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SEMI-INVARINAT SUBMANIFOLDS OF CODIMENSION 3

SATISFYING ∇φ∇ξξRξ = 0 IN A COMPLEX SPACE FORM

U - Hang Ki

Abstract. Let M be a semi-invariant submanifold of codimension 3 with

almost contact metric structure (φ, ξ, η, g) in a complex space formMn+1(c),

c 6= 0. We denote by Rξ = R(·, ξ)ξ and A(i) be Jacobi operator with re-
spect to the structure vector field ξ and be the second fundamental form in

the direction of the unit normal C(i), respectively. Suppose that the third

fundamental form t satisfies dt(X,Y ) = 2θg(φX, Y ) for certain scalar θ
(6= 2c)and any vector fields X and Y and at the same time Rξ is φ∇ξξ-
parallel, then M is a Hopf hypersurface in Mn(c) provided that it satisfies

RξA
(1) = A(1)Rξ, RξA

(2) = A(2)Rξ and r̄ − 2(n − 1)c ≤ 0, where r̄
denotes the scalar curvature of M .

1. Introduction

Let M̃ be a real 2(n + 1)-dimensional Kaehlerian manifold with parallel al-
most complex structure J and a Riemannian metric tensor G. A submani-
fold M is called a CR submanifold of M̃ if it is endowed with a pair of mu-
tually orthogonal and complementary differentiable distribution (T, T⊥) such
that for any p ∈ M we have JTp = Tp, JT

⊥
p ⊂ T⊥p M , where T⊥p M denotes

the normal space of M at p ([1],[33]). In particular, M is said to be a semi-
invariant submanifold if dimT⊥ = 1, and the unit normal in JT⊥ is called a
distinguished normal to M ([5],[31]). In this case, M induces an almost contact
metric structure (φ, ξ, η, g). A typical example of a semi-invariant submanifolds
is a real hypersurface. And new examples of nontrivial semi-invariant submani-
fold in a complex projective space are contructed in [21] and [28]. Accordingly,
we may expect to generalize some results which are valid in a real hypersurface
to a semi-invariant submanifold. When the ambient manifold M̃ is a complex
space form Mn(c) with constant holomorphic sectional curvature 4c, a real hy-
persurface was investigated by many authors, ([2], [6], [12], [22], [23], [25], [29]
and [30] etc.). The structure vector ξ is said to be principal if Aξ = αξ, where
A is denote by the shape operators of real hypersurface and α = η(Aξ). A real
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hypersurface is said to a Hopf hypersurface if the structure vector ξ is principal.
One of them, Takagi ([29], [30]) classified all homogeneous real hypersurfaces
of a complex projective space as six model spaces which are said to be of type
A1, A2, B,C,D and E, and Cecil-Ryan([6]) and Kimura ([22]) prove that they
are realized as the tubes of constant radius over Kaehlerian submanifolds when
the structure vector field ξ is principal.

On the other hand, real hypersurfaces of a complex hyperbolic space have
been also studied by Berndt [2], Berndt and Tamura [3], Montiel and Romero
[21] and so on. Berndt [2] classified all Hopf hypersurfaces of a complex hyper-
bolic space and showed that they are realized as the tubes of constant radius
over certain submanifolds. Also such kinds of tubes are said to be real hyper-
surfaces of type A0, A1, A2 and type B.

Relate to the structure vector field ξ the Jacobi operator Rξ defined by
Rξ = R(·, ξ)ξ for the curvature tensor R on a real hypersurface in a complex
space form is said to be a sturcture Jacobi operator on the hypersurface. The
sturcture Jacobi operator has a fundamental role in contact geometry. Some
works have recentry studied several conditions on the structure Jacobi operator
Rξ and given some results on the characterization of real hypersurfaces in a
complex space form ([8], [9], [15] ∼ [18], etc.). Recently Ortega et al. [27]
have proved that there are no real hypersurface in a complex space form with
parallel structure Jacobi operator Rξ, that is, ∇XRξ = 0 for any vector field X.
In this situation it naturally leads us to be consider another condition weaker
than parallelness. In the proceding work we investigate real hypersurfaces in a
complex space form with the weaker condition ξ-parallelness, that is, ∇ξRξ = 0
([8], [9]) or ∇φ∇ξξRξ = 0 ([16], [17]).

For φ∇ξξ-parallelness, we introduce the following theorem without proof.

Theorem KK ([16]). Let M be a real hypersurface in a complex space form
Mn(c), c 6= 0. If it satisfies ∇φ∇ξξRξ = 0 and at the same time RξA = ARξ,
then M is a Hopf hypersurface in Mn(c), where A denote the shape operator of
M .

On the other hand, semi-invariant submanifolds of codimension 3 in a com-
plex space form Mn+1(c) have been studied in [13], [14], [19] ∼ [21] and so on
by using properties of induced almost contact metric structure and those of the
third fundamental form of submanifolds.

In the preceding work, Takagi, Song and the present author assert the fol-
lowing :
Theorem KST([21]). Let M be a real (2n−1)-dimensional semi-invariant sub-
manifold of codimension 3 in a complex projective space Pn+1C with constant
holomorphic sectional curvature 4c. If the structure vector ξ is an eigenvec-
tor for the shape operator in the direction of the distinguished normal and the
third fundamental form t satisfies dt = 2θω for a certain scalar θ(< 2c), where
ω(X,Y ) = g(φX, Y ) for any vector fields X and Y on M , then M is a Hopf
hypersurface in a complex projective space PnC.
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In continuting work [19], Lee and the present author proved that if a semi-
invariant submanifold M satisfying hypotheses of above theorem in a complex
hyperbolic space Hn+1C, then M is a Hopf hypersurface in HnC.

In this paper, we consider a semi-invariant submanifold M of codimension
3 in a complex space form Mn+1(c), c 6= 0 which satisfies RξA = ARξ and

RξA
(2) = A(2)Rξ, where A is the second fundamental tensor in the direction of

the distinguished normal and Rξ is the structure Jacobi operator defined in a
semi-invariant submanifold.

In the present paper, we also prove that if the structure Jacobi operator
Rξ is φ∇ξξ- parallel and the third fundamental form t satisfies dt(X,Y ) =
2θg(φX, Y ) for a scalar θ ( 6= 2c) and any vector fields X and Y on M , then
M is a Hopf hypersurface in Mn(c) provided that the scalar curvature r̄ of M
holds r̄ − 2(n− 1)c ≤ 0.

All manifolds in the present paper are assumed to be connected and of class
C∞ and the semi-invariant are supposed to be orientable.

2. Semi-invariant submanifolds

At first we review fundmental facts on a semi-invariant submanifold of a
complex space form.

Let M̃ be a real 2(n+1)-dimensional Kaehlerian manifold with parallel almost
complex structure J and a Riemannian metric tensor G. Let M be a real
(2n−1)-dimensional Riemannian manifold immersed isometrically in M̃ by the

immersion i : M → M̃ . In the sequel we identify i(M) with M itself. We denote

by g the Riemannian metric tensor on M from that of M̃ .
We denote by ∇̃ the operator of covariant differentiation with respect to the

metric tensor G on M̃ and by ∇ the one on M . Then the Gauss and Weingarten
formulas are given respectively by

∇̃XY = ∇XY +

3∑
i=1

g(A(i)X,Y )C(i), (2.1)

∇̃XC(i) = −A(i)X +

3∑
j=1

l
(i)
j C

(j) (2.2)

for any vector fields tangent to X and Y on M and any vector normal vector
C(i) to M , where A(i) is called a second fundamental forms with respect to the
normal vector C(i).

As is well-known, a submanifold M of a Kaehlerian manifold M̃ is said to be
a CR submanifold ([1], [31]) if it is endowed with a pair of mutually orthogonal
and complementary differentiable distribution (T, T⊥) such that for any point
p ∈M we have JTp = TpM , JT⊥p ⊂ T⊥p M , where T⊥p denote the normal space
of M at p. In particular, M is said to be a semi-invariant submanifold ([5], [29])
provided that dimT⊥ = 1 or to be a CR submanifold with CR dimension n−1
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([24]). In this case the unit normal vector field in JT⊥ is called a distinguished
normal to the semi-invariant submanifold and denote by C⊥ ([5], [29]).

From now on we consider that M is a real (2n-1)-dimensional semi-invariant

submanifold of codimension 3 in a Kaehlerain manifold M̃ of real dimension
2(n+1). Then we can choose a local orthonomal frame field {e1, · · · , en−1, Je1, · · · ,
Jen−1, e0 = ξ, Jξ = C,D = JE,E} on the tangent space TpM̃ of M̃ for any
point P ∈ M such that e1, · · · , en−1, Je1, · · · , Jen−1, ξ ∈ Tp and C, D and
E ∈ T⊥p . So, (2.1) can be written as

∇̃XY = ∇XY + g(AX,Y )C + g(KX,Y )D + g(LX, Y )E

for any vector fields X and Y on M , where we put A(1) = A, A(2) = K and

A(3) = L. If we put l2
(1) = l, l3

(1) = m and l(3)
2 = l, then equations of

Weingarten are also given by

∇̃XC = −AX + l(X)D +m(X)E,

∇̃XD = −KX − l(X)C + t(X)E,

∇̃XE = −LX −m(X)C − t(X)D

(2.3)

because C, D and E are mutually orthogonal.
Now, let φ be the restriction of J on M , then we have

JX = φX + η(X)C, η(X) = g(ξ,X), JC = −ξ (2.4)

for any vector field X on M . From this, we see, using Hermitian property of J ,
that the aggregate (φ, ξ, η, g) is an almost contact metric structure on M , that
is, we have (cf. [32])

φ2X = −X + η(X)ξ, η(ξ) = 1, g(ξ,X) = η(X),

φξ = 0, g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X and Y on M .
In the sequel, we denote the normal components of ∇XC by ∇⊥C. The

distinguished normal C is said to be parallel in the normal bundle if we have
∇⊥C = 0.

