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REAL HYPERSURFACES WITH ∗-RICCI TENSORS IN

COMPLEX TWO-PLANE GRASSMANNIANS

Xiaomin Chen

Abstract. In this article, we consider a real hypersurface of complex
two-plane Grassmannians G2(Cm+2), m ≥ 3, admitting commuting ∗-
Ricci and pseudo anti-commuting ∗-Ricci tensor, respectively. As the
applications, we prove that there do not exist ∗-Einstein metrics on Hopf
hypersurfaces as well as ∗-Ricci solitons whose potential vector field is the
Reeb vector field on any real hypersurfaces.

1. Introduction

A complex two-plane Grassmannian G2(C
m+2) consists of all complex two

dimensional linear subspaces of Cm+2, which is the unique compact, irreducible,
Kähler, quaternionic Kähler manifold which is not a hyper Kähler manifold (see
Berndt and Suh [1, 2]). Let M be a real hypersurface of G2(C

m+2). The Kähler
structure J on G2(C

m+2) induces a structure vector field ξ called Reeb vector

field on M by ξ := −JN , where N is the local unit normal vector field of M in
G2(C

m+2). For the quaternionic Kähler structure J of G2(C
m+2), its canonical

basis {J1, J2, J3} induces the almost contact structure vector fields {ξ1, ξ2, ξ3}
onM by ξv := −JvN , v = 1, 2, 3. It is well known that for the real hypersurface
M there exist two natural geometrical conditions that [ξ] = Span{ξ} or D⊥ =
Span{ξ1, ξ2, ξ3} is invariant under the shape operator A of M . Denote the
distribution D by the orthogonal complement of the distribution D⊥. By using
such geometrical conditions, Berndt and Suh in [1] proved that the Reeb vector
field ξ either belongs to D or D⊥ and gave the following classification:

Theorem 1.1. Let M be a connected real hypersurface of G2(C
m+2), m ≥ 3.

If D⊥ and [ξ] are invariant under the shape operator, then

(A) M is an open part of a tube around a totally geodesic G2(C
m+1) in

G2(C
m+2) for ξ ∈ D⊥, or

(B) M is locally congruent to an open part of a tube around a totally geo-

desic QPn in G2(C
m+2) for ξ ∈ D, where m = 2n.
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If the Reeb vector field ξ is invariant by the shape operator, M is said to be a
Hopf hypersurface. Based on the classification of Theorem 1.1 Berndt and Suh
later gave a new characterization for the type (B) hypersurfaces of G2(C

m+2).

Theorem 1.2 ([9]). Let M be a connected orientable Hopf real hypersurface in

G2(C
m+2),m ≥ 3. Then the Reeb vector field ξ belongs to the distribution D

if and only if M is locally congruent to an open part of a tube around a totally

geodesic QPn in G2(C
m+2), where m = 2n.

As the real hypersurfaces in complex space forms Mm(c) or in quaternionic
space forms Qm(c) with commuting Ricci tensor were considered (cf. [7, 8,
10]), Suh [12] also studied the real hypersurfaces of G2(C

m+2) with commuting
Ricci tensor, i.e., Sφ = φS, where S and φ denote the Ricci operator and the
structure tensor of real hypersurfaces in G2(C

m+2), respectively, and showed
that the Hopf hypersurfaces in G2(C

m+2) are of type (A).
Recently Suh [5] introduced a new notion called as pseudo anti-commuting

Ricci tensor, i.e., it satisfies the following formula:

φS + Sφ = 2kφ,

where k = constant. In this case, it is proved that k = 4m+2+ α
2 (h−α), where

h denotes the mean curvature, orM is the hypersurface of type (B). Since there
are no Hopf Einstein real hypersurfaces in G2(C

m+2) (see Corollary in [12]),
Suh in [5] further considered a real hypersurface M in G2(C

m+2) with a Ricci
soliton. The notion of Ricci soliton, introduced firstly by Hamilton in [4], is
the generalization of Einstein metric, that is, a Riemannian metric g satisfying

1

2
LW g +Ric− λg = 0,

where λ is a constant and Ric is the Ricci tensor of M . The vector field W
is called potential vector field. Moreover, the Ricci soliton is called shrinking,
steady and expanding according as λ is positive, zero and negative respectively.
In [5], it is proved that if M is a Hopf hypersurface with potential vector
field being the Reeb vector field ξ and Ricci soliton constant λ = k, then
k = 4(m+ 1) > 0, namely the Ricci soliton is shrinking.

As the corresponding of Ricci tensor, Hamada in [3] defined the ∗-Ricci
tensor by

(1) Ric∗(X,Y ) =
1

2
trace{φ ◦R(X,φY )}, ∀X,Y ∈ TM,

and if the ∗-Ricci tensor is a constant multiple of g(X,Y ) for all X,Y orthog-
onal to ξ, then M is said to be a ∗-Einstein manifold. Furthermore, Hamada
gave a complete classification of ∗-Einstein Hopf hypersurfaces in non-flat com-
plex space forms. As the generalization of ∗-Einstein metric Kaimakamis and
Panagiotidou ([6]) introduced a so-called ∗-Ricci soliton, that is, a Riemannain
metric g on M satisfying

(2)
1

2
LW g +Ric∗ − λg = 0,
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where λ is constant and Ric∗ is the ∗-Ricci tensor of M . They considered the
case where W is the Reeb vector field ξ and obtained that a real hypersurface
in a complex projective space does not admit a ∗-Ricci soliton as well as that
a real hypersurface of complex hyperbolic space admitting a ∗-Ricci soltion is
locally congruent to a geodesic hypersphere.

