. Real hypersurfaces with commuting *-Ricci tensor

In this section we will study the real hypersurface M of complex two-plane Grassmannian $G_2(\mathbb{C}^{m+1})$ admitting commuting *-Ricci tensor, namely for every vector field $X \in TM$, the *-Ricci operator S^* satisfies

$$\phi S^* X = S^* \phi X.$$

We first prove the following key lemma.

Lemma 3.1. Let M be a Hopf real hypersurface of $G_2(\mathbb{C}^{m+1})$ with $\phi S^* = S^*\phi$. Then the following statements hold:

- (i) the principal curvature α is constant;
- (ii) ξ belongs to \mathfrak{D} .

Proof. By assumption, we take an inner product of (16) with Y and put $X = \xi$, then

$$\sum_{v=1}^{3} \eta_v(\xi) \eta(\phi_v Y) = 0.$$

From this, by replacing Y by ϕY , we conclude

(20)
$$\sum_{v=1}^{3} \eta_v^2(\xi) \eta(Y) = \sum_{v=1}^{3} \eta_v(\xi) \eta_v(Y).$$

For any $Y \in \mathfrak{D}$ it follows $\eta(Y) \sum_{v=1}^{3} \eta_v^2(\xi) = 0$. That means that either $\xi \in \mathfrak{D}$ or $\xi \in \mathfrak{D}^{\perp}$.

Next let us put $X = \xi$ in (18), thus we have

(21)
$$Y(\alpha) = \xi(\alpha)\eta(Y) - 4\sum_{v=1}^{3} \eta(\xi_v)\eta(\phi_v Y).$$

Since we have proved that either $\xi \in \mathfrak{D}$ or $\xi \in \mathfrak{D}^{\perp}$, then the formula (21) yields

(22)
$$\operatorname{grad}(\alpha) = \xi(\alpha)\xi.$$

Differentiating (22) along vector field X gives

$$\nabla_X(\operatorname{grad}\alpha) = \nabla_X(\xi(\alpha))\xi + \xi(\alpha)\phi AX.$$

Since $d^2\alpha = 0$, for any vector Y it follows

$$0 = g(\nabla_X(\operatorname{grad}\alpha), Y) - g(X, \nabla_Y(\operatorname{grad}\alpha))$$

= $\nabla_X(\xi(\alpha))\eta(Y) - \nabla_Y(\xi(\alpha))\eta(X) + \xi(\alpha)[g(\phi AX, Y) + g(X, \phi AY)].$

Replacing X and Y by ϕX and ϕY in the above equation, respectively, we find

$$\xi(\alpha)g((A\phi - \phi A)X, Y) = 0$$

for any vector fields X,Y. That means that either $\xi(\alpha)=0$, which implies $\operatorname{grad}\alpha=0$ from (22), hence α is constant, or $A\phi=\phi A$. The latter equation yields $(\mathcal{L}_{\xi}g)(X,Y)=g(X,\phi AY)+g(Y,\phi AX)=0$ for all vectors X,Y, namely the Reeb flow is isometric. In terms of [2, Proposition 6], α is also constant, thus the statement (i) holds.

If $\xi \in \mathfrak{D}^{\perp} = \operatorname{Span}\{\xi_1, \xi_2, \xi_3\}$, then in this case there exists an Hermitian structure $J_1 \in \mathfrak{J}$ such that $J_1 N = JN$, that is $\xi = \xi_1$. From (7) we have

(23)
$$\phi \xi_2 = \phi_2 \xi_1 = -\xi_3, \quad \phi_1 \xi_2 = \xi_3, \quad \phi \xi_3 = \phi_3 \xi_1 = \xi_2,$$

(Notice that the last equal sign of the formula (5.1) in [5] is wrong, which is easily followed from (7) or see Section 5 in [1].) and from (16) the relation $\phi S^* = S^* \phi$ yields

$$\phi[(A\phi)^2 - (\phi A)^2]X = 4\sum_{v=1}^3 \eta_v(\xi)\eta(X)\phi\xi_v = 0.$$