From the Kaehler condition ∇̃J = 0 and using the Gauss and Weingarten
formulas, we obtain from (2.4)

∇Xξ = φAX, (2.5)

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, (2.6)
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KX = φLX −m(X)ξ, KφX = LX − η(X)Lξ (2.7)

LX = −φKX + l(X)ξ, LφX = −KX + η(X)Kξ (2.8)

for any vector fields X and Y on M . From the last two relationships (2.7) and
(2.8), we have

g(Kξ,X) = −m(X), (2.9)

g(Lξ,X) = l(X). (2.10)

which implies g(Kξ,Kξ) = −m(Kξ), g(Lξ, Lξ) = l(Lξ). In the following we
denote ‖Kξ‖ = ‖m‖ and ‖Lξ‖ = ‖l‖ for simplicty, where ‖F‖2 = g(F, F ) for
any tensor filed F on M .

Using the frame field {e0 = ξ, e1, · · · , en−1, φe1, · · · , φen−1} on M , it follows
from (2.7) ∼ (2.10) that

TrK = η(Kξ) = −m(ξ), TrL = η(Lξ) = l(ξ). (2.11)

Now we retake D and E, there is no loss of generality such that we may
assume TrL = 0 (cf. [18]). So we have

l(ξ) = 0. (2.12)

Notation. To write our formulas in a convention form, in the sequel we denote
by α = η(Aξ), β = η(A2ξ), γ = η(A3ξ), h = TrA, k = TrK, h(2) = Tr(

tAA) and
for a function f we denote by ∇f the gradient vector field of f .

From (2.11) we have

m(ξ) = −k. (2.13)

Using (2.7) and (2.8) we have

m(X)η(Y )−m(Y )η(X) = η(Y )l(φX)− η(X)l(φY ).

If we put Y = ξ in this, and take account of (2.13), then we find

l(φX) = m(X) + kη(X), (2.14)

which tells us, using (2.12), that

m(φX) = −l(X). (2.15)

Taking the inner product with LY to (2.7) and using (2.10),we get
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g(KLX,Y ) + g(LKX,Y ) = −{l(X)m(Y ) + l(Y )m(X)}. (2.16)

If we take the inner product with KY to (2.7) and make use of (2.9), we
obtain

g(K2X,Y ) = g(φLX,KY ) +m(X)m(Y ).

Similary, taking the inner product with LY to (2.8) and using (2.10), we also
find

g(L2X,Y ) = g(φLX,KY ) + l(X)l(Y ).

Combining above equations, it follows that

g(L2X,Y )− g(K2X,Y ) = l(X)l(Y )−m(X)m(Y ). (2.17)

In the rest of this paper we shall suppose that M̃ is a Kaehlerian manifold
of contant holomorphic sectional curvature 4c, which is called a complex space
form and denote by Mn+1(c), that is,

R̃(X̃, Ỹ )Z̃ = c{G(Ỹ , Z̃)X̃ −G(X̃, Z̃)Ỹ

+G(JỸ , Z̃)JX̃ −G(JX̃, Z̃)JỸ − 2G(JX̃, Ỹ )JZ̃}

for any vector X̃, Ỹ , Z̃ on Mn+1(c), where R̃ is the curvature tensor of Mn+1(c).
Then equations of Gauss and Coddzzi are given by

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

− 2g(φX, Y )φZ}+ g(AY,Z)AX − g(AX,Z)AY

+ g(KY,Z)KX − g(KX,Z)KY + g(LY,Z)LX − g(LX,Z)LY,

(2.18)

(∇XA)Y − (∇YA)X − l(X)KY + l(Y )KX −m(X)LY

+m(Y )LX = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ},
(2.19)

(∇XK)Y − (∇YK)X = −l(X)AY + l(Y )AX + t(X)LY − t(Y )LX, (2.20)

(∇XL)(Y )−(∇Y L)(X) = −m(X)AY +m(Y )AX−t(X)KY +t(Y )KX, (2.21)

where R is the Riemannian curvature tensor of M , and those of the Ricci tensor
by

(∇X l)(Y )− (∇Y l)(X) + g((KA−AK)X,Y )

+m(X)t(Y )−m(Y )t(X) = 0,
(2.22)
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(∇Xm)(Y )−(∇Ym)(X)+g((LA−AL)X,Y )+t(X)l(Y )−t(Y )l(X) = 0, (2.23)

(∇Xt)Y − (∇Y t)X + g((LK −KL)X,Y )

= l(Y )m(X)− l(X)m(Y ) + 2cg(φX, Y ).
(2.24)

Now, we put ∇ξξ = U in the sequel. Then U is orthogonal to ξ because of
(2.5). We put

Aξ = αξ + µW, (2.25)

where W is a unit vector field orthogonal to ξ. Then we have

U = µφW (2.26)

by virtue of (2.5). So, W is also orthogonal to U . Further, we have

µ2 = β − α2. (2.27)

From (2.25) and (2.26) we have

φU = −Aξ + αξ. (2.28)

If we take account of (2.5), (2.25) and the last equation, then we find

g(∇Xξ, U) = µg(AW,X). (2.29)

Since W is orthogonal to ξ, we see, using (2.5) and (2.26), that

µg(∇XW, ξ) = g(AU,X). (2.30)

Differentiating (2.28) covariantly along M and using (2.5) and (2.6), we find

(∇XA)ξ = −φ∇XU + g(AU +∇α,X)ξ −AφAX + αφAX. (2.31)

Taking the inner product with ξ to this and using (2.9), (2.10), (2.12), (2.19)
and (2.28), we find

(∇ξA)ξ = 2AU +∇α− 2kLξ. (2.32)

Applying (2.31) by φ and making use of (2.29), we obtain

φ(∇XA)ξ = ∇XU + µg(AW,X)ξ − φAφAX − αAX + αg(Aξ,X)ξ, (2.33)
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which enables us to obtain

∇UU = φ(∇UA)ξ + φAφAU + αAU. (2.34)

Finally, we introduce the structure Jacobi operator Rξ with respect to the
structure vector field ξ which is defined by RξX = R(X, ξ)ξ for any vector field
X, Then we have from (2.18)

RξX = c(X − η(X)ξ) + αAX − η(AX)Aξ + η(Kξ)KX − η(KX)Kξ

+ η(Lξ)LX − η(LX)Lξ.

Since l and m are dual 1-forms of Lξ and −Kξ respectively because of (2.9)
and (2.10), the last equation can be written as

RξX = c(X−η(X)ξ)+αAX−η(AX)Aξ+kKX+m(X)Kξ− l(X)Lξ, (2.35)

where we have used (2.9)∼(2.13).

3. The third fundamental forms of semi-invariant submannfolds

In this section we will suppose that M is a semi-invariant submanifold of
codimension 3 in a complex space form Mn+1(c), c 6= 0 and that the third
fundamental form t satisfies

dt = 2θω, ω(X,Y ) = g(φX, Y ) (3.1)

for any vector fields X and Y on M and a certain scalar θ, where d denotes the
exterior differential operator. Then (2.24) reformed as

g((LK −KL)X,Y ) + l(X)m(Y )− l(Y )m(X) = −2(θ − c)g(φX, Y ),

or, using (2.16)

g(LKX,Y ) + l(X)m(Y ) = −(θ − c)g(φX, Y ), (3.2)

which together with (2.9)∼(2.12) gives

l(KX) = kl(X), m(LX) = 0.

for any vector X on M , that is

KLξ = kLξ, LKξ = 0. (3.3)

Further, putting X = Lξ in (3.2), and using (2.10) and the first equation of
the last relationship, we find

kl(LY ) + ‖Lξ‖2m(Y ) = (θ − c)l(φY ),

which together with (2.14) gives
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kl(LX) = ((θ − c)− ‖Lξ‖2)m(X) + k(θ − c)η(X). (3.4)

Differentiating (3.1) covariantly along M and using (2.6) and the first Banchi
identity, we find

(Xθ)ω(Y, Z) + (Y θ)ω(Z,X) + (Zθ)ω(X,Y ) = 0,

which implies (n− 2)Xθ = 0. Thus θ is constant if n > 2.
For the case where θ = c in (3.1) we have dt = 2cω. In this case, the normal

connection of M is said to be L-flat([24]).
By properties of the almost contact metric structure we have from (3.2) the

following :

Tr(
tKK)− ‖Kξ‖2 + ‖Lξ‖2 = 2(n− 1)(θ − c),

where we have used (2.7), (2.10) and (2.11), which together with (2.9) implies
that

‖K − kη ⊗ ξ‖2 + ‖Lξ‖2 = 2(n− 1)(θ − c). (3.5)

Thus, θ − c is nonnegative.
In the same way, we have (2.8), (2.12), (2.15) and (3.2)

−‖Lξ‖2 + ‖Kξ − kξ‖2 − Tr(tLL) = 2(n− 1)(θ − c).

Lemma 3.1. Let M be a semi-invariant submanifold with L-flat normal con-
nection in Mn+1(c), c 6= 0. If Aξ = αξ, then we have ∇⊥C = 0 and A(2) =
A(3) = 0.