Motivated by the present work, in this paper we first consider the hyper-
surfaces of G2(C

m+2) with commuting ∗-Ricci tensor, i.e., the ∗-Ricci oper-
ator S∗ satisfies φS∗ = S∗φ, where the ∗-Ricci operator S∗ is defined by
Ric∗(X,Y ) = g(S∗X,Y ) for any vector fields X,Y , and the following result is
proved.

Theorem 1.3. Let M be a Hopf hypersurface in G2(C
m+2),m ≥ 3, with com-

muting ∗-Ricci tensor. Then M is locally congruent to an open part of a tube

around a totally geodesic QPn in G2(C
m+2), where m = 2n.

In particular, making use of Theorem 1.3 we obtain:

Corollary 1.4. There do not exist any ∗-Einstein Hopf hypersurfaces in

G2(C
m+2), m ≥ 3.

For the ∗-Ricci soliton we further get a similar conclusion with the real
hypersurfaces in complex projective space CPn, n ≥ 2.

Theorem 1.5. There do not exist real hypersurfaces of G2(C
m+2), m ≥ 3,

admitting a ∗-Ricci soliton, with potential vector field being the Reeb vector

field ξ.

Finally we introduce the notion of pseudo anti-commuting ∗-Ricci tensor, i.e.
the relation φS∗ + S∗φ = 2kφ holds for constant k, and prove the following:

Theorem 1.6. Let M be a Hopf hypersurface in G2(C
m+2),m ≥ 3, with

pseudo anti-commuting ∗-Ricci tensor. Then α = 0 and k = 4m+ 6.

This article is organized as follows: In Section 2, some notations and for-
mulas for real hypersurfaces in complex two-plane Grassmannians G2(C

m+2)
are presented. In Section 3 we consider Hopf hypersurfaces with commuting
∗-Ricci tensor and give the proofs of Theorem 1.3, Corollary 1.4 and Theo-
rem 1.5. Finally, in Section 4 we study the real Hopf hypersurfaces admitting
pseudo anti-commuting ∗-Ricci tensor and prove Theorem 1.6.

2. Preliminaries

In this section we will summarize some basic notations and formulas about
the complex two-plane Grassmannian G2(C

m+2). For more detail please refer
to [1, 2, 11, 12, 13]. Let G2(C

m+2) be the complex Grassmannian manifold
of all complex 2-dimensional linear spaces of C

m+2. In fact G2(C
m+2) can

be identified with a homogeneous space SU(m+ 2)/(S(U(2)× U(m)). Up to
scaling there exists the unique S(U(2)×U(m))-invariant Riemannian metric g̃
on G2(C

m+2). The Grassmannian manifold G2(C
m+2) equipped such a metric
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becomes a symmetric space of rank two, which is both Kähler and quaternionic
Kähler. From now on we always assume m ≥ 3 because it is well known that
G2(C

3) is isometric to CP 2 and G2(C
4) is isometric to the real Grassmannian

manifold G+
2 (R

6) of oriented 2-dimensional linear subspaces of R6.
Denote J and J be the Kähler structure and quaternionic Kähler structure

on G2(C
m+2), respectively. A canonical local basis {J1, J2, J3} of J consists of

almost Hermitian structures Jv such that JvJv+1 = Jv+2 = −Jv+1Jv, where
the index is taken modulo three. As is well known the Kähler structure J and
quaternionic Kähler structure J satisfy the following relations:

JJv = JvJ, trace(JJv) = 0, v = 1, 2, 3.

We denote ˜∇ by the Livi-Civita connection with respect to g̃, and there exist
1-forms q1, q2, q3 such that

˜∇XJv = qv+2(X)Jv+1 − qv+1(X)Jv+2

for any vector field X on G2(C
m+2).

Let M be an immersed real hypersurface of G2(C
m+2) with induced metric

g. There exists a local defined unit normal vector field N on M and we write

ξ := −JN

by the structure vector field of M . An induced one-form η is defined by η(·) =
g̃(J ·, N), which is dual to ξ. For any vector field X on M the tangent part of
JX is denoted by φX = JX− η(X)N . Moreover, the following identities hold:

φ2 = −Id+ η ⊗ ξ, η ◦ φ = 0, φ ◦ ξ = 0, η(ξ) = 1,(3)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X),(4)

where X,Y ∈ X(M). By these formulas, we know that (φ, η, ξ, g) is an almost
contact metric structure on M . Similarly, for every almost Hermitian structure
Jv, it induces an almost contact structure (φv, ηv, ξv, g) on M by

ξv = −JvN, ηv(X) = g(ξv, X), φvX = JvX − ηv(X)N,

for any vector field X . Thus the relations (3) and (4) hold for (φv , ηv, ξv, g).
Denote ∇, A by the induced Riemannian connection and the shape operator

on M , respectively. Then the Gauss and Weigarten formulas are respectively
given by

(5) ˜∇XY = ∇XY + g(AX, Y )N, ˜∇XN = −AX,

where ˜∇ is the connection on G2(C
m+2) with respect to g̃. Also, we have

(6) (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φAX.