Since $A\xi = \alpha \xi$, the previous equation implies

$$(24) (A\phi)^2 X = (\phi A)^2 X.$$

Because the principal curvature α is constant, the formula (19) holds, and by replacing X by ϕX in this, the relation (24) becomes

$$\frac{1}{2}\alpha A\phi^{2}X + \sum_{v=1}^{3} \{\eta_{v}(\phi X)\phi\xi_{v} + \eta(\phi_{v}\phi X)\xi_{v} + \eta(\xi_{v})\phi_{v}\phi X\}
= \frac{1}{2}\alpha\phi^{2}AX + \sum_{v=1}^{3} \{\eta_{v}(X)\phi^{2}\xi_{v} + \eta(\phi_{v}X)\phi\xi_{v} + \eta(\xi_{v})\phi\phi_{v}X\}.$$

Moreover, by substituting (9) into this and a straightforward calculation, we conclude that

$$\sum_{v=1}^{3} \{ \eta_v(\phi X) \xi_v - \eta(\phi_v X) \phi \xi_v + 2\eta(X) \eta(\xi_v) \xi_v - 2\eta_v(X) \eta_v(\xi) \xi \} = 0.$$

Now since $\xi \in \mathfrak{D}^{\perp}$, we find $\eta_v(\xi) = 0$ for v = 2, 3. Hence the above equation yields

$$\sum_{v=1}^{3} \{ \eta_v(\phi X) \xi_v - \eta(\phi_v X) \phi \xi_v \} = 0.$$

Moreover, we get $\eta(\phi_v X) = 0$ since ξ_v is orthogonal to $\phi \xi_v$ for all v, thus $\eta_2(X) = \eta_3(X) = 0$ for any vector field X by (23), which is impossible. Therefore ξ can not belong to \mathfrak{D}^{\perp} and we complete the proof of statement (ii). \square

Next we apply Lemma 3.1 to prove Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3. Suppose that M is a Hopf real hypersurface of $G_2(\mathbb{C}^{m+2})$ admitting commuting *-Ricci tensor. According to Lemma 3.1, the Reeb vector field ξ belongs to \mathfrak{D} . By Theorem 1.2, M is the real hypersurface of type (B), i.e., it is locally congruent to an open part of a tube around a totally geodesic $\mathbb{Q}P^n$ in $G_2(\mathbb{C}^{m+2})$, where m=2n.

In the following we remaind to show that a hypersurface of type (B) in $G_2(\mathbb{C}^{m+2})$ admits actually commuting *-Ricci tensor. Notice that for a real hypersurface of type (B) Berndt and Suh [1] proved the following:

Proposition 3.2. Let M be a connected real hypersurface of $G_2(\mathbb{C}^{m+2})$. Suppose that $A\mathfrak{D} \subset \mathfrak{D}$, $A\xi = \alpha \xi$, and ξ is tangent to \mathfrak{D} . Then the quaternionic

dimension m of $G_2(\mathbb{C}^{m+2})$ is even, say m=2n, and M has five distinct constant principal curvatures

$$\alpha = -2\tan(2r), \quad \beta = 2\cot(2r), \quad \gamma = 0, \quad \delta = \cot(r), \quad \mu = -\tan(r)$$

with some $r \in (0, \frac{\pi}{4})$. The corresponding multiplicities are

$$m(\alpha) = 1$$
, $m(\beta) = 3 = m(\gamma)$, $m(\delta) = 4m - 4 = m(\mu)$,

and the corresponding eigenspaces are

$$T_{\alpha} = \mathbb{R}\xi, \quad T_{\beta} = \mathfrak{J}J\xi, \quad T_{\gamma} = \mathfrak{J}\xi, T_{\delta}, T_{\mu},$$

where

$$T_{\delta} \oplus T_{\mu} = (\mathbb{HC}\xi)^{\perp}, \quad \mathfrak{J}T_{\delta} = T_{\delta}, \quad \mathfrak{J}T_{\mu} = T_{\mu}, \quad JT_{\delta} = T_{\mu}.$$

Since $\xi \in \mathfrak{D}$, by (16) the condition $\phi S^* = S^* \phi$ is equivalent to

(25)
$$\phi[(A\phi)^2 - (\phi A)^2]X = 0.$$

Now by Proposition 3.2 we check the formula (25) as follows:

Case I. $X = \xi \in \mathfrak{D}$. It is obvious.

Case II. $X = \xi_1 \in T_\beta$, then $A\phi \xi_1 = 0$.

$$\phi[(A\phi)^2 - (\phi A)^2]\xi_1 = -\phi(\phi A)^2\xi_1 = \beta A\phi\xi_1 = 0.$$

It is easy to see that the formula (25) holds for ξ_2, ξ_3 .

