DOI QR코드

DOI QR Code

ON THE STRUCTURE JACOBI OPERATOR AND RICCI TENSOR OF REAL HYPERSURFACES IN NONFLAT COMPLEX SPACE FORMS

  • Kim, Soo-Jin (Department of Mathematics, Chosun University)
  • Received : 2010.11.19
  • Accepted : 2010.12.06
  • Published : 2010.12.25

Abstract

It is known that there are no real hypersurfaces with parallel structure Jacobi operator $R_{\xi}$ (cf.[16], [17]). In this paper we investigate real hypersurfaces in a nonflat complex space form using some conditions of the structure Jacobi operator $R_{\xi}$ which are weaker than ${\nabla}R_{\xi}$ = 0. Under further condition $S\phi={\phi}S$ for the Ricci tensor S we characterize Hopf hypersurfaces in a complex space form.

Keywords

References

  1. J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic spaces, J. Reine Angew. Math. 395(1989), 132-141.
  2. J. Berndt and H. Tamaru, Cohomogeneity one actions on noncompact sym- metric spaces of rank one, Trans. Amer. Math. Soc. 359(2007), 3425-3438. https://doi.org/10.1090/S0002-9947-07-04305-X
  3. J. T. Cho and U-H. Ki, Jacobi operators on real hypersurfaces of a complex projective space, Tsukuba J. Math. 22(1998), 145-156. https://doi.org/10.21099/tkbjm/1496163476
  4. J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of Jacobi operators, Acta Math. Hungar. 80(1998), 155-167. https://doi.org/10.1023/A:1006585128386
  5. J. T. Cho and U-H. Ki, Real hypersurfaces in a complex space form with Reeb flow symmetric Jacobi operator, Canadian Math. Bull. 51(2008), 359-371. https://doi.org/10.4153/CMB-2008-036-7
  6. U-H. Ki, S. J. Kim and S.-B. Lee, The structure Jacobi operator on real hypersurfaces in a non°at complex space form, Bull. Korean Math. Soc. 42(2005), 337-358. https://doi.org/10.4134/BKMS.2005.42.2.337
  7. U-H. Ki and H. Kurihara, Real hypersurfaces and ${\xi}$-parallel structure Jacobi operators in complex space forms, J. Academy Scien. Korea 48(2009), 53-78.
  8. U-H. Ki and H. Kurihara, Real hypersurfaces with cyclic-parallel structure Jacobi operators in a nonflat complex space form, Bull. Aust. Math. Soc. 81(2010), 260-273. https://doi.org/10.1017/S0004972709000860
  9. U-H. Ki and H. Kurihara, S. Nagai and R. Takagi, Characterizations of real hypersurfaces of type A in a complex space form in terms of the structure Jacobi operator, Toyama Math. J. 32(2009), 5-23.
  10. U-H. Ki, H. Kurihara and R. Takagi, Jacobi operators along the structure flow on real hypersurfaces in a nonflat complex space form, Tsukuba J. Math. 33(2009), 39-56. https://doi.org/10.21099/tkbjm/1251833206
  11. U-H. Ki and S. Nagai, The Ricci tensor and structure Jacobi operator of real hypersurfaces in a complex projective space, J. Geom. 94(2009), 123-142. https://doi.org/10.1007/s00022-009-0006-6
  12. U-H. Ki, J. D. Perez, F. G. Santos and Y. J. Suh, Real hypersurfaces in complex space forms with $\varepsilon$-parallel Ricci tensor and structure Jacobi operator, J. Korean Math. Soc. 44(2007), 307-326. https://doi.org/10.4134/JKMS.2007.44.2.307
  13. U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32(1990), 207-221.
  14. N-G. Kim and U-H. Ki, ${\xi}$-parallel structure Jacobi operators of real hypersur-faces in a nonflat complex space form, Honam Math. J. 28(2006), 573-589.
  15. R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms in Tight and Taut Submanifolds, (eds. T. E. Cecil and S. S. Chern)(Cambridge University Press, Cambridge,1998,) 233-305.
  16. M. Ortega, J. D. Perez and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. 36(2006), 1603-1613. https://doi.org/10.1216/rmjm/1181069385
  17. J. D. Perez, F. G. Santos and Y. J. Suh, Real hypersurfaces in complex projec- tive spaces whose structure Jacobi operator is D-parallel, Bull. Belg. Math. Soc. Simon Stevin 13(2006), 459-469.
  18. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19(1973), 495-506.
  19. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 15 (1975), 43-53, 507-516.