Moreover, the following equations are proved (see [5]):

φv+1ξv =− ξv+2, φvξv+1 = ξv+2,(7)

φξv =φvξ, η(ξv) = ηv(ξ),(8)

φφvX =φvφX + ηv(X)ξ − η(X)ξv,(9)
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∇Xξv =qv+2(X)ξv+1 − qv+1(X)ξv+2 + φvAX,(10)

∇X(φvξ) =qv+2(X)φv+1ξ − qv+1(X)φv+2ξ(11)

+ φvφAX − g(AX, ξ)ξv + η(ξv)AX.

The curvature tensor R and Codazzi equation of M are respectively given as
follows:

R(X,Y )Z(12)

= g(Y, Z)X − g(X,Z)Y + g(φY, Z)φX − g(φX,Z)φY + 2g(X,φY )φZ

+

3
∑

v=1

{

g(φvY, Z)φvX − g(φvX,Z)φvY − 2g(φvX,Y )φvZ
}

+

3
∑

v=1

{

g(φvφY, Z)φvφX − g(φvφX,Z)φvφY
}

−
3

∑

v=1

{η(Y )ηv(Z)φvφX − η(X)ηv(Z)φvφY }

−
3

∑

v=1

{

η(X)g(φvφY, Z)− η(Y )g(φvφX,Z)
}

ξv

+ g(AY,Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇Y A)X(13)

= η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3

∑

v=1

{ηv(X)φvY − ηv(Y )φvX − 2g(φvX,Y )ξv}

+
3

∑

v=1

{ηv(φX)φvφY − ηv(φY )φvφX}

+
3

∑

v=1

{η(X)ηv(φY )− η(Y )ηv(φX)}ξv

for any vector fields X,Y, Z on M .
Recall that the ∗-Ricci operator S∗ of M is defined by

g(S∗X,Y ) = Ric∗(X,Y ) =
1

2
trace{φ ◦R(X,φY )}

for all X,Y ∈ TM . Taking a local frame {ei} of M such that e1 = ξ and using
(4), we derive from (12) that

4m−1
∑

i=1

g(R(X,φY )ei, φei)
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=g(φ2Y,X)− g(φY, φX) + g(φX, φ3Y )− g(φ2Y, φ2X)− 2(4m− 2)g(φX, φY )

+

3
∑

v=1

{

− g(φvφY, φφvX)− g(φφvX,φvφY ) + 2g(φvX,φY )trace(φφv)
}

+

3
∑

v=1

{

g(φvφX, φφvφ
2Y )− g(φvφ

2Y, φφvφX)
}

+

3
∑

v=1

η(X)g(φvφ
2Y, φξv)

−
3

∑

v=1

η(X)g(ξv, φφvφ
2Y ) + g(AX,φAφY )− g(AφY, φAX)

=− 8mg(φX, φY ) + 2g(AX,φAφY )

− 2

3
∑

v=1

{

g(φvφY, φφvX)− 2g(φvX,φY )ηv(ξ)
}

− 2

3
∑

v=1

{

g(φvφX, φφvY )− g(φvφX, φφvξ)η(Y )
}

− 2

3
∑

v=1

{

g(φvY, φξv)− η(Y )g(φξv, φvξ)
}

η(X).

In view of (1), the ∗-Ricci tensor is given by

Ric∗(X,Y ) = 4mg(φX, φY )− g(AX,φAφY )(14)

+

3
∑

v=1

{

g(φvφY, φφvX)− 2g(φvX,φY )ηv(ξ)
}

+

3
∑

v=1

{

g(φvφX, φφvY )− g(φvφX, φφvξ)η(Y )
}

+

3
∑

v=1

{

g(φvY, φξv)− η(Y )g(φξv , φvξ)
}

η(X)

= (4m+ 6)g(φX, φY )− g(AX,φAφY )

+ 2
3

∑

v=1

{

− ηv(φX)ηv(φY )− ηv(X)ηv(Y )

+ η(Y )η(ξv)ηv(X)− g(φvX,φY )ηv(ξ)
}

.

