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NOTE ON REAL HYPERSURFACES OF NONFLAT
COMPLEX SPACE FORMS IN TERMS OF THE
STRUCTURE JACOBI OPERATOR AND RICCI

TENSOR '

NaM-GIL KM, CHUNJI L1 AND U-HANG KI

Abstract. Let M be a real hypersurface with almost contact met-
ric structure (¢, €, 7, g) in a nonflat complex space form M. (c). We
denote by A and S be the shape operator and the Ricci tensor of M
respectively. In the present paper we investigate real hypersurfaces
with g(SAE, A¢) = const. of Mn (¢) whose structure Jacobi opera-
tor Re commute with both ¢ and S. We give a characterization of

Hopf hypersurfaces of M., (c).

0. Introduction

An n-dimensional complex space form M, (¢) is a Kaehlerian man-
ifold of constant holomorphic sectional curvature c. As is well known,
complete and simply connected complex space forms are isometric to
a complex projective space P,C, a complex Euclidean space C, or a
complex hyperbolic space H,C according as ¢ > 0,c=0or ¢ <0.

Let M be a real hypersurface of M, (c). Then M has an almost
contact metric structure (¢, &, 7, g) induced from the complex structure J
and the Kaehlerian metric of M, (¢). This structure plays an important

role in the study of the geometry of a real hypersurface. The structure
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vector field € is said to be principal if A = af is satisfied, where 4 is
the shape operator of M and a = n(A£). A real hypersurface is said to
be a Hopf hypersurface if the structure vector field ¢ of M is principal.

In a complex projective space P,C, Hopf hypersurfaces with con-
stant principal curvatures are just the homogeneous real hypersurfaces
([7]). Further, Hopf hypersurfaces with constant principal curvatures in

a nonflat complex space forms were completely classified as follows:

Theorem T ([9]). Let M be a homogeneous real hypersurface of
P,C. Then M is a tube of radius v over one of the following Kaehlerian
submanifolds:

(A1) a hyperplane P, 1C, where 0 <1 < %,

(A2) a totally geodesic P,C (1 <k <n—2), where 0 <r < I,

(B) a complez quadric Qn_1, where 0 <7 < I,

(C) PAC x Pyy_1y2C, where 0 <7 < % and n(> 5) is odd,

(D) a complez Grassmann Go5C, where 0 < r < Toandn=9,
(E) a Hermitian symmetric space SO(10)/U(5), where 0 < r < 7
d

and n = 15.

Theorem B ([1]). Let M be a real hypersurface of H,C. Then M
has constant principal curvatures and ¢ is principal if and only if M is
locally congruent to one of the following:

(Ao) a self-tube, that is, a horosphere,

(A1) a geodesic hypersphere or a tube over a hyperplane H,_,C,

(A2) a tube over a totally geodesic H,C(1 < k < k — 2),

(B) a tube over a totally real hyperbolic space H,R.

We denote by S and R¢ be the Ricci tensor and the structure Jacobi
operator with respect to the structure vector field £ of M respectively.
Then it is a very important problem to investigate real hypersurfaces
satisfying R¢S = SR¢ in M, (¢) . From this point of view, Kim, Lee and

one of the present authors ([4]) was recently proved the following:
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Theorem KKL ([4]). Let M be a real hypersurface in a nonflat
complex space form My (c). If it satisfies Re¢p = ¢Re, ReS = SRe and
g (S&,€) = const., then M is a Hopf hypersurface. Further, M is locally
congruent to one of (A1), (Ag) type if ¢ > 0, or (Ag), (A1), (A2) type
if ¢ <0 provided that n(A€) # 0.

Further, Nagai, Takagi and one of the present authors ([5]) have been

also proved the following:

Theorem KNT ([5]). Let M be a real hypersurface with Re¢ = $R;
and at the same time ReS = SRe in My (c),c#0. If 6 =3{(p—A)? -
3} # 0, then M is o Hopf hypersurface (for the definitions of p and A

see section 2).