Proof. Since θ − c = 0, we have L = 0 and KX = kη(X)ξ because of (3.4) and
(3.5). By virtue of (2.11), it follows that m(X) = −kη(X). We also have l = 0
because of (2.10). Thus, it suffices to show that k = 0. Using these facts, (2.22)
reformed as

k{η(X)Aξ − g(Aξ,X)ξ} = k(η(X)t− t(X)ξ),

which together with Aξ = αξ gives k(t−t(ξ)ξ) = 0. If we suppose that k 6= 0 on
M , then we have t = t(ξ)ξ on this open subset. Differentiating this covariantly
and using (2.5) and (3.1) with θ = c, we find

2cg(φX, Y ) = t(ξ)g((Aφ− φA)X,Y )

by virtue of Aξ = αξ, which implies

2c(n− 1) = t(ξ)(h− α).



50 U-H KI

On the other side, from (2.21) we have

k{η(X)(AY + t(Y )ξ)− η(Y )(AX + t(X)ξ)} = 0,

which implies k(h− α) = 0, a contradiction. Hence k = 0 on M . �

Transforming (3.2) by φ and using (2.7) and (2.15), we find

K2X + η(X)K2ξ + l(X)Lξ = (θ − c)(X − η(X)ξ),

which shows m(KX)η(Y ) −m(KY )η(X) = 0. Therefore, we have m(KX) =
−‖Kξ‖2η(X), that is

K2ξ = ‖Kξ‖2ξ. (3.6)

Thus, it follows that

K2X + l(X)Lξ − ‖Kξ‖2η(X)ξ = (θ − c)(X − η(X)ξ). (3.7)

In the same way we have from (3.2)

l(LX) = −km(X) + (‖Kξ‖2)η(X),

where we have used (2.8), (2.14) and (3.3).
Since we have (2.15) and the second equation of (3.3), we see from (3.2)

(θ − c− ‖Kξ‖2)Lξ = 0.

On the other hand, taking an inner product Lξ to (3.2) and using (3.3), we
obtain

kl(LX) = (θ − c− ‖Lξ‖2)m(X) + k(θ − c)η(X)

because of (2.14) and (3.3), which together with the last two equations implies
that

(θ − c− ‖Lξ‖2 − k2)(‖Kξ‖2 − k2) = 0.

We are now going to prove that Lξ = 0 on M .
Let Ω0 be a set of points such that ‖Lξ‖ 6= 0 on M and suppose that Ω0 be

nonvoid. Then we have

‖Kξ‖2 = θ − c, ‖Lξ‖2 + k2 = θ − c (3.8)

on Ω0. In fact, if not, then we have m(X) = −kη(X), which together with
(2.14) gives l(φX) = 0 and hence Lξ = 0 because of (2.12), a contradiction.
Thus, the second relationship of (3.8) is valid by virtue of (2.11). From now on,
we discuss our arguments on the open set Ω0 of M . Then (3.7) turns out to be
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K2X = (θ − c)X − l(X)Lξ. (3.9)

Differentiating this covariantly and using (2.20), (2.21) and other equations
already obtained, we find (see, (2.23) and (2.24) of [21])

(∇XK)Y = t(X)LY + l(Y )AX + g(AX,Y )Lξ, (3.10)

∇XLξ = −t(X)Kξ −AKX − kAX. (3.11)

If we differentiate (2.8) covariantly and using (2.5), (2.6), (2.9) and (2.14), we
find

(∇XL)Y = −t(X)KY +m(Y )AX − g(AX,Y )Kξ. (3.12)

Since TrL = 0 because of (2.11) and (2.12), taking the trace of this, and
using (2.9), we get

kt(X) + 2m(AX) = 0. (3.13)

Differentiating (2.9) covariantly and taking account of (2.5), (2.6) and (3.10),
we find

(∇Xm)Y = −t(X)l(Y )− g(AX,LY ). (3.14)

On the other hand, differentiating (2.11) covariantly and using (2.14) and
(3.14), we find ∇k = 2ALξ, that is, Y k = 2l(AY ), which implies

X(Y k) = 2l((∇XA)Y ) + 2{t(X)m(AY )− g(KAX,AY )

− kg(A2X,Y )}+ 2l(A∇XY ).

If we take the skew-symmetric part with respect to X and Y and making use
of (3.13), then we obtain

l((∇XA)Y − (∇YA)X) = 0,

which together with (2.12), (2,14) and (2.19) yields

l(Y )l(KX)− l(X)l(KY ) +m(Y )l(LX)−m(X)l(LY )

= c{η(X)m(Y )− η(Y )m(X)}.
(3.15)

By the way, putting Y = ξ in (3.2) and using (2.10) and (2.11), we have l(KX) =
kl(X). Thus, (3.15) can be written as

m(Y )l(LX)−m(X)l(LY ) + c(m(X)η(Y )−m(Y )η(X)) = 0. (3.16)

which together with (3.8) and the next equation of (3.7) gives
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(θ − 2c)(m(X)η(Y )−m(Y )η(X)) = 0.

From this and (2.11) we see that (θ − 2c)(m(X) + kη(X)) = 0 and hence
(θ − 2c)l(X) = 0 by virtue of (2.12) and (2.14), a contradiction if θ − 2c 6= 0.

Developed above, we have

Lemma 3.2. Let M be a semi-invariant submanifold of codimension 3 in
Mn+1(c), c 6= 0 satisfying dt = 2θω for a scalar θ( 6= 2c). Then we have l = 0
on M .

In the rest of this paper, we assume that M satisfies (3.1) with θ − 2c 6= 0.
Then we have l = 0 and hence

m = −kξ (3.17)

because of (2.14). Hence (2.9) and (2.10) reformed respectively as

Kξ = kξ, Lξ = 0. (3.18)

It is, using (3.17), clear that (2.7), (2.8) and (3.2) are reduced respectively
to

KX = φLX + kη(X)ξ, (3.19)

LX = −φKX, (3.20)

g(LKX,Y ) + (θ − c)g(φX, Y ) = 0. (3.21)

From the last two relationships, we obtain

LK +KL = 0, (3.22)

L2X = (θ − c)(X − η(X)ξ). (3.23)

Further, if we take account of (3.17) and the fact that l = 0, then the structure
equations (2.19)∼(2.23) reformed respectively as

(∇XA)Y − (∇YA)X = k{η(Y )LX − η(X)LY }
+ c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ},

(3.24)

(∇XK)Y − (∇YK)X = t(X)LY − t(Y )LX, (3.25)

(∇XL)Y − (∇Y L)X = k{η(X)AY − η(Y )AX} − t(X)KY + t(Y )KX, (3.26)
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g((KA−AK)X,Y ) = k{η(X)t(Y )− t(X)η(Y )}, (3.27)

g((LA−AL)X,Y ) = (Xk)η(Y )− η(X)(Y k) + kg((φA+Aφ)X,Y ). (3.28)

Putting X = ξ in (3.27) and using (3.18), we find

g(KAξ,X) = kg(Aξ,X) + k(t(X)− t(ξ)η(Y )). (3.29)

If we replace X by φX and make use of (2.26) and (3.20), then we get

g(KU,X) = k(t(φX)− u(X)), (3.30)

where u(X) = g(U,X) for any vector field X.
Replacing X by ξ in (3.28) and using (2.5), (3.18) and (3.20), we find

KU = (ξk)ξ −∇k + kU, (3.31)

which together with (3.30) gives

Xk = (ξk)η(X) + k(2u(X)− t(φX)). (3.32)

If we replace Y by φY in (3.28) and make use of (3.19) and the last equation,
then we find

g(φALX −KAX,Y ) = −k{(t(Y )− t(ξ)η(Y ))η(X)

+ 2η(X)(g(Aξ, Y )− αη(Y )) + 2g(Aξ,X)η(Y )− g(AX,Y ) + g(φAφX, Y )},

form which, take the skew-symmetric part with respect to X and Y ,

φALX = −LAφX. (3.33)

Sine θ is constant if n > 2, differentiating (3.23) covariantly, we find

L(∇XL)Y + (∇XL)LY = (c− θ){η(Y )φAX + g(φAX, Y )ξ}.

Using the quite same method as that used to (3.10) from (3.9), we can drive
from the last equation the following :

2L(∇XL)Y = (θ − c){2t(X)φY − η(Y )(Aφ+ φA)X

+ g((Aφ− φA)X,Y )ξ − η(X)(φA−Aφ)Y }
− k{η(Y )(LA+AL)X − g((AL+ LA)X,Y )ξ

− η(X)(AL− LA)Y },

(3.34)



54 U-H KI

where we have used (3.21) and (3.26), which together with (3.18), (3.28) and
(3.32) yields

(θ − c)(φA−Aφ)X + (k2 + θ − c)(η(X)U + u(X)ξ)

+ k{LA+AL− k(t(φX)ξ + η(X)t ◦ φ)} = 0.
(3.35)

In the previous paper [14] and [21], the following proposition was proved for
the case where c > 0.

Proposition 3.3. If M satisfies dt = 2θω for a scalar θ and µ = 0 in Mn+1(c),
c 6= 0, then we have k = 0 on M .

Proof outline. This proved for c > 0 (see, Proposition 3.5 of [18]). But, regard-
less of the sign of c this one is established. However, only ξk = 0 and ξα = 0
should be newly certified. We are now going to prove that ξk = 0.