Thus the ∗-Ricci operator S∗ is expressed as

S∗X =− (4m+ 6)φ2X − (φA)2X + 2

3
∑

v=1

{

ηv(φX)φξv − ηv(X)ξv(15)

+ η(ξv)ηv(X)ξ + ηv(ξ)φφvX
}



REAL HYPERSURFACES WITH ∗-RICCI TENSORS IN G2(C
m+2) 981

for all X ∈ TM . From which a straightforward computation gives:

Proposition 2.1. For a real hypersurface M of G2(C
m+2) the following for-

mulas hold:

(φS∗ − S∗φ)X = φ[(Aφ)2 − (φA)2]X − 4
3

∑

v=1

ηv(ξ)η(X)φξv ,(16)

S∗ξ = −(φA)2ξ + 4
3

∑

v=1

{

− ηv(ξ)ξv + η(ξv)ηv(ξ)ξ
}

.(17)

If M is a Hopf hypersurface in G2(C
m+2), i.e., Aξ = αξ, then taking inner

product of the Codazzi equation (13) with ξ implies

− 2g(φX, Y ) +

3
∑

v=1

{ηv(X)η(φvY )− ηv(Y )η(φvX)− 2g(φvX,Y )η(ξv)}(18)

+

3
∑

v=1

{ηv(φX)η(φvφY )− ηv(φY )η(φvφX)}

+

3
∑

v=1

{η(X)ηv(φY )− η(Y )ηv(φX)}η(ξv)

= − 2g(φX, Y ) + 2

3
∑

v=1

{ηv(X)η(φvY )− ηv(Y )η(φvX)− g(φvX,Y )η(ξv)}

= g((∇XA)Y − (∇Y A)X, ξ)

= X(α)η(Y )− Y (α)η(X) + αg(AφX + φAX, Y )− 2g(AφAX, Y )

for any vector fields X,Y . From (18), by a straightforward computation we
have:

Proposition 2.2 ([2]). If M is a Hopf hypersurface such that α is constant,

then

AφAX =
1

2
α(AφX + φAX) + φX(19)

+

3
∑

v=1

{ηv(X)φξv + η(φvX)ξv + η(ξv)φvX}.

3. Real hypersurfaces with commuting ∗-Ricci tensor

In this section we will study the real hypersurface M of complex two-plane
Grassmannian G2(C

m+1) admitting commuting ∗-Ricci tensor, namely for ev-
ery vector field X ∈ TM , the ∗-Ricci operator S∗ satisfies

φS∗X = S∗φX.

We first prove the following key lemma.
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Lemma 3.1. Let M be a Hopf real hypersurface of G2(C
m+1) with φS∗ = S∗φ.

Then the following statements hold:

(i) the principal curvature α is constant;
(ii) ξ belongs to D.

Proof. By assumption, we take an inner product of (16) with Y and put X = ξ,
then

3
∑

v=1

ηv(ξ)η(φvY ) = 0.

From this, by replacing Y by φY , we conclude

3
∑

v=1

η2v(ξ)η(Y ) =
3

∑

v=1

ηv(ξ)ηv(Y ).(20)

For any Y ∈ D it follows η(Y )
∑3

v=1 η
2
v(ξ) = 0. That means that either ξ ∈ D

or ξ ∈ D⊥.
Next let us put X = ξ in (18), thus we have

(21) Y (α) = ξ(α)η(Y )− 4
3

∑

v=1

η(ξv)η(φvY ).

Since we have proved that either ξ ∈ D or ξ ∈ D⊥, then the formula (21) yields

(22) grad(α) = ξ(α)ξ.

Differentiating (22) along vector field X gives

∇X(gradα) = ∇X(ξ(α))ξ + ξ(α)φAX.

Since d2α = 0, for any vector Y it follows

0 = g(∇X(gradα), Y )− g(X,∇Y (gradα))

= ∇X(ξ(α))η(Y )−∇Y (ξ(α))η(X) + ξ(α)[g(φAX, Y ) + g(X,φAY )].

Replacing X and Y by φX and φY in the above equation, respectively, we find

ξ(α)g((Aφ − φA)X,Y ) = 0

for any vector fields X,Y. That means that either ξ(α) = 0, which implies
gradα = 0 from (22), hence α is constant, or Aφ = φA. The latter equation
yields (Lξg)(X,Y ) = g(X,φAY ) + g(Y, φAX) = 0 for all vectors X,Y , namely
the Reeb flow is isometric. In terms of [2, Proposition 6], α is also constant,
thus the statement (i) holds.

If ξ ∈ D⊥ = Span{ξ1, ξ2, ξ3}, then in this case there exists an Hermitian
structure J1 ∈ J such that J1N = JN , that is ξ = ξ1. From (7) we have

(23) φξ2 = φ2ξ1 = −ξ3, φ1ξ2 = ξ3, φξ3 = φ3ξ1 = ξ2,
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(Notice that the last equal sign of the formula (5.1) in [5] is wrong, which is
easily followed from (7) or see Section 5 in [1].) and from (16) the relation
φS∗ = S∗φ yields

φ[(Aφ)2 − (φA)2]X = 4

3
∑

v=1

ηv(ξ)η(X)φξv = 0.

Since Aξ = αξ, the previous equation implies

(24) (Aφ)2X = (φA)2X.

Because the principal curvature α is constant, the formula (19) holds, and by
replacing X by φX in this, the relation (24) becomes

1

2
αAφ2X +

3
∑

v=1

{ηv(φX)φξv + η(φvφX)ξv + η(ξv)φvφX}

=
1

2
αφ2AX +

3
∑

v=1

{ηv(X)φ2ξv + η(φvX)φξv + η(ξv)φφvX}.