The main purpose of this paper is to establish the following theorem:

Theorem 3.3. Let M be a real hypersurface in a nonflat complex
space form My (c) which satisfies Re¢ = ¢Re and at the same time
ReS = SRe. If g(SAE, AE) is constant, then M is a Hopf hypersurface.
Further, M is locally congruent to one of (A1), (A2) type if ¢ > 0, or
(Ao), (A1), (Ag) type if ¢ < 0 provided that n(AE) # 0.

All manifolds in this paper are assumed to be connected and of class

C® and the real hypersurfaces supposed to be orientable.

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form
M, (c), and N be a unit normal vector field of M. By V we denote

the Levi-Civita connection with respect to the Fubini-Study metric § of
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M, (c) . Then the Gauss and Weingarten formulas are given respectively
by

VyX =VyX +g(AY,X)N, VxN=-AX,
for any vector fields X and Y on M, where g denoted the Riemannian

metric of M induced from § and A is the shape operator of M in M, (c).
For any vector field X tangent to M, we put

JX =¢X +n(X)N, JN=-¢

Then we may see that the structure (¢,£,7n,g) is an almost contact

metric structure on M, that is, we have
P*X = -X+n(X)¢ g(9X,8Y) =g(X,Y) —n(X)n(Y),

n(€)=1 ¢=0, n(X)=g(X,§)
for any vector fields X and Y on M.

Since J is parallel, we find from the Gauss and Weingarten formulas

the following:
(1L1)  (Vx@)Y =n(Y)AX — g(AX,Y)E, Vx&=pAX.

The ambient space being of constant holomorphic sectional curvature
¢, we obtain the following Gauss and Codazzi equations respectively:
(1.2)

R(X,Y)Z = §{g(Y,2)X - g(X, 2)Y + g(¢Y, Z)$X — g(¢X, Z)9pY
—29(¢pX,Y)pZ} + g (AY,2) AX — g(AX, Z)AY,

(1L3) (VxA)Y = (VyA) X = ${n(X)¢Y —n(¥Y) 6X — 29 (6X,Y)¢}

for any vector fields X, YV and Z on M, where R denotes Riemann-
Christoffel curvature tensor of M.

Notation. In the sequel, we denote by a = n(A¢€),8 = n (4%),vy =
n (A3§ ) and h = Tr A, and for a function f we denote by V f the gradient
vector field of f.
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Putting U = V¢, we see that U is orthogonal to £. Thus we have
(1.4) U = — A& + ok,

which leads to g (U,U) = 8 — a?.
From (1.2) the Ricci tensor S of type (1,1) on M is given by

(1.5) S = z{(2n+1)1—3n®£}+hA—A2,
where I is the identity tensor, which shows that
(1.6) Se = g(n —1)€ + hAE — A%
If we put
(1.7) AE = af + pW,

where W is a unit vector field orthogonal to £. Then we have U = pu¢W.
So we verify that W is also orthogonal to U. Further we have

(1.8) p?=p-a’

Therefore, we easily see that ¢ is a principal curvature vector, that is,
Af = o ifand only if 3 —a? =0or p=0.
From the definition of U, and (1.1) and (1.7), we verify that

(1.9) 9(Vx&U) = pg (AW, X).

Differentiating (1.4) covariantly along M and making use of (1.1), we
find

n(X)g(AU 4+ Va,Y) + g (¢X,VyU)

(1.10)
=g9((VyA) X,§) — g (A¢AX,Y) + ag(A9X,Y),

which enables us to obtain
(1.11) (VgA)f = 2AU + Va

because of (1.3) and (1.9). Since W is orthogonal to U, we verify, using
(1.1), that

(1.12) ng(VxW, &) = g(AU, X).
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Because of (1.1), (1.9) and (1.10), it is seen that

(1.13) VeU = 3¢ AU + a A€ — BE + ¢Va.

2. The structure Jacobi operator

Let M be a real hypersurface of a complex space form M, (c),c # 0.
Then the structure Jacobi operator R¢ with respect to ¢ is given by

(1) ReX = R(X,)¢ = (X —n(X)¢) + aAX —1(AX) A

for any vector X on M, where we have used (1.2).

Now, suppose that R¢¢ = ¢R. Then above equation implies that
(2.2) o (AX ~ ApX) = g (A&, X) U + g(U, X) A€.