Case III.
$$X = \phi \xi_1 \in T_{\gamma}, \gamma = 0$$
, i.e., $A\phi \xi_1 = 0$.

$$\phi[(A\phi)^2 - (\phi A)^2]\phi\xi_1 = \phi A\phi A(-\xi_1 + \eta(\xi_1)\xi) = -\beta\phi A\phi\xi_1 = 0.$$

Case IV.
$$X \in T_{\delta}$$
, $\delta = \cot r$. Then $AX = \delta X$, $A\phi X = \mu \phi X$. We compute

$$\phi[(A\phi)^2 - (\phi A)^2]X = \phi[\mu A\phi^2 X - \delta\phi A\phi X] = \phi[-\mu\delta X - \delta\mu\phi^2 X] = 0.$$

Case V. $X \in T_{\mu}, \mu = -\tan r$. Then $AX = \mu X$ and $A\phi X = \delta \phi X$. We also have

$$\phi[(A\phi)^2 - (\phi A)^2]X = \phi[\delta A\phi^2 X - \mu\phi A\phi X] = \phi[-\delta\mu X - \mu\delta\phi^2 X] = 0.$$

Therefore we see the formula (25) holds for all $X \in TM$ and the proof of Theorem 1.3 is completed. \Box

Proof of Corollary 1.4. Suppose that M is a *-Einstein Hopf hypersurface, i.e., $S^*X = aX$, a = const. for any vector field $X \in \xi^{\perp}$, where ξ^{\perp} denotes the orthogonal complement of ξ in TM. Since $\phi S^*X = S^*\phi X = a\phi X$, by virtue of Lemma 3.1, ξ tangents to \mathfrak{D} , then M is the real hypersurface of type (B) by Theorem 1.3, and the equation (15) can be simplified as

(26)

$$aX = -(4m+6)\phi^{2}X - (\phi A)^{2}X + 2\sum_{v=1}^{3} \left\{ \eta_{v}(\phi X)\phi \xi_{v} - \eta_{v}(X)\xi_{v} \right\}, \ \forall X \in \xi^{\perp}.$$

Let us consider $X \in T_{\delta}$ then $\phi X \in T_{\mu}$ by Proposition 3.2. In such a case we derive from the formula (26)

$$aX = -(4m+6+\delta\mu)\phi^2X = (4m+5)X$$
, i.e., $a = 4m+5$.

However, if let $X = \xi_v \in T_\beta$ in (26) then $A\phi \xi_v = 0$. We obtain

$$a\xi_v = (4m+4)\xi_v - \beta\phi A\phi \xi_v = (4m+4)\xi_v$$
, i.e., $a = 4m+4$.

It leads to a contradiction, thus we complete the proof of Corollary 1.4 in introduction. $\hfill\Box$

 $Proof\ of\ Theorem\ 1.5.$ In order to prove Theorem 1.5 we first give the following lemma.

Lemma 3.3. If the real hypersurface M admits a *-Ricci soliton, then $\phi S^* = S^* \phi$.

Proof. Since $\mathcal{L}_V g$ and g are symmetry, the *-Ricci soliton equation (2) implies the *-Ricci tensor is also symmetry, i.e., $Ric^*(X,Y) = Ric^*(Y,X)$ for any vector fields X, Y on M. It yields from (14)

$$4\sum_{v=1}^{3} \left\{ \eta_v(X)\xi - \eta(X)\xi_v \right\} \eta_v(\xi) = [(\phi A)^2 - (A\phi)^2]X$$

for all $X \in TM$. Thus we get the assertion from (16).

Proposition 3.4. If M is a real hypersurface in complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ admitting a *-Ricci soliton with potential vector field ξ , then M must be Hopf.

Proof. From the *-Ricci soliton equation (2) it follows

$$S^*\phi X = \lambda \phi X + \frac{1}{2}(A\phi - \phi A)\phi X$$

and

$$\phi S^* X = \lambda \phi X + \frac{1}{2} (\phi A \phi - \phi^2 A) X.$$

Thus we obtain from Lemma 3.3

(27)
$$\eta(AX)\xi + \eta(X)A\xi = 2\phi A\phi X + 2AX.$$

Taking
$$X = \xi$$
, we get $A\xi = \alpha \xi$, where $\alpha = g(A\xi, \xi)$.

We assume that M is a real hypersurface in $G_2(\mathbb{C}^{m+2})$ admitting a *-Ricci soliton with potential vector field ξ . Then M is Hopf by Proposition 3.4. Moreover, by Lemma 3.3 and Lemma 3.1, the Reeb vector field $\xi \in \mathfrak{D}$.