Differentiating (3.17) covariantly and using (2.5), we find

∇Xm = −(Xk)ξ + kφAX,

from which, taking the skew-symmetric part and using (3.28),

LAX −ALX − k(φA+Aφ)X = (Xk)ξ − η(X)∇k.
If we put X = ξ in this and make use of (3.18), then we find

∇k = (ξk)ξ (3.36)

because Aξ = αξ was assumed. From the last two equations, it follows that

LA−AL = k(φA+Aφ). (3.37)

Differentiating (3.36) covariantly, and taking the skew-symmetric part ob-
tained, we obtain

(ξk)(φA+Aφ) = 0, (3.38)

where we have used (2.5).
Since we have Aξ = αξ because of (2.25), we can write (2.33) as

(∇XA)ξ = −AφAX + αφAX + (Xα)ξ,

which together with (3.18) and (3.24) gives

2AφAX + α(Aφ+ φA)X + 2cφX = η(X)∇α− (Xα)ξ. (3.39)

Putting X = ξ in this, we also find

∇α = (ξα)ξ. (3.40)

Using the quite same method as that used to (3.38) from (3.36), we can
derive from the last equation the following :
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(ξα)(φA+Aφ) = 0. (3.41)

Now, if we suppose that ξk 6= 0. Then we have

φA+Aφ = 0, LA = AL

on this open subset because of (3.37) and (3.38). We discuss our arguments on
such a place. By virtue of (3.40) and the last relationship, we can write (3.39)
as

A2φ+ cφ = 0.

If we apply this by φ. then we obtain

A2X + cX = (α2 + c)η(X)ξ, (3.42)

where we have used Aξ = αξ.
Since Aξ = αξ, that is U = 0 was assumed, (3.35) can be written as

(θ − c)AφX + kALX = 0,

which together with (2.7) yields

(θ − c)AX + kAKX = α(θ − c+ k2)η(X)ξ.

Combining this to (3.42), we find kKX + (θ− c)X = (θ− c+ k2)η(X)ξ, which
shows (n − 1)(θ − c) = 0. Thus we have θ − c = 0 if n > 2. This contradicts
Lemma 3.1. Thus ξk = 0 is proved on M .

By the same as above we can prove ξα = 0 by virtue of (3.40) and (3.41).
This completes the proof.

We set Ω = {p ∈ M : k(p) 6= 0} and suppose Ω is not empty. In the rest
of this paper, we discuss our arguments on the open subset Ω of M . So, by
Proposition 3.3 we see that µ 6= 0 on Ω.

4. Semi-invariant submanifolds satisfying RξA
(2) = A(2)Rξ and

RξA = ARξ

We will continue our arguments under the same hypotheses dt = 2θω for a
scalar θ(6= 2c) as those stated in section 3. Further suppose, throughout this
paper, that RξA

(2) = A(2)Rξ.
By virtue of (3.17) and (3.18) we can write (2.35) as

RξX = c(X − η(X)ξ) + αAX − η(AX)Aξ + kKX − k2η(X)ξ, (4.1)

which implies

RξKX = c(KX − kη(X)ξ) + αAKX − η(AKX)Aξ + kK2X + k3η(X)ξ,
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where we have used the first equation of (3.18), which together with (2.25),
(3.27) and (3.29) gives

(RξK −KRξ)X = kµ{t(X)W − w(X)t− t(ξ)(η(X)W − w(X)ξ)}, (4.2)

where g(W,X) = w(X) for any vector field X.
According to (4.2) and Proposition 3.3, we then have

Lemma 4.1. RξA
(2) = A(2)Rξ holds on Ω if and only if t ∈ f(ξ,W ), where

f(ξ,W ) is denoted by a linear subspace spanned by ξ and W .

Because of Lemma 4.1, we have

t(X) = t(ξ)η(X) + t(W )w(X) (4.3)

for any vector field X.
From (2.26) and (4.3) we obtain t(φX) = − 1

µ t(W )u(X), which together with

(3.30) yields

KU = τU, (4.4)

where τ is defined by µτ = −k(µ+ t(W )), or using (3.19),

LU = µτW. (4.5)

By virtue of (3.21) and the last two relationships, it follows that

τ2 = θ − c. (4.6)

τ is a nonnegative constant on Ω if n > 2.
In a direct consequence of (2.8), (3.20) and (4.4), we verify that

µLW = τU. (4.7)

Using (2.25) and (3.18), we can write (3.29) as

µKW = kµW + k(t− t(ξ)ξ),
which together with (4.2) and (4.3) gives

KW = −τW (4.8)

because of Proposition 3.3.
Now, by using (3.30) and (4.4) it is verified that

t(φX) = (1 +
τ

k
)u(X) (4.9)

on Ω, or using the property of the almost contact metric structure,

t(X) = t(ξ)η(X)− µ(1 +
τ

k
)w(X) (4.10)
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for any vector field X.
If we take account of (4.4), then (3.31) can be written as

Xk = (ξk)η(X) + (k − τ)u(X) (4.11)

for any vector field X.
On the other hand, if we use (2.28) and (3.24), then (2.31) implies that

(∇ξA)ξ = 2AU +∇α+ 2η(Lξ)− 2η(Kξ)Lξ,

which together with (3.18) implies that

(∇ξA)ξ = 2AU +∇α. (4.12)

Putting X = ξ in (2.31) and making use of (2.25) and (2.27), we get

φ(∇ξA)ξ = ∇ξU + βξ − αAξ + φAU,

which together with (4.12) yields

∇ξU = 3φAU + αAξ − βξ + φ∇α. (4.13)

In the following, we see, using (2.25) and (2.28), that φU = −µW . Differen-
tiating this covariantly and using (2.6), we find

g(AU,X)ξ − φ∇XU = (Xµ)W + µ∇XW. (4.14)

Putting X = ξ in this and using (4.13), we get

µ∇ξW = 3AU − αU +∇α− (ξα)ξ − (ξµ)W, (4.15)

which tells us that

Wα = ξµ. (4.16)

Now, if we take account of (4.9), then (3.35) turns out to be

τ2(Aφ− φA)X + τ(τ − k)(u(X)ξ + η(X)U) + k(AL+ LA)X = 0. (4.17)

On the other hand, we have from (4.1)

RξAX = cAX − (k2 + c)g(Aξ,X)ξ + αA2X − g(A2ξ,X)Aξ + kKAX.

Thus, the second assumption RξA = ARξ gives

g(A2ξ,X)g(Aξ, Y )− g(A2ξ, Y )g(Aξ,X) + (k2 + c){g(Aξ,X)η(Y )− g(Aξ, Y )η(X)}
= k2(t(Y )η(X)− t(X)η(Y )),

where we have used (3.27). Putting X = ξ in this, we find

−αA2ξ + (β − k2 − c)Aξ = k2t− {k2t(ξ) + α(k2 + c)}ξ. (4.18)
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Combining the last two equations, we obtain

g(A2ξ,X)(Aξ − αξ)− (g(Aξ,X)− αη(X))A2ξ = β(η(X)Aξ − g(Aξ,X)ξ).

If we put X = Aξ in this, and take account of (2.27), then we have

µ2A2ξ = (γ − βα)Aξ + (β2 − αγ)ξ,

which together with Proposition 3.3 implies that

A2ξ = ρAξ + (β − ρα)ξ,

where we have defined the function ρ by µ2ρ = γ−βα. Hence, (4.18) is reformed
as

(β − ρα− k2 − c)(Aξ − αξ) = k2(t− t(ξ)ξ),
which connected to (4.4) gives

kτ = c+ ρα− β. (4.19)

Accordingly, it follows that

A2ξ = ρAξ + (c− kτ)ξ. (4.20)

In the next step, we see from (2.25) and (4.20)

AW = µξ + (ρ− α)W (4.21)

since we have µ 6= 0 on Ω, where we have used (2.27). Differentiating this
covariantly along Ω, we find

(∇XA)W +A∇XW = (Xµ)ξ + µ∇Xξ +X(ρ− α)W + (ρ− α)∇XW. (4.22)

If we take the inner product W to this and using (2.30) and (4.21), we find

g((∇XA)W,W ) = −2g(AU,X) +Xρ−Xα (4.23)

since W is orthogonal to ξ. Taking the inner product with ξ to (4.22) and using
(2.30), we also find

µg((∇XA)W, ξ) = (ρ− 2α)(g(AU,X) + µ(Xµ)), (4.24)

or, using (3.24)

µ(∇ξA)W = (ρ− 2α)AU + µ∇µ− kµLW − cU. (4.25)

From this and (3.24) we verify that

µ(∇WA)ξ = (ρ− 2α)AU − 2cU + µ∇µ. (4.26)

Putting X = ξ in (4.23) and using (4.24), we get
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Wµ = ξρ− ξα. (4.27)

Replacing X by ξ in (4.22) and using (4.7) and (4.25), we find

(ρ− 2α)AU − kτU − cU + µ∇µ+ µ(A∇ξW − (ρ− α)∇ξW )

= µ(ξµ)ξ + µ2U + µ(ξρ− ξα)W,
(4.28)

which together with (4.15) and (4.16) implies that

3A2U − 2ρAU + (αρ− β − kτ − c)U +A∇α+
1

2
∇β − ρ∇α

= 2µ(Wα)ξ + (2α− ρ)(ξα)ξ + µ(ξρ)W.
(4.29)

Lemma 4.2. If A∇ξξ = λ∇ξξ, then ξλ = 0 and Wλ = 0 on Ω.