Moreover, by substituting (9) into this and a straightforward calculation, we
conclude that

3
∑

v=1

{ηv(φX)ξv − η(φvX)φξv + 2η(X)η(ξv)ξv − 2ηv(X)ηv(ξ)ξ} = 0.

Now since ξ ∈ D⊥, we find ηv(ξ) = 0 for v = 2, 3. Hence the above equation
yields

3
∑

v=1

{ηv(φX)ξv − η(φvX)φξv} = 0.

Moreover, we get η(φvX) = 0 since ξv is orthogonal to φξv for all v, thus
η2(X) = η3(X) = 0 for any vector field X by (23), which is impossible. There-
fore ξ can not belong to D⊥ and we complete the proof of statement (ii). �

Next we apply Lemma 3.1 to prove Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3. Suppose thatM is a Hopf real hypersurface ofG2(C
m+2)

admitting commuting ∗-Ricci tensor. According to Lemma 3.1, the Reeb vector
field ξ belongs to D. By Theorem 1.2, M is the real hypersurface of type (B),
i.e., it is locally congruent to an open part of a tube around a totally geodesic
QPn in G2(C

m+2), where m = 2n.
In the following we remaind to show that a hypersurface of type (B) in

G2(C
m+2) admits actually commuting ∗-Ricci tensor. Notice that for a real

hypersurface of type (B) Berndt and Suh [1] proved the following:

Proposition 3.2. Let M be a connected real hypersurface of G2(C
m+2). Sup-

pose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic
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dimension m of G2(C
m+2) is even, say m = 2n, and M has five distinct con-

stant principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, δ = cot(r), µ = − tan(r)

with some r ∈ (0, π4 ). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(δ) = 4m− 4 = m(µ),

and the corresponding eigenspaces are

Tα = Rξ, Tβ = JJξ, Tγ = Jξ, Tδ, Tµ,

where

Tδ ⊕ Tµ = (HCξ)⊥, JTδ = Tδ, JTµ = Tµ, JTδ = Tµ.

Since ξ ∈ D, by (16) the condition φS∗ = S∗φ is equivalent to

(25) φ[(Aφ)2 − (φA)2]X = 0.

Now by Proposition 3.2 we check the formula (25) as follows:
Case I. X = ξ ∈ D. It is obvious.
Case II. X = ξ1 ∈ Tβ , then Aφξ1 = 0.

φ[(Aφ)2 − (φA)2]ξ1 = −φ(φA)2ξ1 = βAφξ1 = 0.

It is easy to see that the formula (25) holds for ξ2, ξ3.
Case III. X = φξ1 ∈ Tγ , γ = 0, i.e., Aφξ1 = 0.

φ[(Aφ)2 − (φA)2]φξ1 = φAφA(−ξ1 + η(ξ1)ξ) = −βφAφξ1 = 0.

Case IV. X ∈ Tδ, δ = cot r. Then AX = δX, AφX = µφX . We compute

φ[(Aφ)2 − (φA)2]X = φ[µAφ2X − δφAφX ] = φ[−µδX − δµφ2X ] = 0.

Case V. X ∈ Tµ, µ = − tan r. Then AX = µX and AφX = δφX . We also
have

φ[(Aφ)2 − (φA)2]X = φ[δAφ2X − µφAφX ] = φ[−δµX − µδφ2X ] = 0.

Therefore we see the formula (25) holds for all X ∈ TM and the proof of
Theorem 1.3 is completed. �

Proof of Corollary 1.4. Suppose that M is a ∗-Einstein Hopf hypersurface, i.e.,
S∗X = aX, a = const. for any vector field X ∈ ξ⊥, where ξ⊥ denotes the
orthogonal complement of ξ in TM . Since φS∗X = S∗φX = aφX , by virtue
of Lemma 3.1, ξ tangents to D, then M is the real hypersurface of type (B) by
Theorem 1.3, and the equation (15) can be simplified as

aX = −(4m+ 6)φ2X − (φA)2X + 2

3
∑

v=1

{

ηv(φX)φξv − ηv(X)ξv

}

, ∀X ∈ ξ⊥.

(26)
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Let us consider X ∈ Tδ then φX ∈ Tµ by Proposition 3.2. In such a case we
derive from the formula (26)

aX =− (4m+ 6 + δµ)φ2X = (4m+ 5)X, i.e., a = 4m+ 5.

However, if let X = ξv ∈ Tβ in (26) then Aφξv = 0. We obtain

aξv =(4m+ 4)ξv − βφAφξv = (4m+ 4)ξv, i.e., a = 4m+ 4.

It leads to a contradiction, thus we complete the proof of Corollary 1.4 in
introduction. �

Proof of Theorem 1.5. In order to prove Theorem 1.5 we first give the following
lemma.

Lemma 3.3. If the real hypersurface M admits a ∗-Ricci soliton, then φS∗ =
S∗φ.