On the other hand, by replacing X by ϕX in (27), we find $A\phi X = \phi AX$ holds for any vector field X. Thus for any vector fields X, Y, it follows from (6)

$$(\mathcal{L}_{\varepsilon}g)(X,Y) = g(\phi AX - A\phi X, Y) = 0,$$

which shows the Reeb flow is isometric, namely ξ is Killing. According to the main theorem in [2] we complete the proof of Theorem 1.5.

4. Real hypersurfaces with pseudo anti-commuting *-Ricci tensor

In this section we consider the real hypersurface M admitting pseudo anticommuting *-Ricci tensor, i.e. the *-Ricci operator S^* satisfies

(28)
$$S^*\phi X + \phi S^* X = 2k\phi X, \quad k = const.$$

for every vector field X on M. From this condition we have $\phi S^*\xi=0$, which further shows $S^*\xi=0$ since $\eta(S^*\xi)=0$ followed from (17). Moreover, using (17) again we also get Eq. (20), thus as the proof of Lemma 3.1 we obtain the following lemma.

Lemma 4.1. Let M be a Hopf real hypersurface of $G_2(\mathbb{C}^{m+1})$ admitting pseudo anti-commuting *-Ricci tensor. Then the principle curvature α is constant and ξ either belongs to \mathfrak{D} or \mathfrak{D}^{\perp} .

Proof of Theorem 1.6. We first show that the Reeb vector field ξ must belong to \mathfrak{D}^{\perp} . Making use of (15), the formula (28) becomes

(29)
$$0 = 2(4m+6-k)\phi X - (\phi A)^{2}\phi X - \phi(\phi A)^{2}X - 4\sum_{v=1}^{3} \left\{ \eta_{v}(\phi X)\xi_{v} + \left[\eta_{v}(X) - \eta(\xi_{v})\eta(X)\right]\phi\xi_{v} - 2\eta_{v}(\phi X)\eta(\xi_{v})\xi + \eta(\xi_{v})\phi_{v}X \right\}.$$

When $\xi \in \mathfrak{D}$, we have

(30)
$$0 = 2(4m + 6 - k)\phi X - (\phi A)^{2}\phi X - \phi(\phi A)^{2}X$$
$$-4\sum_{v=1}^{3} \left\{ \eta_{v}(\phi X)\xi_{v} + \eta_{v}(X)\phi\xi_{v} \right\}.$$

Now by Proposition 3.2, when $X = \xi_1 \in \mathfrak{D}^{\perp}$, then $A\phi \xi_1 = 0$. It follows from (30)

$$2k\phi\xi_1 = 2(4m+6)\phi\xi_1 - 4\{\eta_2(\phi\xi_1)\xi_2 + \eta_3(\phi\xi_1)\xi_3\} - 4\phi\xi_1$$

= $(8m+8)\phi\xi_1$.

That means k=4m+4. However, when $X \in T_{\delta}, \delta = \cot r$, i.e., $AX = \delta X$, $A\phi X = \mu\phi X$. Using (30), we have

$$2k\phi X = 2(4m+6)\phi X + (\mu\delta + \delta\mu)\phi X = [2(4m+6) + 2\delta\mu]\phi X.$$

This shows $k = 4m + 6 + \delta \mu = 4m + 5$. From the difference of k we conclude that there does not exist pseudo anti-commuting *-Ricci tensor in the hypersurfaces of type (B). Therefore $\xi \in \mathfrak{D}^{\perp}$ by Lemma 4.1.

Since $\xi \in \mathfrak{D}^{\perp} = \operatorname{Span}\{\xi_1, \xi_2, \xi_3\}$, without loss general we may put $\xi = \xi_1$. Let us take the covariant derivative of equation (28) along vector X, namely

$$(31) \quad (\nabla_X S^*)\phi Y + S^*(\nabla_X \phi)Y + (\nabla_X \phi)S^*Y + \phi(\nabla_X S^*)Y = 2k(\nabla_X \phi)Y.$$

Since
$$(\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi$$
 and $S^*\xi = 0$, we have $S^*(\nabla_X \phi)Y$

$$= \eta(Y)S^*AX - g(AX, Y)S^*\xi$$

$$= \eta(Y) \Big\{ -(4m+6)\phi^2 AX - (\phi A)^2 AX + 2\sum_{v=1}^{3} [\eta_v(\phi AX)\phi \xi_v - \eta_v(AX)\xi_v + \eta(\xi_v)\eta_v(AX)\xi + \eta_v(\xi)\phi\phi_v AX] \Big\}.$$