Proof. Differentiating AU = λU covariantly along Ω, we find

(∇XA)U +A∇XU = (Xλ)U + λ∇XU.
If we take the inner with a vector field Y , and take the skew-symmetric part
with respect to X and Y , then we obtain

µ(kτ + c)(η(X)w(Y )− η(Y )w(X)) + g(A∇XU, Y )− g(A∇Y U,X)

= (Xλ)u(Y )− (Y λ)u(X) + λ(g(∇XU, Y )− g(∇Y U,X)),

where we have used (2.25), (2.28), (3.24) and (4.5). Replacing X by U in this
and taking account of AU = λU , we get

A∇UU − λ∇UU = (Uλ)U − µ2∇λ. (4.30)

If we take the inner product with ξ and remember (4.21), then we have

µg(∇UU, ξ) + µ2(Wλ) + (ρ− α− λ)g(∇UU,W ) = 0. (4.31)

By the way, from (4.4) we get

(∇XK)U +K∇XU = τ∇XU, (4.32)

which implies that g((∇XK)U,U) = 0. Because of (3.21), (4.8) and the last
equation gives (∇UK)U = 0, which connected to (4.8) and (4.32) yields g(W,∇UU)
= 0. Thus, (4.31) reformed as µg(∇UU, ξ) + µ2(Wλ) = 0. However, the first
term of this vainshes identically by virtue of (2.29) and (4.21), which shows
µ(Wλ) = 0 and hence

Wλ = 0. (4.33)

In the same way, we verify, using (2.29) and (4.21), that
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ξλ = 0. (4.34)

This completes the proof. �

If we put X = µW in (4.17) and use (2.20), (3.18), (4.21) and Lemma 4.1,
then we get

(k + τ)AU + (k − τ)(ρ− α)U = 0 (4.35)

Because of (4.11) and Proposition 3.3, it is clear that k + τ 6= 0 on Ω.
Therefore, (4.35) implies that

AU = λU, (4.36)

where we have put (k + τ)λ = −(k − τ)(ρ− α), which implies

λ(k + τ) + (k − τ)(ρ− α) = 0. (4.37)

Finally, differentiating (2.25) covariantly and using (2.5), we find

(∇XA)ξ +AφAX = (Xα)ξ + αφAX + (Xµ)W + µ∇XW.
If we put X = µW in this and take account of (2.26), (4.21) and (4.25), then
we get

µ2∇WW − µ∇µ
= (2ρ− 3α)AU + (α2 − ρα− 2c)U − µ(Wα)ξ − µ(Wµ)W.

(4.38)

5. Semi-invariant submanifolds satisfying ∇φ∇ξξRξ = 0

We will continue our arguments under the same hypotheses as those stated
in section 4. That is, we consider a semi-invariant submanifold of codimension
3 in Mn+1(c), c 6= 0 which satisfies dt = 2θω, and at the same time RξA = ARξ
and RξA

(2) = A(2)Rξ.
Differentiating (4.1) covariantly, we find

g((∇XRξ)Y, Z) = −(k2 + c){η(Z)g(∇Xξ, Y ) + η(Y )g(∇Xξ, Z)}
+ (Xα)g(AY,Z) + αg((∇XA)Y,Z)− g(Aξ,Z){g((∇XA)ξ, Y )

− g(AφAY,X)} − g(Aξ, Y ){g((∇XA)ξ, Z)− g(AφAZ,X)}
+ (Xk)g(KY,Z) + kg((∇XK)Y,Z)− 2k(Xk)η(Y )η(Z).

If we put X = W in this and make use of (4.11), we find

(∇WRξ)Y =(Wα)AY − (k2 + c){g(φAW,Y )ξ + η(Y )φAW}
α(∇WA)Y − {g((∇WA)ξ, Y ) + g(AφAW,Y )}Aξ
+ k(∇WK)Y − {(∇WA)ξ +AφAW}η(AY ).
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From now on we assume that ∇φ∇ξξRξ = 0 holds on M , Then we have

α(∇WA)X + k(∇WK)X

= −(Wα)AX + (k2 + c){g(φAW,X)ξ + η(X)φAW}
+ g((∇WA)ξ,X) + g(AφAW,X)Aξ + {(∇WA)ξ +AφAW}η(AX)

(5.1)

for any vector field X.
We notice here the following fact :

Remark 1. τ 6= 0 on Ω.

If not, then we have θ − c = 0. Thus, (3.23) implies that L = 0 and hence
KX = kη(X)ξ because of (3.19) and τ2 = θ − c. Thus, (3.26) is reformed as

k{η(X)AY − η(Y )AX + (η(X)t(Y )− η(Y )t(X))ξ} = 0,

Putting Y = ξ in this and σ = α+ t(ξ), we have t(X) + g(Aξ,X)− ση(X) = 0.
Combining the last two equations, we obtain AX = η(X)Aξ + g(Aξ,X)ξ −
αη(X)ξ. From this we have

AU = 0, AW = µξ. (5.2)

On the other hand, putting X = W in (5.1) and using (5.2), we find

α(∇WA)W + k(∇WK)W = g((∇WA)ξ,W ) + µ(∇WA)ξ,

which together with (4.26) and (5.2) yields

α(∇WA)W + k(∇WK)W = −2cU + µ∇µ. (5.3)

From the second equation of (5.2), we find

(∇XA)W +A∇XW = µφAX

because of µ2 = c, which is obtained by (4.19) and (5.2). Putting X = W in the
last relationship, and using µ2 = c, (4.38) and (5.2), we have (∇WA)W = 0.

Since we have from (4.8) KW = 0, in the same way as above it is seen
that (∇WK)W = 0. Thus, (5.3) will produce a contradiction because µ2 = c.
Therefore Ω = ∅ is proved provided that τ = 0.

Now, replacing X by ξ in (5.1), we find

k(∇WK)ξ = αAφAW + (k2 + c)φAW,

where we have used (2.32) and Lemma 3.2.
On the other hand, differentiating the first equation of (3.18) covariantly

with respect to W and using (2.8) and (4.11), we get

(∇WK)ξ +KφAW = kφAW.

Substituting this into the last equation, we obtain
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αAφAW + cφAW + kKφAW = 0. (5.4)

From this and (4.21), we have (ρ − α){αAU + (kτ + c)U} = 0, where we have
used (4.4) and (4.21). So we have

αAU + (kτ + c)U = 0. (5.5)

In fact, if not, then we have ρ − α = 0. Therefore (4.19) and (4.21) are
reduced respectively to µ2 = c−kτ and AW = µξ on this subset. We restrict our
discussions on this subset. We also have from (4.35) the following : (k+τ)AU =
0, which together with (4.11) and Proposition 3.3, gives AU = 0.

On the other hand, differentiating (4.8) covariantly, we find

(∇XK)W +K∇XW + τ∇XW = 0.

If we take the inner product with a vector field Y and taking the skew-symmetric
part and using (3.25) and (4.8), then we find

τ

µ
{t(Y )u(X)− t(X)u(Y )}+ g(K∇XW,Y )− g(K∇YW,X)

= τ{(∇YW )X − (∇XW )Y }.

Replacing X by W in this and making use of (4.8), we have

τ

µ
t(W )U +K∇WW + τ∇WW = 0, (5.6)

which together with (4.38) and the fact that AU = 0 gives

µτt(W )U + µ(K∇µ+ τ∇µ)− 4cτU − µ(k + τ)(Wα)ξ = 0. (5.7)

By the way, we have from (4.19) µ2 = c − kτ . Differentiating this and
using (4.11), we find µ∇µ = −τ{(ξk)ξ + (k− τ)U}, which together with (3.18)
and (4.4) yields µK∇µ = −τ{k(ξk)ξ + (k − τ)U}. Substituting the last two
relationships into (5.7), we obtain

τ{µt(W )− 2τ(k − τ)− 4c}U − (k + τ){τ(ξk) + µ(Wα)}ξ = 0,

which together with (4.10) gives

µ2(1 +
τ

k
)τ + 2τ2(k − τ)− 4cτ = 0,

or using (4.19) and Remark 5.1 implies that 3τk2−τ2k+3ck−cτ = 0. Thus, k is
a constant and hence k = τ because of (4.11). So we get τ2 + c = 0 with the aid
of Remark 5.1. From this and (4.19) with ρ = α will produce a contradiction.
Accordingly ρ− α 6= 0 on Ω is proved.

Remark 2. α 6= 0 on Ω.
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In fact, if not, then we have α = 0 and hence

τ2 − c+ β = 0 (5.8)

on this subset because of (4.19). We also have kτ + c = 0 on the set by virtue
of (5.5) and Proposition 3.3. Thus, k is a nonzero constant and consequently
τ2 + c = 0 because of (4.11). It is contradictory to (5.8). Therefore α = 0 is
impossible on Ω.

From the previously obtained formula, it seen that

(∇WK)W +K∇WW + τ∇WW = 0,

which together with (5.6) yields µ(∇WK)W = τt(W )U . Thus, it follows that

k(∇WK)W = −τ(k + τ)U, (5.9)

where we have used (4.10)
If we use (4.21) and (4.26), then (5.1) can be written as

α(∇WA)X + k(∇WK)X + (Wα)AX

=
1

µ
{(ρ− 2α)g(AU,X)− 2cu(X) + µ(Xµ)}Aξ

+
1

µ
{(ρ− 2α)AU − 2cU + µ∇µ}η(AX) + ε(k2 + c)(u(X)ξ + η(X)U)

+ εα{g(AU,X)ξ + η(X)AU}+ ε{g(AU,X)W + w(X)AU},

(5.10)

where we have put ε = ρ− α.
Since we have from (4.23)

g((∇XA)W,W ) = 2g(AU,X) +Xε,

if we replace X by µW in (3.24) and make use of (2.26) and (4.7), then we find

(∇WA)W = −2AU +∇ε. (5.11)

Putting X = W in (5.10), we have

α(∇WA)W + k(∇WK)W + (Wα)AW

= εAU + (Wµ)Aξ + (ρ− 2α)AU − 2cU + µ∇µ,

or, using (2.27), (4.27), (5.9) and (5.11),

α∇ρ− 1

2
∇β = ρAU + εAU + {τ(k + τ)− 2c}U + (ξε)Aξ − (Wα)AW.