We set €2 be a set of points such that u (p) # 0 at p € M and suppose
that Q # (. In what follows we discuss our arguments on the open subset
2 of M unless otherwise stated. Then, it is, using (2.2), clear that a #0
on M. So a function A given by 8 = a is defined. Therefore, replacing
X by U in (2.1) and taking account of (1.4), we find

(2.3) PAU = NAE — A%¢.

Further, we assume that R¢S = SR;. Then we see from (1.6) and
(2.1) that

9 (A%,Y) g(AL, X) — g (A%, X) g(AL,Y)
=g (A2£a Y) g(hA§ - §§>X) -9 (A2§’X) g(hAf - Eévy)
+5h {9(AL Y )n (X) — g(AE, X)n (Y)},

which shows that

(24)  addc= (ah - g) A% & (7 —Bh+ 2) A€+ 2(5 ~ ha)e.
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Combining above two equations and using (1.7), we obtain

= B {n(Y)g(A¢, X) — n(X)g(AL,Y)}
where a 1-form w is defined by w(X) = g(W, X). Putting Y = A in
this, we find
(2:5) A% = pAg + (8= pa)é,

where we have put p?p = v — fa and p*(8 — pa) = (8% — ay) on 9,

which implies
A3g = (p* = B — pa) AL + p(B — pa)é€.
Comparing this with (2.4), we verify that

(2.6) (k= p) (ﬁ—pa—z) = 0.

Remark 2.1. h—p=0on (.

In fact, if not, then we see from (2.6) that 8 = pa + 7 on (2. Hence,
(2.5) turns out to be A2¢ = pA¢ + §¢, which connected to (2.1) implies
that ReA = ARe. Thus, by Corollary 4.2 of [4}, it is seen that Q =
0. Hence h = p on  is proved. In what follows h = p is satisfied

everywhere.

Since we have 8 = a), (2.5) becomes
(2.7) AL = pA¢ + a(X - p)E.
Thus, (2.3) implies that
(2.8) AU = (p - N U.
We also have by (1.7) and (2.7)
(2.9) AW =pb+(p—a)W

because of u # 0.
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Differentiating (2.7) covariantly along € and making use of (1.1), we
find
(2.10)
9((VxA)ALY) +g(A(VxA)EY) +g (AAX,Y) - pg(ApAX,Y)
= (Xp) 9(AL,Y) +pg (VxA)EY)
+X (ad—ap)n(Y)+a(X—p)g(¢4X,Y)

for any vectors X and Y on M, which together with (1.3) and (1.11)
yields

c
4
Putting X = £ in (2.10) and taking account of (1.11), (2.8) and above

equation, we obtain

1
(VeA) A = pAU — U + - VB.

7VB=—AVa+pVa+ (£p) AL + € (ad — ap) €
—{(p—a)(p+a-33)-¢}U,

which connected to 0 = a) implies that

(2.11)

(2.12) abd = (2a - Na + 2uWa.
Because of (2.9) and (2.11), we also have
(2.13) aWl=Q2a-NWa+2u(ép—£a).

If we take account of (2.7) and (2.8), then (2.11) implies that
(2.14)
3 (AVB = pVB) = —A?Va + 2pAVa — p*Va + (E0) AE
+(aép—pta) £+ M(p—A) (p+a—3X) - §}U.
Now, differentiating (2.9) covariantly along €, we find
(VxA)W + AVxW = (Xp)é + uVxE+ X(p— o)W + (p — &) Vx W,
which together with (1.3), (1.12) and (2.8) yields
c 1
rVwAd) e = {(p=N(p~2a) - 5}U + VB - aVa,
(Vw AW = =200-NU+Xp-Xa.
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If we replace X by A¢ in (2.10) and make use of (1.3), (1.7), (1.11),
(2.7), (2.8) and the last two equations, we obtain

3(AVB — pVB) + a?VA + 12 Vp = g(AE, V) AE + g(AE, Vo )¢
+{(p = A)(2pA = 3ap + 2a)) + £(3a — 2)0)}U.
Substituting (2.14) into this, we find
a?VA+ 1?Vp — AV o + 2pAVa — p*Va

(2.15) = {g(AE, Vp) — Eo} A& + {g(AE, Vo) + pfo — (B — pa)ép}E
+{(p = N)(pX = 3ap+ aX +3)\?) + $Ba = N)}U.