By (15), we directly compute

$$\begin{split} &\phi(\nabla_X S^*)Y\\ &=-(4m+6)[\eta(Y)\phi^2AX]-\phi\nabla_X(\phi A)\phi AY-\phi(\phi A)\nabla_X(\phi A)Y\\ &+2\sum_{v=1}^3\Big\{[q_{v+2}(X)\eta_{v+1}(\phi Y)-q_{v+1}(X)\eta_{v+2}(\phi Y)\\ &+g(\phi_vAX,\phi Y)+\eta(Y)\eta_v(AX)-g(AX,Y)\eta(\xi_v)]\phi^2\xi_v\\ &+\eta_v(\phi Y)[q_{v+2}(X)(\eta_{v+1}(\xi)\xi-\xi_{v+1})-q_{v+1}(X)(\eta_{v+2}(\xi)\xi-\xi_{v+2})\\ &-\phi_vAX+\eta_v(\phi AX)\xi+\eta(\xi_v)\phi AX]\Big\}\\ &+2\sum_{v=1}^3\Big\{-[q_{v+2}(X)\eta_{v+1}(Y)-q_{v+1}(X)\eta_{v+2}(Y)+g(\phi_vAX,Y)]\phi\xi_v\\ &-\eta_v(Y)[q_{v+2}(X)\phi\xi_{v+1}-q_{v+1}(X)\phi\xi_{v+2}+\phi\phi_vAX]\Big\}\\ &+2\sum_{v=1}^3\Big\{\eta_v(Y)\phi^2AX+\phi\nabla_X(\phi\phi_v)Y\Big\}\eta(\xi_v)\\ &+2\sum_{v=1}^3\Big\{-\phi_vY+\eta(\phi_vY)\xi\Big\}[q_{v+2}(X)\eta_{v+1}(\xi)-q_{v+1}(X)\eta_{v+2}(\xi)+2\eta(\phi_vAX)]. \end{split}$$

Since $A\xi = \alpha \xi$, using the above two formulas with $\xi \in \mathfrak{D}^{\perp}$, it follows from (31) with $Y = \xi$

$$(32) 2k[AX - \alpha\eta(X)\xi] = S^*AX + \phi(\nabla_X S^*)\xi$$

$$= -2(4m+5)\phi^2AX - (\phi A)^2AX - A(\phi A)^2X$$

$$+4\sum_{v=1}^3 \eta_v(AX)\phi^2\xi_v - 4\sum_{v=1}^3 [q_{v+2}(X)\eta_{v+1}(\xi) - q_{v+1}(X)\eta_{v+2}(\xi)]\phi\xi_v$$

$$-2[q_3(X)\phi\xi_2 - q_2(X)\phi\xi_3] + 2\phi\nabla_X(\phi\phi_1)\xi - 4\sum_{v=1}^3 \eta(\phi_v AX)\phi\xi_v.$$

By (11) and (23), we compute

(33)
$$\phi \nabla_X (\phi \phi_1) \xi = q_3(X) \xi_3 + q_2(X) \xi_2 + \phi^2 A X$$

and

(34)
$$\sum_{v=1}^{3} \eta_v(AX)\phi^2 \xi_v = \sum_{v=1}^{3} \eta(\phi_v AX)\phi \xi_v.$$

Substituting (33) and (34) into (32), we obtain

(35)
$$2(4m+4-k)\phi^2 AX + A(\phi A)^2 X + (\phi A)^2 AX = 0.$$

Now making use of (19), we compute

(36)
$$(\phi A)^{2}AX = \frac{1}{2}\alpha(\phi A\phi AX - A^{2}X + \alpha^{2}\eta(X)\xi) + \phi^{2}AX$$

$$+ \sum_{v=1}^{3} \{\eta_{v}(AX)\phi^{2}\xi_{v} + \eta(\phi_{v}AX)\phi\xi_{v}\} + \phi\phi_{1}AX$$

$$= \frac{1}{2}\alpha(\phi A\phi AX - A^{2}X + \alpha^{2}\eta(X)\xi) + \phi^{2}AX$$