Proof. Since LV g and g are symmetry, the ∗-Ricci soliton equation (2) implies
the ∗-Ricci tensor is also symmetry, i.e., Ric∗(X,Y ) = Ric∗(Y,X) for any
vector fields X,Y on M . It yields from (14)

4

3
∑

v=1

{

ηv(X)ξ − η(X)ξv

}

ηv(ξ) = [(φA)2 − (Aφ)2]X

for all X ∈ TM. Thus we get the assertion from (16). �

Proposition 3.4. If M is a real hypersurface in complex two-plane Grassman-

nian G2(C
m+2) admitting a ∗-Ricci soliton with potential vector field ξ, then

M must be Hopf.

Proof. From the ∗-Ricci soliton equation (2) it follows

S∗φX = λφX +
1

2
(Aφ− φA)φX

and

φS∗X = λφX +
1

2
(φAφ − φ2A)X.

Thus we obtain from Lemma 3.3

(27) η(AX)ξ + η(X)Aξ = 2φAφX + 2AX.

Taking X = ξ, we get Aξ = αξ, where α = g(Aξ, ξ). �

We assume that M is a real hypersurface in G2(C
m+2) admitting a ∗-Ricci

soliton with potential vector field ξ. Then M is Hopf by Proposition 3.4.
Moreover, by Lemma 3.3 and Lemma 3.1, the Reeb vector field ξ ∈ D.

On the other hand, by replacing X by φX in (27), we find AφX = φAX
holds for any vector field X . Thus for any vector fields X,Y , it follows from
(6)

(Lξg)(X,Y ) = g(φAX −AφX, Y ) = 0,

which shows the Reeb flow is isometric, namely ξ is Killing. According to the
main theorem in [2] we complete the proof of Theorem 1.5. �
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4. Real hypersurfaces with pseudo anti-commuting ∗-Ricci tensor

In this section we consider the real hypersurface M admitting pseudo anti-
commuting ∗-Ricci tensor, i.e. the ∗-Ricci operator S∗ satisfies

(28) S∗φX + φS∗X = 2kφX, k = const.

for every vector field X on M . From this condition we have φS∗ξ = 0, which
further shows S∗ξ = 0 since η(S∗ξ) = 0 followed from (17). Moreover, using
(17) again we also get Eq. (20), thus as the proof of Lemma 3.1 we obtain the
following lemma.

Lemma 4.1. Let M be a Hopf real hypersurface of G2(C
m+1) admitting pseudo

anti-commuting ∗-Ricci tensor. Then the principle curvature α is constant and

ξ either belongs to D or D⊥.

Proof of Theorem 1.6. We first show that the Reeb vector field ξ must belong
to D⊥. Making use of (15), the formula (28) becomes

0 = 2(4m+ 6− k)φX − (φA)2φX − φ(φA)2X − 4

3
∑

v=1

{

ηv(φX)ξv(29)

+ [ηv(X)− η(ξv)η(X)]φξv − 2ηv(φX)η(ξv)ξ + η(ξv)φvX
}

.

When ξ ∈ D, we have

0 = 2(4m+ 6− k)φX − (φA)2φX − φ(φA)2X(30)

− 4

3
∑

v=1

{

ηv(φX)ξv + ηv(X)φξv

}

.

Now by Proposition 3.2, when X = ξ1 ∈ D⊥, then Aφξ1 = 0. It follows
from (30)

2kφξ1 = 2(4m+ 6)φξ1 − 4{η2(φξ1)ξ2 + η3(φξ1)ξ3} − 4φξ1

= (8m+ 8)φξ1.

That means k = 4m + 4. However, when X ∈ Tδ, δ = cot r, i.e., AX =
δX, AφX = µφX . Using (30), we have

2kφX = 2(4m+ 6)φX + (µδ + δµ)φX = [2(4m+ 6) + 2δµ]φX.

This shows k = 4m+6+δµ = 4m+5. From the difference of k we conclude that
there does not exist pseudo anti-commuting ∗-Ricci tensor in the hypersurfaces
of type (B). Therefore ξ ∈ D⊥ by Lemma 4.1.

Since ξ ∈ D⊥ = Span{ξ1, ξ2, ξ3}, without loss general we may put ξ = ξ1.
Let us take the covariant derivative of equation (28) along vector X , namely

(31) (∇XS∗)φY + S∗(∇Xφ)Y + (∇Xφ)S∗Y + φ(∇XS∗)Y = 2k(∇Xφ)Y.

Since (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ and S∗ξ = 0, we have

S∗(∇Xφ)Y
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= η(Y )S∗AX − g(AX, Y )S∗ξ

= η(Y )
{

− (4m+ 6)φ2AX − (φA)2AX

+ 2

3
∑

v=1

[ηv(φAX)φξv − ηv(AX)ξv + η(ξv)ηv(AX)ξ + ηv(ξ)φφvAX ]
}

.

