DOI QR코드

DOI QR Code

SEMI-INVARINAT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING ${\nabla}_{{\phi}{\nabla}_{\xi}{\xi}}R_{\xi}=0$ IN A COMPLEX SPACE FORM

  • Received : 2020.12.02
  • Accepted : 2021.01.15
  • Published : 2021.01.31

Abstract

Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (��, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ = R(·, ξ)ξ and A(i) be Jacobi operator with respect to the structure vector field ξ and be the second fundamental form in the direction of the unit normal C(i), respectively. Suppose that the third fundamental form t satisfies dt(X, Y ) = 2��g(��X, Y ) for certain scalar ��(≠ 2c)and any vector fields X and Y and at the same time Rξ is ��∇ξξ-parallel, then M is a Hopf hypersurface in Mn(c) provided that it satisfies RξA(1) = A(1)Rξ, RξA(2) = A(2)Rξ and ${\bar{r}}-2(n-1)c{\leq}0$, where ${\bar{r}}$ denotes the scalar curvature of M.

Keywords

References

  1. A. Bejancu, CR-submanifolds of a Kahler manifold I, Proc. Amer. Math. Soc. 69(1978), 135-142. https://doi.org/10.1090/S0002-9939-1978-0467630-0
  2. J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math. 395(1989), 132-141.
  3. J. Berndt and H. Tamaru, Cohomogeneity one actions on non compact symmetric spaces of rank one, Trans. Amer. Math. Soc. 359 (2007), 3425-3438. https://doi.org/10.1090/S0002-9947-07-04305-X
  4. J. Berndt and L. Vanhecke, Two natural generalizations of locally symmetric spaces, Diff. Geom. Appl. 2(1992), 57-82. https://doi.org/10.1016/0926-2245(92)90009-C
  5. D. E. Blair, G. D. Ludden and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep. 27(1976), 313-319. https://doi.org/10.2996/kmj/1138847256
  6. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269(1982), 481-499. https://doi.org/10.1090/S0002-9947-1982-0637703-3
  7. T. E. Cecil and P. J. Ryan, Geometry of Hypersurfaces, Springer (2015).
  8. J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators. Acta Math. Hungar. 80(1998), 155-167. https://doi.org/10.1023/A:1006585128386
  9. J. T. Cho and U-H. Ki, Real hypersurfaces in complex space forms with Reeb flow symmetric Jacobi operator, Canadian Math. Bull. 51(2008), 359-371. https://doi.org/10.4153/CMB-2008-036-7
  10. J. Erbacher, Reduction of the codimension of an isometric immersion, J. Diff. Geom. 3(1971), 333-340.
  11. J. I. Her, U-H. Ki and S.-B. Lee, Semi-invariant submanifolds of codimension 3 of a complex projective space in terms of the Jacobi operator, Bull. Korean Math. Soc. 42(2005), 93-119. https://doi.org/10.4134/BKMS.2005.42.1.093
  12. U-H. Ki, Cyclic-parallel real hypersurfaces of a complex space form, Tsukuba J. Math. 12(1988), 259-268.
  13. U-H. Ki, Commuting Jacobi operators for a semi-invariant submanifold of codimension 3 in complex space forms, J. Nat. Acad. Sci. ROK, Sci. Ser. 58-2(2019), 271-306.
  14. U-H. Ki and S. J. Kim, Structure Jacobi operators of semi-invariant submanifolds in a complex space form, East Asian Math. J. 36(2020), 389-415. https://doi.org/10.7858/EAMJ.2020.027
  15. U-H. Ki, S. J. Kim and S.-B. Lee, The structure Jacobi operator on real hypersurfaces in a nonflat complex space form, Bull. Korean Math. Soc. 42(2005), 337-358. https://doi.org/10.4134/BKMS.2005.42.2.337
  16. U-H. Ki and H. Kurihara, Commuting structure Jacobi operator for real hypersurfaces in complex space forms, Advances in Pure Math. 3-2(2013), 264-276. https://doi.org/10.4236/apm.2013.32038
  17. U-H. Ki and H. Kurihara, Commuting structure Jacobi operator for real hypersurface in complex form II, Tsukurba J. Math. 42-2(2018), 127-154.
  18. U-H. Ki, H. Kurihara, S. Nagai and R. Takagi, Characterizations of real hypersurfaces of type A in a complex space form in terms of the structure Jacobi operator, Toyama Math. J. 32(2009), 5-23.
  19. U-H. Ki, S. -B. Lee and A. -A. Lee, Semi-invariant submanifolds of codimension 3 in a complex hyperbolic, Honam Math. J. 23(2001), 91-111.
  20. U-H. Ki and H. Song, Jacobi operators on a semi-invariant submanifold of codemension 3 in a complex projective space, Nihonkai Math J. ,=14(2003), 1-16.
  21. U-H. Ki, H. Song and R. Takagi, Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space, Nihonkai Math J. 11(2000), 57-86.
  22. M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296(1986), 137-149. https://doi.org/10.1090/S0002-9947-1986-0837803-2
  23. S. Montiel and A.Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20(1986), 245-261. https://doi.org/10.1007/BF00164402
  24. R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space form, in Tight and Taut submanifolds, Cambridge University Press : (1998(T. E. Cecil and S.-S. Chern eds.)), 233-305.
  25. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212(1973), 355-364. https://doi.org/10.2307/1998631
  26. M. Okumura, Normal curvature and real submanifold of the complex projective space, Geom. Dedicata 7(1978), 509-517. https://doi.org/10.1007/BF00152072
  27. M. Ortega, J. D. Perez and F. G. Santos, Non-existence of real hypersurface with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math. 36(2006), 1603-1613. https://doi.org/10.1216/rmjm/1181069385
  28. H. Song, Some differential-geometric properties of R-spaces, Tsukuba J. Math. 25(2001), 279-298.
  29. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19(1973), 495-506.
  30. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I,, J. Math. Soc. Japan 27(1975), 43-53. https://doi.org/10.2969/jmsj/02710043
  31. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures II, J. Math. Soc. Japan 27(1975), 507-516. https://doi.org/10.2969/jmsj/02740507
  32. Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact spaces (in Japanese), Sugaku 16(1964), 34-61.
  33. K. Yano, and U-H. Ki, On (f, g, u, v, w, λ, μ, ν)-structure satisfying λ2 + μ2 + ν2 = 1, Kodai Math. Sem. Rep. 29(1978), 285-307. https://doi.org/10.2996/kmj/1138833653
  34. K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhauser(1983).