$$- 2\{\eta_{2}(AX)\xi_{2} + \eta_{3}(AX)\xi_{3}\} + \phi\phi_{1}AX$$

and

(37)
$$A(\phi A)^{2}X = \frac{1}{2}\alpha(A\phi A\phi X + A\phi^{2}AX) + A\phi^{2}X$$
$$+ \sum_{v=1}^{3} \{\eta_{v}(X)A\phi^{2}\xi_{v} + \eta(\phi_{v}X)A\phi\xi_{v}\} + A\phi\phi_{1}X$$
$$= \frac{1}{2}\alpha(A\phi A\phi X - A^{2}X + \alpha^{2}\eta(X)\xi) + \phi^{2}AX$$
$$- 2\{\eta_{2}(X)A\xi_{2} + \eta_{3}(X)A\xi_{3}\} + A\phi\phi_{1}X.$$

By substituting (36) and (37) into (35), we get

(38)
$$(8m + 11 - 2k)\phi^2 AX + \frac{1}{2}\alpha(\phi A\phi AX + A\phi A\phi X)$$
$$+ \alpha(-A^2X + \alpha^2\eta(X)\xi) - 2\{\eta_2(X)A\xi_2 + \eta_3(X)A\xi_3\} + A\phi\phi_1 X = 0.$$

Using (19) again, we compute

 $\phi A\phi AX + A\phi A\phi X = \alpha (A\phi^2X + \phi A\phi X) + 2\phi^2X - 4(\eta_2(X)\xi_2 + \eta_3(X)\xi_3) + 2\phi\phi_1X,$ then the relation (38) becomes

(39)
$$(8m + 11 - 2k + \frac{1}{2}\alpha^2)\phi^2 AX + \frac{1}{2}\alpha^2\phi A\phi X + \alpha\phi^2 X + \alpha\phi\phi_1 X$$
$$-2\alpha(\eta_2(X)\xi_2 + \eta_3(X)\xi_3) + \alpha(-A^2X + \alpha^2\eta(X)\xi)$$
$$-2\{\eta_2(X)A\xi_2 + \eta_3(X)A\xi_3\} + A\phi\phi_1 X = 0.$$

Now putting $X = \xi_2$ in (39) and using (23), we have

$$(40) \qquad (8m+12-2k+\frac{1}{2}\alpha^2)A\xi_2 + \frac{1}{2}\alpha^2\phi A\xi_3 + 2\alpha\xi_2 + \alpha A^2\xi_2 = 0.$$

Moreover, taking inner product of the above formula with $X \in \mathfrak{D}$, we get

(41)
$$(8m + 12 - 2k + \frac{1}{2}\alpha^2)\eta_2(AX)$$
$$-\frac{1}{2}\alpha^2\eta_3(A\phi X) + \alpha\eta_2(A^2 X) = 0 \quad \text{for all } X \in \mathfrak{D}.$$

In the following we divide into two cases.

Case I. $\alpha = 0$. Then the relation (40) implies $(4m+6-k)A\xi_2 = 0$. Similarly, taking $X = \xi_3$ in (39) and using (23), we get

$$(4m + 6 - k)A\xi_3 = 0.$$

We claim k=4m+6. Otherwise, if $k \neq 4m+6$, $A\xi_2=A\xi_3=0$. In view of the relation $2\beta_2\beta_3-\alpha(\beta_2+\beta_3)-4=0$, where $A\xi_\mu=\beta_\mu\xi_\mu$, $\mu=2,3$ (see [1, Lemma 9]), we derive a contradiction.

Case II. $\alpha \neq 0$. Since $\xi = \xi_1 \in \mathfrak{D}^{\perp}$, it yields from (29)

(42)
$$0 = 2(4m + 6 - k)\phi X - (\phi A)^{2}\phi X - \phi(\phi A)^{2}X$$
$$-4\sum_{v=1}^{3} \left\{ \eta_{v}(\phi X)\xi_{v} + \eta_{v}(X)\phi\xi_{v} \right\} - 4\phi_{1}X.$$

Making use of (23) and (19), the formula (42) becomes

(43)
$$2(4m+7-k)\phi X + \alpha(A\phi X + \phi AX) - 4(\eta_3(X)\xi_2 - \eta_2(X)\xi_3) - 2\phi_1 X = 0 \text{ for all } X \in TM.$$

For every $X \in \mathfrak{D}$, we take an inner product of the above formula with ξ_3 and get

$$\alpha(\eta_3(A\phi X) + \eta_3(\phi AX)) = 0,$$

which shows

$$\eta_3(A\phi X) = \eta_2(AX).$$

Hence the relation (41) becomes

$$(8m + 12 - 2k)\eta_2(AX) + \alpha\eta_2(A^2X) = 0$$
 for all $X \in \mathfrak{D}$.