On the other hand, from (1.10), (2.1) and (2.8) we have
(2.16) VU = ¢ (VuA) €+ (p— N)(2a — p)U.
If we differentiate (2.8) covariantly, we find
(2.17) (VxA)U+AVxU =X(p—-NU + (p—- \)VxU,
which together with (1.3), (1.13) and (2.1) implies that
$(VuA)E = (30— p)(A—a) = T~ ~Ua}U + u(€p~ ENW
+(p— ) (Va— (fa) &) — AVa + ég(A&, Va)AE.
Combining this to (2.16), we obtain (for detail, see [4] )
A(VyU) = (p = NVuU = A2Va — 2(p — N AVa + (p — \)*Va

(o — Néa — g(AE, Va) HAE — (p - N)E}
—1(Ep = EX+ 1g(AE, Va)){AW — (p - WW},

which connected to (1.3), (1.4), (2.8) and (2.17) implies that

A’Va —2(p—A) AVa+ (p— ) Va

= 1{9(4¢, V) = (p— ) Lo} {AL = (p — N) €}
+u{€p — EX+ 29 (AL, Va)} {AW — (p— \) W}
+u2 (VX = Vp) +U(p - AU.

Substituting (2.15) into this, we have (for detail, see [4])

(2.18)

(2.19) a(Vp—VA) =0U



496 Nam-Gil Kim, Chunji Li and U-Hang Ki

on {1, where 6 is given by
3
(2.20) 0:3@—AF—ZQ

From this we obtain u? (VA — Vp) + U(p — \)U = 0 and &) = &p.
Thus, (2.18) is reduced to

A%Va - 2(p— N)AVa + (p - \)?Va
(2.21) = {9(A4¢,Va) = (p = N Ea} {AL — (p - A) £}
+£9(AE Va) {AW — (p - N) W}.
Now, we define a 1-form u by u(X) = g(U, X) for any vector X. Then

the exterior derivative du of 1-form w is given by

du(X,Y) = % (Yu(X) = Xu(Y) — u([X, V])}.
Therefore, we see, using (1.9), (1.13) and (2.8), that
(2.22) du(¢, X) = (3X = 2p)pw(X) + g(¢Va, X)

for any vector X.
We prepare the following without proof in order to prove our Theorem
3.3 (See Lemma 3.5 of [4]).

Remark 2.2. Let M be a real hypersurface in M, (c),c # 0 such
that Re¢p = ¢Re and ReS = SRe. If du = 0, then Q is void.

3. Proof of theorems

We will continue our arguments under the same hypotheses Re¢p =
®Re¢ and at the same time R¢S = SR, as in section 2. Because of
Theorem KNT and Remark 2.1, we may only consider the case where
# = 0 and hence

Cc

(3.1) w—Af=4
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by virtue of (2.20). From (1.6), (2.7) and Remark 2.1, it follows that
C
9(56,8) =5 (n-1)+ (b= Na,

which together with (3.1) implies that g(S§, §) = const. if a is constant.
According to Theorem KKL, we have

Lemma 3.1. Let M be a real hypersurface with (3.1) satisfying
Rep = ¢Re, and ReS = SR in My (c),c # 0. If a is constant, then
Q=0

Remark 3.2. We have (z — y\) o =0 on 2 if
(3.2) zVa = yaVA

for certain scalars = and y.
In fact, from (2.12) and (3.2) we have

(3.3) 2uyWa = {z — (2a — Ny} &a.
We also have by (2.13) and (3.2)
sWa=y{(2a—A)Wa+2u(A - £a)},
which together with p? = () — @) gives
plz — 2a— Ny} Wa =2(A - o) yadd = 2a(X — a)yéa,

or, using (2.12) and (3.3), it follows that (z — Ay) {a = 0. Hence we
arrive at the conclusion.