If we take account of (5.5), then we can write this as
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1

2
∇β − α∇ρ = c(2+

ε

α
)U − τ(k + τ +

ε

α
k)U

− ρAU + (Wα)AW − (ξε)Aξ.
(5.12)

Applying this by W and using (4.21) and (4.27), we get

1

2
Wβ − α(Wρ) = ε(Wα)− µ(Wµ),

which together with (2.27) yields

Wβ = α(Wρ) + ρ(Wα). (5.13)

Differentiating (2.27) with respect to W and making use of the last equation,
we obtain

αWε = 2µ(ξε)− ε(Wα). (5.14)

Lemma 5.1. k − τ 6= 0 on Ω.

Proof. If not, then we have k − τ = 0 on this open subset. So we have (k +
τ)AU = 0 on the set because of (4.35) and hence AU = 0 with the aide of
Remark 5.1. We discuss our arguments on such a place. Thus, (5.5) gives
τ2 + c = 0 and hence θ = 0 by virtue of (4.6). Therefore we get dt = 0 because
of (3.1). We also have from (4.10) t(X) = t(ξ)η(X) − 2µw(X) for any vector
field X. Differentiating this covariantly and using (2.5), and taking the skew-
symmetric part obtained,

X(t(ξ))η(Y )− Y (t(ξ))η(X)− t(ξ)g((φA+Aφ)X,Y )

= 2((Xµ)w(Y )− (Y µ)w(X) + 2µdw(X,Y ),

which together with (2.24), (4.15) and the fact that AU = 0 gives

2µdw(X,Y )

= (t(ξ) + 2α)(u(X)− η(X)u(Y ))− 2µ((Xα)η(X)− (Y α)η(X))

+ t(ξ)g((Aφ+ φA)X,Y )− 2µ((Xµ)w(Y )− (Y µ)w(X)).

Putting Y = W in this, and using (3.19), (4.21) and (4.38) yields

ε{t(ξ) + 2α}+ 4c = 0. (5.15)

In the next step, if we differentiate (4.21) covariantly and taking the skew-
symmetric part obtained,

τ

µ
(u(X)t(Y )− t(X)u(Y )) + g(K∇XW,Y )

− g(K∇YW,X) = τdw(Y,X),
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where we have used (3.32) and (4.7). If we put X = ξ or W in this and take
account of previously obtained formulas (for detail, see [13], [14])

(ρ− α)Uα = −2cµ2, µ(Uµ) = 2(ρα− α2 + c)µ2. (5.16)

On the other hand, from AU = 0, we have (∇XA)U + A∇XU = 0, which
shows g(∇XAU,U) = 0 and hence (∇UA)U = 0 because of (3.31) and (4.5).
Thus, it follows that A∇UU = 0.

We also have above equation that that (∇ξA)U+A∇ξU = 0, which connected
to (4.13) implies that

(∇ξA)U + αA2ξ − βAξ +Aφ∇α = 0,

or, using (4.20)

φ(∇ξA)U + (ρα− β)U + φAφ∇α = 0.

Because of (2.34) and the fact that AU = 0, we have ∇UU = φ(∇UA)ξ.
By the way, it is, using (2.19), seen that φ(∇UA)ξ = φ(∇ξA)U .
Combining the last three relationships, we obtain

∇UU = (β − ρα)U − φAφ∇α.
If we take the inner product with U to this and make use of (4.21), and the

facts that AU = 0 and τ2 + c = 0, then we obtain

µ(Uµ) = 2cµ2 − (ρ− α)Uα,

which together with (5.16) yields α(ρ−α) = 0, a contradiction because of ε 6= 0
and Remark 5.2, Thus, k − τ 6= 0 on Ω is proved. �

Remark 3. ξk = 0 on Ω.

In fact, if we take the inner product with W to (4.11), then we have Wk = 0.
From (4.36) and (5.5) we have αλ+kτ+c = 0. Differentiating this with respect
to W and making use of (4.33) and the fact that Wk = 0, we find λWα = 0. If
Wα 6= 0 on Ω, then we get kτ+c = 0, which connected to (4.11) gives k−τ = 0,
a contradiction because of Remark 5.1. Thus, it follows that Wα = 0 on Ω.

Differentiation (4.37) with respect to W gives (k − τ)Wρ = 0 because of
(4.33) and the fact that Wα = 0, which together with Remark 5.1 implies that
Wρ = 0. Thus, (4.19) gives Wβ = 0, which connected to (2.27) yields Wµ = 0.
Thus, (4.27) becomes ξρ− ξα = 0. By differentiating (4.37) with respect to ξ,
we then have

(λ+ ρ− α)ξk = 0,

where we have used (4.34). If ξk 6= 0 on Ω, then λ = α − ρ, which together
with (4.37) implies that τλ = 0. Because of Remark 5.1, we see that λ = 0.
Accordingly we have kτ + c = 0 because (4.36) and (5.5), which connected to
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(4.11) gives k = τ , a contradiction by virtue of Lemma 5.1. Therefore ξk = 0
on Ω is proved.

Because of Remark 5.2, we can write (4.11) as

∇k = (k − τ)U. (5.17)

Differentiating this covariantly and taking the skew-symmetric, we find du =
0 because of Lemma 5.1. So we have

g(∇XU, ξ)− g(∇ξU,X) = 0

for any vector X, which connected to (2.29) and (4.13) yields

3φAU + αAξ − βξ + φ∇α+ µAW = 0.

From this, and using (2.25), (2.28), (4.21) and (4.36), we have ∇α = (ξα)ξ)+
(ρ− 3λ)U .

Differentiating the second equation of (4.36) with respect to ξ and using
Remark 5.2 and (4.34), we find λξα = 0. But, the function λ does not vanish
by virtue of (4.36), (5.17), Lemma 5.2 and Remark 5.1. Thus ξα = 0 on Ω,
which implies that

∇α = (ρ− 3λ)U. (5.18)

Now, differentiating (4.4) covariantly along Ω, and taking the skew-symmetric
part and using (3.27), we find

g(K∇XU, Y )− g(K∇Y U,X) + µτ{t(X)w(Y )− t(Y )w(X)} = 0,

where we have used the fact that du = 0. Putting X = ξ in this and using
(2.29), (3.18) and (4.13), we get

K(3λφU + αAξ − βξ + φ∇α) + kµAW + µτt(ξ)W = 0,

which connected to (2.25), (2.28), (3.20), (4.5) and (4.21) gives

τt(ξ) + (ρ− α)(k + τ) = 0, (5.19)

or, using (4.37),

τ(k − τ)t(ξ) = λ(k + τ)2. (5.20)

Because of (2.26), we can write (4.10) as

t(Y ) = t(ξ)η(Y )− µ(1 +
τ

k
)w(Y )

for any vector field Y . Differentiating this covariantly along Ω and using (2.5),
(2.6), (4.14), (4.36) and (5.17), we find
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X(t(Y )) =X(t(ξ))η(Y ) + t(ξ)g(φAX, Y ) +
τ

k2
(k − τ)µu(X)w(Y )

− (1 +
τ

k
){λu(X)η(Y )− g(φ∇XU, Y )}+ t(∇XY ),

from which, taking the skew-symmetric part, and making use of (2.28), (2.31),
(3.1), (4.36) and (5.17) implies that

2θg(φX, Y )− t(ξ){g(φAX, Y )− g(φAY,X)}+
τ

k2
µ(w(X)u(Y )− w(Y )u(X))

= X(t(ξ))η(Y )− Y (t(ξ))η(X) + (1 +
τ

k2
){2cg(φX, Y ) + (ρ− 3λ)(u(X)η(Y )

− u(Y )η(X))− 2g(AφAX, Y ) + α(g(φAX, Y )− g(φAY,X))}.
(5.21)

Putting Y = ξ in this and using (2.5) and (4.36), we find

X(t(ξ)) = ξ(t(ξ))η(X) + {t(ξ) + (1 +
τ

k
)(λ+ α− ρ)u(X),

which together with (5.19) gives

∇t(ξ) = ξ(t(ξ))ξ + (1 +
τ

k
)(λ+ t(ξ))U. (5.22)

On the other hand, differentiating (5.19) and using (4.37) and (5.17), we get
τ∇t(ξ) = (k + τ)(∇α−∇ρ+ λU).

By the way, differentiating (4.37) with respect to ξ and using (4.34), Lemma
5.1 and Remark 5.2, we have ξρ − ξα = 0. Thus, it follows that ξ(t(ξ)) = 0.
Combining above two equations, we obtain k(∇α − ∇ρ) = 2τ(λ + α − ρ)U ,
where we have used (4.37) and the fact that k − τ 6= 0 on Ω.