By (15), we directly compute

φ(∇XS∗)Y

= − (4m+ 6)[η(Y )φ2AX ]− φ∇X(φA)φAY − φ(φA)∇X (φA)Y

+ 2

3
∑

v=1

{

[qv+2(X)ηv+1(φY )− qv+1(X)ηv+2(φY )

+ g(φvAX,φY ) + η(Y )ηv(AX)− g(AX, Y )η(ξv)]φ
2ξv

+ ηv(φY )[qv+2(X)(ηv+1(ξ)ξ − ξv+1)− qv+1(X)(ηv+2(ξ)ξ − ξv+2)

− φvAX + ηv(φAX)ξ + η(ξv)φAX ]
}

+ 2

3
∑

v=1

{

− [qv+2(X)ηv+1(Y )− qv+1(X)ηv+2(Y ) + g(φvAX, Y )]φξv

− ηv(Y )[qv+2(X)φξv+1 − qv+1(X)φξv+2 + φφvAX ]
}

+ 2

3
∑

v=1

{

ηv(Y )φ2AX + φ∇X(φφv)Y
}

η(ξv)

+ 2

3
∑

v=1

{

−φvY +η(φvY )ξ
}

[qv+2(X)ηv+1(ξ)−qv+1(X)ηv+2(ξ)+2η(φvAX)].

Since Aξ = αξ, using the above two formulas with ξ ∈ D⊥, it follows from
(31) with Y = ξ

2k[AX − αη(X)ξ] = S∗AX + φ(∇XS∗)ξ(32)

=− 2(4m+ 5)φ2AX − (φA)2AX −A(φA)2X

+ 4

3
∑

v=1

ηv(AX)φ2ξv − 4

3
∑

v=1

[qv+2(X)ηv+1(ξ)− qv+1(X)ηv+2(ξ)]φξv

− 2[q3(X)φξ2 − q2(X)φξ3] + 2φ∇X(φφ1)ξ − 4

3
∑

v=1

η(φvAX)φξv.

By (11) and (23), we compute

(33) φ∇X(φφ1)ξ = q3(X)ξ3 + q2(X)ξ2 + φ2AX
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and

(34)
3

∑

v=1

ηv(AX)φ2ξv =
3

∑

v=1

η(φvAX)φξv.

Substituting (33) and (34) into (32), we obtain

(35) 2(4m+ 4− k)φ2AX +A(φA)2X + (φA)2AX = 0.

Now making use of (19), we compute

(φA)2AX =
1

2
α(φAφAX −A2X + α2η(X)ξ) + φ2AX(36)

+

3
∑

v=1

{ηv(AX)φ2ξv + η(φvAX)φξv}+ φφ1AX

=
1

2
α(φAφAX −A2X + α2η(X)ξ) + φ2AX

− 2{η2(AX)ξ2 + η3(AX)ξ3}+ φφ1AX

and

A(φA)2X =
1

2
α(AφAφX +Aφ2AX) +Aφ2X(37)

+

3
∑

v=1

{ηv(X)Aφ2ξv + η(φvX)Aφξv}+Aφφ1X

=
1

2
α(AφAφX −A2X + α2η(X)ξ) + φ2AX

− 2{η2(X)Aξ2 + η3(X)Aξ3}+Aφφ1X.

By substituting (36) and (37) into (35), we get

(8m+ 11− 2k)φ2AX +
1

2
α(φAφAX +AφAφX)(38)

+ α(−A2X + α2η(X)ξ)− 2{η2(X)Aξ2 + η3(X)Aξ3}+Aφφ1X = 0.

Using (19) again, we compute

φAφAX+AφAφX = α(Aφ2X+φAφX)+2φ2X−4(η2(X)ξ2+η3(X)ξ3)+2φφ1X,

then the relation (38) becomes

(8m+ 11− 2k +
1

2
α2)φ2AX +

1

2
α2φAφX + αφ2X + αφφ1X(39)

− 2α(η2(X)ξ2 + η3(X)ξ3) + α(−A2X + α2η(X)ξ)

− 2{η2(X)Aξ2 + η3(X)Aξ3}+Aφφ1X = 0.

Now putting X = ξ2 in (39) and using (23), we have

(40) (8m+ 12− 2k +
1

2
α2)Aξ2 +

1

2
α2φAξ3 + 2αξ2 + αA2ξ2 = 0.
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Moreover, taking inner product of the above formula with X ∈ D, we get

(8m+ 12− 2k +
1

2
α2)η2(AX)(41)

− 1

2
α2η3(AφX) + αη2(A

2X) = 0 for all X ∈ D.

In the following we divide into two cases.
Case I. α = 0. Then the relation (40) implies (4m+6−k)Aξ2 = 0. Similarly,

taking X = ξ3 in (39) and using (23), we get

(4m+ 6− k)Aξ3 = 0.

We claim k = 4m + 6. Otherwise, if k 6= 4m + 6, Aξ2 = Aξ3 = 0. In view of
the relation 2β2β3 − α(β2 + β3) − 4 = 0, where Aξµ = βµξµ, µ = 2, 3 (see [1,
Lemma 9]), we derive a contradiction.

Case II. α 6= 0. Since ξ = ξ1 ∈ D⊥, it yields from (29)

0 = 2(4m+ 6− k)φX − (φA)2φX − φ(φA)2X(42)

− 4

3
∑

v=1

{

ηv(φX)ξv + ηv(X)φξv

}

− 4φ1X.

Making use of (23) and (19), the formula (42) becomes

2(4m+ 7− k)φX + α(AφX + φAX)(43)

− 4(η3(X)ξ2 − η2(X)ξ3)− 2φ1X = 0 for all X ∈ TM.