From this we have $(8m+12-2k)A\xi_2 + \alpha A^2\xi_2 \in \mathfrak{D}^{\perp}$. Write $T := (8m+12-2k)A + \alpha A^2$. Thus $T\xi_2 \in \mathfrak{D}^{\perp}$ and the equation (40) can be rewritten as

$$T\xi_2 + \frac{1}{2}\alpha^2(\phi A\xi_3 + A\xi_2) + 3\alpha\xi_2 = 0.$$

Taking an inner product of this with ξ_2 gives

(44)
$$g(T\xi_2, \xi_2) + \frac{1}{2}\alpha^2(g(A\xi_3, \xi_3) + g(A\xi_2, \xi_2)) + 3\alpha = 0.$$

On the other hand, putting $X = \xi_2$ in (43), we have

$$(45) (8m + 12 - 2k)\xi_3 + \alpha(A\xi_3 - \phi A\xi_2) = 0.$$

Taking an inner product of (45) with ξ_3 and substituting the result into (44), we have

$$g(T\xi_2, \xi_2) = \frac{1}{2}\alpha(8m + 12 - 2k) - 3\alpha.$$

That shows $T\xi_2 = \mu \xi_2$, where $\mu = \frac{1}{2}\alpha(8m + 12 - 2k) - 3\alpha$.

Letting $X = \xi_3$ in (39) and $X = \xi_2$ in (43), respectively, we can also derive that $T\xi_3 = \mu\xi_3$ by the same method as before. Actually this shows that $g(T\mathfrak{D},\mathfrak{D}^\perp) = 0$ since $T\xi_1 = T\xi = [(8m+12-2k)\alpha+\alpha^3]\xi$. Moreover, because of the fact that AT = TA, there exists a basis X_1, X_2, X_3 of \mathfrak{D}^\perp with $AX_i = \lambda_i X_i$ and $TX_i = \lambda_i X_i$, i = 1, 2, 3, which satisfies

$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = SO(3) \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix},$$

where SO(3) denotes the special orthogonal group. Accordingly, we prove that $g(A\mathfrak{D}, \mathfrak{D}^{\perp}) = 0$. That means that the distribution \mathfrak{D}^{\perp} is invariant under the shape operator A.

Summarizing the above discussion, in view of Theorem 1.1 we prove the following result.

Proposition 4.2. Let M be a connected real hypersurface of $G_2(\mathbb{C}^{m+2})$ with pseudo anti-commuting *-Ricci tensor. Suppose $A\xi = \alpha \xi$, then one of following holds:

- (1) If $\alpha = 0$, k = 4m + 6;
- (2) If $\alpha \neq 0$, M is a real hypersurface of type (A) in $G_2(\mathbb{C}^{m+2})$.

Moreover, notice that for a real hypersurface of type (A) the follow conclusion was given by Berndt and Suh [1].

Proposition 4.3. Let M be a connected real hypersurface of $G_2(\mathbb{C}^{m+2})$. Suppose that $A\mathfrak{D} \subset \mathfrak{D}$, $A\xi = \alpha \xi$, and ξ is tangent to \mathfrak{D}^{\perp} . Let $J_1 \in \mathfrak{J}$ be the almost Hermitian structure such that $JN = J_1N$. Then M has three (if $r = \frac{\pi}{2}$) or four (otherwise) distinct constant principal curvatures

$$\alpha = \sqrt{8}\cot(\sqrt{8}r), \quad \beta = \sqrt{2}\cot(\sqrt{2}r), \quad \lambda = -\sqrt{2}\tan(\sqrt{2}r), \quad \mu = 0$$

with some $r \in (0, \frac{\pi}{\sqrt{8}})$. The corresponding multiplicities are

$$m(\alpha) = 1$$
, $m(\beta) = 2$, $m(\lambda) = 2m - 2 = m(\mu)$,

and the corresponding eigenspaces are

$$T_{\alpha} = \mathbb{R}\xi = \mathbb{R}JN,$$

$$T_{\beta} = \mathbb{C}^{\perp}\xi = \mathbb{C}^{\perp}N,$$

$$T_{\lambda} = \{X|X \perp \mathbb{H}\xi, JX = J_{1}X\},$$

$$T_{\mu} = \{X|X \perp \mathbb{H}\xi, JX = -J_{1}X\}.$$

Since Berndt and Suh [2] proved that the Reeb flow on M is isometric if and only if M is an open part of a tube around some totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$. Thus the relation $\phi A = A\phi$ is satisfied on M. In view of (16), for $\xi \in \mathfrak{D}^{\perp}$ the condition $S^*\phi + \phi S^* = 2k\phi$ implies