On the other hand, if we differentiate (5.20), and using (5.17) and itself, we
find

λ(k + τ)2U + τ(k − τ)∇t(ξ) = (k + τ)2∇λ+ 2λ(k2 − τ2)U,

or, using (5.22) and the last equation,

(k + τ)∇λ = 6τλU. (5.23)

Now, from (2.27) and (4.19) we have

µ2 = c− kτ + α(ρ− α).

By the way we see, using (4.36) and (5.5), that

αλ+ kτ + c = 0. (5.24)

Combining the last two equations, we obtain

(k − τ)µ2 = 2θk, (5.25)
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where we have used (4.6).
If we put X = U and Y = W in (5.21) and make use of (4.21), (4.36) and

(5.25), then we find

2θ(1 +
τ

k
)− t(ξ)(ρ− α+ λ)

= (1 +
τ

k
){2c− 2λ(ρ− α) + α(ρ− α+ λ)},

where we have used Proposition 3.3.
Multiflying k(k − τ) to this and making use of (4.37), we get

θ(k2 − τ2) + λkτt(ξ) = c(k2 − τ2) + λ2(k + τ)2 − τλα(k + τ),

Since k + τ 6= 0 because of (5.17), if we use (5.19) and (5.24), then we find

θ(k − τ)− λk(ρ− α) = (τ2 + c)k + λ2(k + τ),

which together with (4.6) and (4.37) yields θ(k − τ) = (k + τ)λ2.
Differentiating this and taking account of (5.17) and itself, we obtain

λ2(k + τ)U = (k − τ)λ2U + 2(k + τ)λ∇λ,
which tells us, using (5.23), that λ = 0. From this fact and (5.24) we verify
that k is a constant. Therefore, it follows that k − τ = 0 because of (5.17), a
contradiction. Hence, we conclude that k = 0 on M . From this fact, and (3.17)
and (3.18) we have m = 0 and Kξ = 0. We also have from (3.21)

K2X = (θ − c)(X − η(X)ξ) (5.26)

because of (3.19) with k = 0. Further, (3.25) turns out to be

(θ − c){(φA−Aφ)X + η(X)U + u(X)ξ} = 0.

By the way, if we use (3.21) and (5.21), then we see that Aξ = αξ, that is U = 0
on M (for detail, sec[21]). Thus, the last relationship can be written as

(θ − c)(φA−Aφ) = 0.

Now, we assume that θ − c 6= 0 on M . Then we have Aφ = φA, which
together with (3.24) with k = 0 yields Aξ = αξ and

A2X = αAX + c(X − η(X)ξ). (5.27)

From this we have

h(2) = αh+ 2(n− 1)c. (5.28)

If we take account of (3.24) with k = 0 and (5.27), then we can verify that
(see, Theorem 4.3 of [24])
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(∇XA)Y = −c{η(Y )φX + g(φX, Y )ξ}. (5.29)

Because of the fact that Aφ = φA and k = 0, (3.34) turns out to be

L(∇XL)Y = (θ − c){t(X)φY − η(Y )AφX − η(X)φAY },

or, using (3.19), (3.23) and (3.33),

g((∇XL)Y,Z)

= −t(X)g(KY,Z) + η(X)g(AKY,Z) + g(AX,KY )η(Z).
(5.30)

Differentiating (5.26) covariantly along M and using (2.5), we find

(∇XK)KY +K(∇XK)Y = (c− θ){η(Y )φAX + g(φAX, Y )ξ}.

As in the quite same method as that used from (3.23) to derive (3.34), we
can deduce from the last equation the following :

2(∇XK)KY = (θ − c){−2t(X)φY + η(X)(φA−Aφ)Y

+ g((φA−Aφ)X,Y )ξ + η(Y )(φA+Aφ)X},

where we have used (3.21) and (3.25), which together with the fact that φA =
Aφ gives

K(∇XK)Y = (θ − c){−t(X)φY + η(X)φAY + g(φAX, Y )ξ}.

If we transform this by K and make use of (3.20), (3.26) and (5.26), then we
can write the last equation as

(∇XK)Y = t(X)LY − η(X)ALX − η(Y )LAX − g(ALX, Y )ξ.

Differentiating this covariantly along M and making use of (2.5), (3.19),
(5.27), (5.29), (5.30) and itself, we find

(∇Z∇XK)Y = Z(t(X))− c{η(X)g(Z,KY )ξ + η(X)η(Y )KZ}+ T (Z,X, Y )

− α{η(X)η(Y )AKZ + g(AZ,KY )η(X)ξ}
− g(∇ZX, ξ)ALY − g(X,φAZ)ALY − η(Y )AL∇ZX
− g(Y, φAZ)ALX − g(A∇ZX,LY )ξ − g(AX,LY )φAZ,

where T (Z,X, Y ) is a certain tensor field with T (Z,X, Y ) = T (X,Z, Y ), from
which, taking the skew-symmetric part with respect to Z and X, and the fact
that Aφ = φA and using the Ricci identity for K,



70 U-H KI

(R(Z,X) ·K)(Y )

= 2θg(φZ,X)LY − c{η(X)g(Z,KY )ξ − η(Z)g(X,KY )ξ

+ η(Y )(η(X)KZ − η(Z)KX)}
− α{η(Y )(η(X)AKZ − η(Z)AKX)

+ g(AZ,KY )η(X)ξ − g(AX,KY )η(Z)ξ}
+ 2g(Z, φAX)ALY − g(Y, φAZ)ALX + g(Y, φAX)ALZ

− g(AX,LY )φAZ + g(AZ,LY )φAX.

(5.31)

Putting Z = φei and X = ei and summing for i, and using (3.1), (3.19), (3.20)
and (5.27), we find

2n−1∑
i=0

(R(φei, ei) ·K)(Y ) = 4{c− (n− 1)θ}LY + 2(h+ α)LAY. (5.32)

On the other hand, from (2.18) we see, using (3.20), (5.26) and (5.27), that

2n−1∑
i=0

(R(φei, ei) ·K)(Y ) = 4{2θ − (2n+ 3)c}LY − 4αLAY,

where we have used the fact that Aφ = φA, which connected to (5.32) implies
that

(h+ 3α)LAX = 2{(n+ 1)θ − 2(n+ 2)c}LX,
which together with (3.23) yields

(h+ 3α)(g(AX,Y )− αη(X)η(Y )) = 2{(n+ 1)θ − 2(n+ 2)c}(X − η(X)η(Y )).

If we put X = Y = ei and summing up to i = 0, 1, · · · , 2n− 2, we have

(h+ 3α)(h− α) = 4(n− 1){(n+ 1)θ − 2(n+ 2)c}. (5.33)

If we put Y = ei, Z = Aei in (5.31) and summing up to i = 0, 1, · · · , 2n− 2,
then we have

2n−1∑
i=0

(R(Aei, X) ·K)(ei) = (2θ − 3α2 − 4c)AKX − 3cαKX.

By the way, from (2.18) we have

2n−1∑
i=0

(R(Aei, X) ·K)(ei) = (8c− 2θ + h(2))AKX − {(θ − 2c)(h− α)− cα}KX.

Thus, above two equations gives
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(4θ − 12c− h(2) − 3α2)AKX = {4cα− (θ − 2c)(h− α)}KX,
which connected to (5.26) yields

(4θ − 12c− h(2) − 3α2)(h− α) = 2(n− 1){4cα− (θ − 2c)(h− α)}.

Combining this to (5.33) and take account (5.28), we obtain

(θ − 3c)(h− α) = 2(n− 1)(θ − 2c)α. (5.34)

If we compare with (5.33) and (5.34), then we get

{(n− 1)(θ − 2c)− 2c}{(θ − 3c)2 − (θ − 2c)α2} = 0. (5.35)

For the case where c > 0, if θ − 2c < 0, then the last equation led to

(θ − 3c)2 − (θ − 2c)α2 = 0, (5.36)

a contradiction because θ−2c < 0. Hence we arrive at θ−c = 0 and consequently
A(2) = A(3) = 0 because of (3.23) and (5.27)

Let N0(p) = {ν ∈ T⊥p (M) : Aν = 0} and H0(p) be the maximal J-invariant

subspace of H0(p). Since A(2) = A(3) = 0, the orthogonal complement of H0(p)
is invariant under parallel translation with respect to the normal connection
because of ∇⊥C = 0 was assumed. Thus, by the reduction theorem in [10] and
by Proposition 3.3, we conclude that

Theorem 5.2. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex projective space Pn+1C such that the
third fundmental form t satisfies dt = 2θω for a scalar θ− 2c < 0. Suppose that
M satisfies RξA

(2) = A(2)Rξ and at the same time RξA = ARξ. Then M is a
real hypersurface in a complex projective space PnC provided that ∇φ∇ξξRξ = 0
holds on M .

If we consider c < 0, then we have (n− 1)(θ − 2c)− 2c > 0 because θ − c is
nonnegative. Hence we obtain (5.36) with the aid of (5.35). Thus, it is, using
(5.31) and (5.36), seen that

h(h− α) = 2(n− 1)(2n− 1)(θ − 2c)− 2(n− 1)c. (5.37)

On the other hand, from (2.18) the Ricci tensor S of M is given by

SX = c{(2n+ 1)X − 3η(X)ξ}+ hAX −A2X −K2X − L2X

because of k = l = 0, which together with (3.23) and (5.26) gives

SX = {c(2n+ 1)− 2(θ − c)}X + (2θ − 5c)η(X)ξ + hAX −A2X.