Now, suppose that g (SAE, AE) = const. =: a’. They by (1.5) and
(2.7), we have

a {% 2n+1)A— %ca+a)\(h - )\)} =ad.
This, together with (3.1), yields
(3.4) a{(2n+1)(h=X)A+a(dX-3h)} =a

because of h — A # 0, where a(h — A) =d'.
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Differentiating (3.4) and using (3.1), we find
(35) {e+a’@r-3n)}Va=-a{a®+(2n+Da(h-A)} VA

From (3.5) and Remark 3.2, we have

{a+a®(4X = 3h) + Xa? + (2n + 1)aA (h — M) }€a = 0.
If £a # 0, then by (3.4) and this, we have
(3.6) 2(2n + 1)(h = M)A+ 3a (3X — 2h) = 0,
which enables us to obtain
3BA=2h)Va=—-{3a+2(2n+1)(h— \)} VA,
or, using Remark 3.2,
3(3X — 2h)a = —A {3a +2(2n + 1)(h — A)} .
This, connected to (3.6), gives
O=ar=g>0.

It is contradictory. Consequently, we have o = 0 on Q. Thus, (3.5)
implies that

{a+(2n+1)(h — N} ex=0.
If EX # 0, then a4+ (2n+1)(h— A) = 0 on this subset and hence Vo = 0

because of (3.1), a contradiction by Lemma 3.1. Thus we conclude that
EX=0, ¢&p=0.
Because of (2.12) and (2.13), it follows that
Wa=0, Wi=0.
Putting
(3.7) ~b=a’+ (2n+ Da(h-1A),

we have b 7 0. Because if not, then a + (2n 4+ 1)(h — A) = 0. This leads

to Va = 0 because of (3.1), a contradiction.
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Thus, we have from (3.5)

a+ a? (4) — 3h)

5 Va,

(3.8) aVA =

which shows that

a? -
39) vﬁ:{a-l— (4X — 3h)

b

-I-/\} Va.

On the other hand, since we have éh = 0,£a = 0 and (3.1), we can write
(2.11) as

1
(3.10) AVa - hVa + EVﬁ =(h—=A)(2) = a)U.

From (3.9) and (3.10), we have

2 _
ato’ (1 3h)+%/\—h}Va=(h—/\)(2/\—a)U,

(3.11) AVa+ {

or, using (2.8)

2(4x—3h) 1
‘”“(;M 3)+§)\—h}AVa:(h—)\)2(2/\—a)U,

A*Va + {
By the way, we have from (2.21)
A*Va +2(A - h)AVa + (h = \)?*Va =0,

where we have used Remark 2.1 and the fact that £ = Wa = 0.

From the last two equations, it follows that

2 —
{“*“ %A 3h) - g)\}AVa—(h—)\)QVa = (h=2)?(2x - )T,

which together with (3.1) and (3.11) gives

(3.12) oVa=T1U,

where we have put

2 - 2 —3h 1
0:2{(1—{-(1 (:)\ 3h)+h_g/\}{a+a (;)1)\ 3)+_2_

a a2 —
T=(h—)\)(2)\—a){ - (;” 3h)—/\}.
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Differentiating (3.12) covariantly and taking the skew-symmetric part

obtained, we find
(Xo)Ya— (Yo)Xa=(XT)ulY) - Y7)u(X) + rdu(X,Y).

Putting Y = £ in this and using éa = €A = €h = 0, we find

2 (4 —
(2A—a){“+°‘ (Z"\ 3h)—)\}du(§,X)=O,

or, using (2.22),

(3.13)  (2A—a) {a+a?(4X —3h) = A} {Va— (3 - 2n)U} = 0.

We consider on the case where a + a? (4\ — 3h) — bA = 0, then by
(3.8) we have
aVA=AVa.

Using (3.4) and (3.7), it follows from this that
202n+1)(h— A+ 3(3)\—2h)a =0,
which together with aV A = AV« gives
22n+1)(h—=NA+3BA=-2h)a+3ra=0

because of Lemma 3.1. From the last equation and (3.13), we have

ah = 0, a contradiction. So we have
(3.14) a+a?(4X—3h) —bA#0
on 2. Thus (3.13) implies that
(22X —a){Va - (3XA-2n)U} =0.
If 2X = a, then = aX = %az, which connected to (3.10) gives
AVa = (h - %) Va.
From this and (3.11), we have

bA =a+a? (4\ — 3h),
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which produces a contradiction because of (3.14). So, we are led to
2 —a#0

on 2. Thus we have

(3.15) Va = (3X = 2h)U.