(46)
$$(4m+6)\phi X + A^2\phi X - 2\sum_{v=1}^{3} \left\{ \eta_v(X)\phi \xi_v + \eta_v(\phi X)\xi_v \right\} - 2\phi_1 X = k\phi X.$$

Now we consider the following cases for the above formula.

Case I. When $X = \xi_2$ in (46), we get

$$(4m+6)\phi\xi_2 + \beta^2\phi\xi_2 - 2\{\phi\xi_2 - \xi_3\} - 2\phi_1\xi_2$$

= $[4m+4+\beta^2]\phi\xi_2 = k\phi\xi_2$,

i.e., $k = 4m + 4 + \beta^2$.

Case II. $X \in T_{\lambda}$, $\lambda = -\sqrt{2} \tan(\sqrt{2}r)$. We have $AX = \lambda X$ and $A\phi X = \lambda \phi X$ since $A\phi = \phi A$. From (46) we derive

$$(4m+6)\phi X + \lambda^2 \phi X - 2\phi X = k\phi X.$$

So in this case $k = 4m + 4 + \lambda^2$.

Case III. $X \in T_{\mu}, \mu = 0$, i.e., $A\phi X = 0$. Thus the relation (46) gives

$$(4m+6)\phi X + 2\phi X = k\phi X.$$

This case gives k = 4m + 8.

In view of Case I and Case II, we derive that $\lambda^2 = \beta^2$, i.e., $\tan^2(\sqrt{2}r) = \cot^2(\sqrt{2}r)$. However, together Case II and Case III, we get $\lambda^2 = 4$, that shows $\tan^2(\sqrt{2}r) = 2$. It comes to a contradiction. Therefore there can not exist pseudo anti-commuting *-Ricci tensor in the real hypersurfaces of type (A) in $G_2(\mathbb{C}^{m+2})$.

Therefore by virtue of Proposition 4.2 we complete the proof of Theorem \Box .6.

Acknowledgements. The author would like to thank the referee for the valuable comments on this paper. This research was supported by the Science Foundation of China University of Petroleum-Beijing(No.2462015YQ0604) and partially by the Personnel Training and Academic Development Fund (2462015QZDX02).

References

- [1] J. Berndt and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians, Monatsh. Math. 127 (1999), no. 1, 1–14.
- [2] ______, Real hypersurfaces with isometric Reeb flows in complex two-plane Grassmannians, Monatsh. Math. 137 (2002), no. 2, 87–98.
- [3] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci *-tensor, Tokyo
 J. Math. 25 (2002), no. 2, 473–483.

- [4] R. Hamilton, The Ricci flow on surfaces, mathematics and general relativity, (Santa Cruz, CA, 1986), Contemp. Math. 71, pp. 237–262, Amer. Math. Soc., Providence, RI., 1988.
- [5] I. Jeong and Y. J. Suh, Pseudo anti-commuting and Ricci soliton real hypersurfaces in complex two-plane Grassmannians, J. Geom. Phys. 86 (2014), 258–272.
- [6] G. Kaimakamis, K. Panagiotidou, *-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86 (2014), 408-413.
- [7] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), no. 1, 137–149.
- [8] _____, Some real hypersurfaces of a complex projective space, Saitama Math. J. 5 (1987), 1–5.
- [9] H. Lee and Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector, Bull. Korean Math. Soc. 47 (2010), no. 3, 551–561.
- [10] J. D. Pérez and Y. J. Suh, Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective space, Acta Math. Hungar. 91 (2001), no. 4, 343–356.
- [11] Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatsh. Math. 147 (2006), no. 4, 337–355.
- [12] ______, Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor, J. Geom. Phys. 60 (2010), no. 11, 1792–1805.
- [13] _____, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Roy. Soc. Edinburgh 142A (2012), 1309–1324.

XIAOMIN CHEN

College of Science

CHINA UNIVERSITY OF PETROLEUM-BEIJING

Beijing 102249, P. R. China

 $E ext{-}mail\ address: xmchen@cup.edu.cn}$