Therefore, the scalar curvature r̄ of M is given by
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r̄ = 2(n− 1)(2n+ 1)c− 4(n− 1)(θ − c) + h(h− α),

which connected to (5.37) yields

r̄ = 2(n− 1)c+ 2(n− 1)(2n− 3)(θ − c).
If we assume that r̄ − 2(n− 1)c ≤ 0, then we obtain θ − c = 0, a contradiction.
Consequently we have A(2) = A(3) = 0 because of (3.23) and (5.26).

In the same way as that used the proof of Theorem 5.2, we have

Theorem 5.3. Let M be a real (2n-1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex hyperbolic space Hn+1C such that
the third fundamental form t satisfies dt = 2θω for a scalar θ and the scalar
curvature r̄ of M is satisfies r̄−2c(n−1) ≤ 0. Suppose that M satisfies RξA

(2) =

A(2)Rξ and at the same time RξA = ARξ. Then M is a real hypersurface in a
complex space HnC provided that ∇φ∇ξξRξ = 0 holds on M .

6. The proof of Hopf hypersurfaces

In this section, we devote to prove that the real hypersurface satisfying hy-
potheses stated in Theorem 5.2 is a Hopf hypersurface in Mn(c).

From the hypothesis RξA = ARξ we have

A2ξ = ρAξ + cξ (6.1)

because of (4.20), which shows

β = ρα+ c. (6.2)

In the rest of this paper, let Ω′ be the open subset of M defined by Ω′ =
{p ∈M : µ(p) 6= 0}. We discuss our arguments on the set Ω′ and suppose that
Ω′ be nonvoid. Then, by virtue of (2.25) and (6.1) we get

AW = µξ + (ρ− α)W. (6.3)

Differentiating (6.1) covariantly along M and using (2.5), we find

g((∇XA)Aξ, Y ) + g(A(∇XA)ξ, Y ) + g(A2φAX, Y )− ρg(AφAX, Y )

= (Xρ)g(Aξ, Y ) + ρ((∇XA)ξ, Y ) + cg(φAX, Y ),

which together with (2.32) with k = 0 and (3.24) with k = 0 gives

(∇ξA)Aξ = ρAU − cU +
1

2
∇β.

Putting X = ξ in above equation and using (2.32), (3.24) and the last relation-
ship, we obtain

3A2U − 2ρAU − 2cU = (ξρ)Aξ −A∇α+ ρ∇α− 1

2
∇β. (6.4)
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Another hypothesis ∇φ∇ξξRξ = 0 tells us that

αAU + cU = 0. (6.5)

with the aid of (5.3), and hence α 6= 0 on Ω′ because of Remark 5.2.
Using (6.2) and (6.5) we can write (5.12) as

1

2
(α∇ρ− ρ∇α) = −c(1 +

2ρ

α
U) + (ξε)Aξ − (Wα)AW, (6.6)

which shows that

α2(Uρ)− ρα(Uα) = −2c(2ρ+ α)µ2. (6.7)

Furthermore, using (6.5) we can write (5.10) as

α(∇WA)X =− (Wα)AX − cε

α
{u(X)W + w(X)U}

+ g(∇µ− cρ

αµ
U,X)Aξ + g(Aξ,X)(∇µ− cρ

αµ
U).

Replacing X by U in this and using (6.5), we get

α(∇WA)U = (Uµ)Aξ +
c

α
{(Wα)U − εµ2W − µρAξ}. (6.8)

If we take the inner product with U to (4.22) and make use of (3.24) with k = 0,
(2.29) and (6.3), then we get

(αε+ c)g(∇XW,U) = αg((∇XA)W,U) + cαµη(X)− α2g(AW,X),

which together with (2.27), (6.2) and (6.8) yields

µ2g(∇XW,U) = g{(Uµ)Aξ+
c

α
(Wα)U − εµ2W − µρAξ

+ cαµξ − αµ2AW,X}.
(6.9)

Putting X = U in this, we have

g(∇UW,U) =
c

α
Wα. (6.10)

On the other hand, applying (2.31) by φ and using (2.29), we find

φ(∇XA)ξ = ∇XU − µw(AX)ξ − φAφAX − αAX + αη(AX)ξ.

If we put X = U in this and use (2.26), (4.21) and (6.5), then we find

∇UU = φ(∇UA)ξ + c(
ε

α
− 1)U. (6.11)

Further, taking the inner product with U to (2.31), we also get
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g(∇XW,U) =
1

µ
g((∇UA)X, ξ)− (

c

α
+ α)g(AW,X)− 2cw(X),

where we have used (2.28), (3.24) with k = 0 and (6.5), which connected to
(6.11) yields

µ(∇UA)ξ − µ2{(α+
c

α
)AW + 2cW}

= (Uµ)Aξ +
c

α
{(Wα)U − εµ2W − µρAξ}+ cαξ − αµ2AW.

Applying this by φ and using (4.21) and (6.11), we obtain

∇UU = − c
α

(Wα)W + δU (6.12)

for some function δ on Ω′.
In the next step, differentiating (6.5) covariantly, and using itself, we find

− c
α

(Xα)U + α(∇XA)U + αA∇XU + c∇XU = 0,

from which, taking the skew-symmetric part and using (2.28) and (3.24),

c

α
{(Y α)u(X)− (Xα)u(Y )}+ cαµ{η(X)w(Y )− η(Y )w(X)}

+ α{g(A∇XU, Y )− g(A∇Y U,X)}+ cdu(X,Y ) = 0,
(6.13)

where du is the exterior derivative of 1-form u. If we put X = ξ in this and
making use of (2.25) and (2.29), then we find

αµg(W,∇Y U) = − c
α

(ξα)u(Y ) + cαµw(Y ) + µ(α2 + c)g(AW,Y )

+ g(αA∇ξU + c∇ξU, Y ).

If we put Y = U in this and use (6.5), then we get α2g(∇UU,W ) = −cµ(ξα),
which together with (6.10) gives

α(Wα) = µ(ξα). (6.14)

Combining this to (6.12), we have

∇UU = − c

α2
µ(ξα)W + δU,

which together with (6.5) yields

αA∇UU + c∇UU = − c
α
µ(ξα)(AW +

c

α
W ).

If we take account of (2.25), (4.21) and (6.2), then we can write this as

αA∇UU + c∇UU == − c

α2
µ2(ξα)Aξ.
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Putting X = U in (6.13) and using the last relationship, we find

α∇α =
α(Uα)

µ2
U + (ξα)Aξ. (6.15)

By the way, if we use (6.2) and (6.5), then we can write (6.4) as

1

2
(α∇ρ− ρ∇α) = −c(2− 2ρ

α
− 3ρ

α2
)U + (ξρ)Aξ −A∇α.

Combining this to (6.6), we have

A∇α+ 3c(
c

α2
− 1)U = (ξα)Aξ + (Wα)AW.

If we take the inner product with U to this and make use of (6.5), then we find
α(Uα) = 3(c− α2)µ2, which together with (6.15) gives

α∇α = 3(c− α2)U + (ξα)Aξ. (6.16)

Differentiating this covariantly and using (2.5) and taking the skew-symmetric
part obtained, we have

X(ξα)η(AY )− Y (ξα)η(AX) + 3(c− α2)du(X,Y )

= (ξα){6(η(AX)u(Y )− η(AY )u(Xξ)− 2g(AφAX, Y ) + 2cg(φX, Y )}
for any vector fields X and Y .

From this, it is verified that ξα = 0 (for detail, see [16]). Thus, the last
equation can be written as

(α2 − c)du(X,Y ) = 0. (6.17)

By the way, we see, (2.29) and (4.13), that

−du(X, ξ) = g(µAW + 3φAU + αAξ − βξ + φ∇α,X).

If we use (2.25), (2.26), (6.3) and (6.5), then the last two equations deduce
that

(α2 − c){µ(
3c

α
+ ρ)W + φ∇α} = 0.

Combining this to (6.16) with ξα = 0, we obtain (α2 − c)(ρ+ 3α) = 0.
Now, suppose that α2−c 6= 0. Then we have ρ+3α = 0 and hence∇ρ+3∇α =

0 on this open subset. Hence (6.6) reformed as

c(1 +
2ρ

α
)U = (ξε)Aξ − (Wα)AW

on the set. Accordingly we see that α + 2ρ = 0, a contradiction because of
Remark 5.2. Therefore, we have α2 = c on whole space. Thus, α is constant on
Ω′. Accordingly it is seen, using (6.6), that ξρ = 0. Using these facts, (6.4) can
be written as
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3A2U − 2ρAU − 2cU +
1

2
∇β = 0,

which connected to (6.5) and α2 = c gives ∇β = −2(2ρα+ c)U .
Using the same method as that used from (6.16) to (6.17) we can deduce

from the last equation (2ρα+ c)(ρ+ 3α) = 0, which shows that 2ρα+ c = 0 and
hence 2µ2 + c = 0 because of (6.2) and the fact that α2 = c, a contradiction.
Therefore we conclude that Ω′ = ∅, that is µ = 0 on M . Thus, M is a Hopf
hypersurface on Mn(c).

Owing to Theorem 5.2 and Theorem 5.3, we have

Theorem 6.1. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codemension 3 in a complex space form Mn+1(c), c 6= 0 such
that the third fundamental form t satisfies dt = 2θω for a scalar θ. Suppose that
M satisfies RξA = ARξ and at the same time RξA

(2) = A(2)Rξ. If θ − 2c < 0
for c > 0 or if the scalar curvature r̄ of M satisfies r̄ ≤ 2(n − 1)c for c < 0,
then M is a Hopf hypersurface in a complex space form in Mn(c) provided that
Rξ is φ∇ξξ-parallel.
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