From this and (3.8), we have

a+ a2 (4) — 3h)

Vh =
ab

(3x — 2)U

by virtue of (3.1).

Differentiating (3.15) covariantly and using the last equation, and
taking the skew-symmetric part, we find (3A—2h)du = 0, which together
with (3.15) and Lemma 3.1 implies that du = 0. Thus, owing to Remark
2.2, we see that  is void.

Combining Theorem KNT and the above arguments, we conclude
that

Theorem 3.3. Let M be a real hypersurface in a nonflat complex
space form M, (c) which satisfies R¢¢p = ¢R¢ and at the same time
ReS = SRe. If g(SAE, A€) is constant, then M is a Hopf hypersurface.
Further, M is locally congruent to one of (A1), (A2) type if ¢ > 0, or
(Ao), (A1), (A2) type if ¢ < 0 provided that n (A€) # 0.

Remark 3.4. Replacing the hypothesis g (SAE, AE) = const. in
Theorem 3.3 by g (R¢A¢, A{) = const., we can, using the quite same
method as that used in Theorem 3.3, verify that £ is a principal curvature

vector.
Thus, we have

Theorem 3.5. Let M be a real hypersurface in M, (¢) which satisfies
Rep = ¢Re and ReS = SRe. If g(R¢AE, AE) is constant, then M is
the same types at that of Theorem 3.3.
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4. Real hypersurfaces satisfying

Rep = ¢R¢ and VR = 0. Let M be a real hypersurface of M, (c),
¢ # 0. Then we have (2.1). Differentiating (2.1) covariantly, we find

9(VxR)Y,Z) = -1{n(Z)9(Vx&Y)+n(Y)g(VxE 2))
+(Xa)g(AY, Z) + ag (VxA) Y, 2)
~9(A&, Z){g (VX A)£,Y) = g(ApAY, X))
~9(46Y) {9 ((VxA) €, 2) - g(APAZ, X))},

which together with (1.1) and (1.11) implies that

9((VeRe) Y, Z) = —Hu(YIn(Z) + w(Z)n (Y)} + ((a)g(AY, Z)
(4.1) +ag ((VeA)Y,Z) — g(AL, Z){3u(Y) + Ya}
—g (AL Y) {3u(Z) + Za}.

Now, suppose that A¢p = @A is satisficd. Then we have A¢ = af,

namely, U = 0 and hence « is constant (see, [6]). Thus, (1.10) turns out
to be

(VxA)E+ ApAX — apAX = 0.
This, together with A¢p = $A and the Codazzi equation (1.3), yields
Ve¢A = 0. Using these facts, (4.1) becomes V¢R; = 0. Further, we
easily, making use of (2.1), verify that A¢ = #A implies Re¢ = ¢Re.

Conversely, we assume that R¢¢ = ¢Re and V¢ R, = 0. Then we have
(2.2) and

(ﬂ%MX+@®AX==gmm%+MMUHwMXHMU+V@
+{39(AU, X) + Xa} A€

by virtue of (4.1). This, together with (1.11), yields

(4.2) aAU+§U=a
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which shows that « # 0 on . So a function A given by 8 = a is defined.
Replacing X by U in (2.2) and taking account of (1.4) and (4.2), we find

(4.3) A2 = pAf + 25

because of a # 0, where we have put ap = oA — §. From (2.1) and (4.3)
we see that R¢A = ARg, which connected with R¢¢ = ¢ R¢ implies that
Q =0, that is, U = 0 and hence o (A¢ — ¢pA) = 0 (cf. [4] and [5}).

Thus we have

Theorem 4.1. Let M be a real hypersurface in a complex space form
M, (c),c # 0. Then the followings are equivalent:

(1) Ap = & A holds on M.

(2) VeRe = 0 and Rep = ¢Re hold on M provided that n(A) # 0.
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