For every X ∈ D, we take an inner product of the above formula with ξ3 and
get

α(η3(AφX) + η3(φAX)) = 0,

which shows

η3(AφX) = η2(AX).

Hence the relation (41) becomes

(8m+ 12− 2k)η2(AX) + αη2(A
2X) = 0 for all X ∈ D.

From this we have (8m+ 12− 2k)Aξ2 + αA2ξ2 ∈ D⊥. Write T := (8m+ 12−
2k)A+ αA2. Thus Tξ2 ∈ D⊥ and the equation (40) can be rewritten as

Tξ2 +
1

2
α2(φAξ3 +Aξ2) + 3αξ2 = 0.

Taking an inner product of this with ξ2 gives

(44) g(Tξ2, ξ2) +
1

2
α2(g(Aξ3, ξ3) + g(Aξ2, ξ2)) + 3α = 0.

On the other hand, putting X = ξ2 in (43), we have

(45) (8m+ 12− 2k)ξ3 + α(Aξ3 − φAξ2) = 0.
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Taking an inner product of (45) with ξ3 and substituting the result into (44),
we have

g(Tξ2, ξ2) =
1

2
α(8m+ 12− 2k)− 3α.

That shows Tξ2 = µξ2, where µ = 1
2α(8m+ 12− 2k)− 3α.

Letting X = ξ3 in (39) and X = ξ2 in (43), respectively, we can also derive
that Tξ3 = µξ3 by the same method as before. Actually this shows that
g(TD,D⊥) = 0 since Tξ1 = Tξ = [(8m+12−2k)α+α3]ξ. Moreover, because of
the fact that AT = TA, there exists a basis X1, X2, X3 of D

⊥ with AXi = λiXi

and TXi = λiXi, i = 1, 2, 3, which satisfies




X1

X2

X3



 = SO(3)





ξ1
ξ2
ξ3



 ,

where SO(3) denotes the special orthogonal group. Accordingly, we prove that
g(AD,D⊥) = 0. That means that the distribution D⊥ is invariant under the
shape operator A.

Summarizing the above discussion, in view of Theorem 1.1 we prove the
following result.

Proposition 4.2. Let M be a connected real hypersurface of G2(C
m+2) with

pseudo anti-commuting ∗-Ricci tensor. Suppose Aξ = αξ, then one of following

holds:

(1) If α = 0, k = 4m+ 6;
(2) If α 6= 0, M is a real hypersurface of type (A) in G2(C

m+2).

Moreover, notice that for a real hypersurface of type (A) the follow conclu-
sion was given by Berndt and Suh [1].

Proposition 4.3. Let M be a connected real hypersurface of G2(C
m+2). Sup-

pose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost

Hermitian structure such that JN = J1N . Then M has three (if r = π
2 )or four

(otherwise) distinct constant principal curvatures

α =
√
8 cot(

√
8r), β =

√
2 cot(

√
2r), λ = −

√
2 tan(

√
2r), µ = 0

with some r ∈ (0, π√
8
). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m− 2 = m(µ),

and the corresponding eigenspaces are

Tα = Rξ = RJN,

Tβ = C
⊥ξ = C

⊥N,

Tλ = {X |X ⊥ Hξ, JX = J1X},
Tµ = {X |X ⊥ Hξ, JX = −J1X}.
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Since Berndt and Suh [2] proved that the Reeb flow on M is isometric if and
only if M is an open part of a tube around some totally geodesic G2(C

m+1) in
G2(C

m+2). Thus the relation φA = Aφ is satisfied on M . In view of (16), for
ξ ∈ D⊥ the condition S∗φ+ φS∗ = 2kφ implies

(4m+ 6)φX +A2φX − 2
3

∑

v=1

{

ηv(X)φξv + ηv(φX)ξv

}

− 2φ1X = kφX.(46)

Now we consider the following cases for the above formula.
Case I. When X = ξ2 in (46), we get

(4m+ 6)φξ2 + β2φξ2 − 2{φξ2 − ξ3} − 2φ1ξ2

= [4m+ 4 + β2]φξ2 = kφξ2,

i.e., k = 4m+ 4 + β2.
Case II.X ∈ Tλ, λ = −

√
2 tan(

√
2r). We have AX = λX and AφX = λφX

since Aφ = φA. From (46) we derive

(4m+ 6)φX + λ2φX − 2φX = kφX.

So in this case k = 4m+ 4 + λ2.
Case III. X ∈ Tµ, µ = 0, i.e., AφX = 0. Thus the relation (46) gives

(4m+ 6)φX + 2φX = kφX.

This case gives k = 4m+ 8.
In view of Case I and Case II, we derive that λ2 = β2, i.e., tan2(

√
2r) =

cot2(
√
2r). However, together Case II and Case III, we get λ2 = 4, that shows

tan2(
√
2r) = 2. It comes to a contradiction. Therefore there can not exist

pseudo anti-commuting ∗-Ricci tensor in the real hypersurfaces of type (A) in
G2(C

m+2).
Therefore by virtue of Proposition 4.2 we complete the proof of Theorem

1.6. �
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