• Title/Summary/Keyword: Hopf field

Search Result 32, Processing Time 0.018 seconds

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM IN TERMS OF THE STRUCTURE JACOBI OPERATOR

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.229-257
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, 𝜉, 𝜂, g) in a complex space form Mn+1(c), c ≠ 0. We denote by A and R𝜉 the shape operator in the direction of distinguished normal vector field and the structure Jacobi operator with respect to the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(< 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉A = AR𝜉 and at the same time ∇𝜉R𝜉 = 0 on M, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

STRUCTURE JACOBI OPERATORS OF SEMI-INVARINAT SUBMANIFOLDS IN A COMPLEX SPACE FORM II

  • Ki, U-Hang;Kim, Soo Jin
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (φ, ξ, η, g) in a complex space form Mn+1(c). We denote by Rξ the structure Jacobi operator with respect to the structure vector field ξ and by ${\bar{r}}$ the scalar curvature of M. Suppose that Rξ is φ∇ξξ-parallel and at the same time the third fundamental form t satisfies dt(X, Y) = 2θg(φX, Y) for a scalar θ(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξφ = φRξ, then M is a Hopf hypersurface of type (A) in Mn+1(c) provided that ${\bar{r}-2(n-1)c}$ ≤ 0.

On the Property of Harmonic Vector Field on the Sphere S2n+1

  • Han, Dongsoong
    • Honam Mathematical Journal
    • /
    • v.25 no.1
    • /
    • pp.163-172
    • /
    • 2003
  • In this paper we study the property of harmonic vector fields. We call a vector fields ${\xi}$ harmonic if it is a harmonic map from the manifold into its tangent bundle with the Sasaki metric. We show that the characteristic polynomial of operator $A={\nabla}{\xi}\;in\;S^{2n+1}\;is\;(x^2+1)^n$.

  • PDF

Inclined Edge Crack in a Piezoelectric Material Under Antiplane Loads (압전재료에 대한 면외하중하의 모서리 경사 균열)

  • Choi, Sung Ryul;Sah, Jong Youb;Jeong, Jae Tack
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.589-596
    • /
    • 2015
  • The occurrence of an inclined edge crack in transversely piezoelectric material is analyzed. Concentrated antiplane mechanical and inplane electrical loads are applied at the boundary and crack surface, respectively. The crack surfaces are assumed to be impermeable to the electric field. Using the Mellin transform with the introduction of a generalized displacement vector, the problem is formulated, and the Wiener-Hopf equation is derived. By solving the equation, the solution is obtained in a closed form. The intensity factors of the stress, the electric displacement, and the energy release rate are obtained for any crack length and inclination angle. These solutions can be used as fundamental solutions and can be superimposed to represent any arbitrary electromechanical loading.

ON SOME SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX PROJECTIVE SPACE

  • Lee, Seong-Baek;Kim, Soo-Jin
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.2
    • /
    • pp.309-323
    • /
    • 2003
  • In this paper, We characterize a semi-invariant sub-manifold of codimension 3 satisfying ∇$\varepsilon$A = 0 in a complex projective space CP$\^$n+1/, where ∇$\varepsilon$A is the covariant derivative of the shape operator A in the direction of the distinguished normal with respect to the structure vector field $\varepsilon$.

SLANT HELICES IN THE THREE-DIMENSIONAL SPHERE

  • Lucas, Pascual;Ortega-Yagues, Jose Antonio
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1331-1343
    • /
    • 2017
  • A curve ${\gamma}$ immersed in the three-dimensional sphere ${\mathbb{S}}^3$ is said to be a slant helix if there exists a Killing vector field V(s) with constant length along ${\gamma}$ and such that the angle between V and the principal normal is constant along ${\gamma}$. In this paper we characterize slant helices in ${\mathbb{S}}^3$ by means of a differential equation in the curvature ${\kappa}$ and the torsion ${\tau}$ of the curve. We define a helix surface in ${\mathbb{S}}^3$ and give a method to construct any helix surface. This method is based on the Kitagawa representation of flat surfaces in ${\mathbb{S}}^3$. Finally, we obtain a geometric approach to the problem of solving natural equations for slant helices in the three-dimensional sphere. We prove that the slant helices in ${\mathbb{S}}^3$ are exactly the geodesics of helix surfaces.

Observation of Parametric Resonance in a Magneto-Optical Trap

  • Jhe, Won-Ho;Noh, Heung-Ryoul;Kim, Ki-Hwan;Ha, Hyun-Ji
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.119-125
    • /
    • 2003
  • We demonstrate parametric resonance in a magneto-optical trap. When we modulate the intensity of the cooling laser at about twice the resonant frequency of the trap, the atoms in the trap are divided into two parts and oscillate with 180 degree phase difference with the finite length due to nonlinearity of the trap potential. These are the effects of general nonlinear dynamics, called the Hopf bifurcation, or limit cycle motion. The amplitude and the phase of the oscillations are measured and compared with the theoretical calculations based on simple Doppler cooling theory. The experimental results are in excellent agreement with the simulation results based on the simple Doppler cooling theory.

A study of integral equations for the analysis of scattered acoustic field (산란음장 해석을 위한 적분방정식에 대한 연구)

  • Wonju Jeon;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1016-1019
    • /
    • 2002
  • This paper deals with a fundamental and classical scattering problem by a finite strip. For the analysis of scattered acoustic field, a “single” integral equation is derived. Firstly, the complexity by considering the effect of the mean flow is alleviated by the introduction of Prandtl-Glauert coordinate and the new dependent variable. Secondly, the difficulty of solving the resultant strongly-coupled integral equations which always appear in this kind of 3-part mixed boundary value problem is solved by observing some good properties of the functions in complex domain and manipulating the equations and variables for the use of those properties. The solution can be obtained asymptotically in terms of gamma function and Whittaker function. One aim of this study is the improvement of methodology for the research using integral equations. The other is the basic understanding of scattering by a finite strip related to the linear cascade model of rotating fan blades.

  • PDF

A Permeable Wedge Crack in a Piezoelectric Material Under Antiplane Deformation (면외변형하의 압전재료에 대한 침투 쐐기균열)

  • Choi, Sung Ryul;Park, Jai Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.859-869
    • /
    • 2015
  • In this study, we analyze the problem of wedge cracks, which are geometrically unsymmetrical in transversely piezoelectric materials. A single concentrated antiplane mechanical load and inplane electrical load are applied at the point of the wedge surface, while one concentrated antiplane load is applied at the crack surface. The crack surfaces are considered as permeable thin slits, where both the normal component of electric displacement and the electric potential are assumed to be continuous across these slits. Using Mellin transform method, the problem is formulated and the Wiener-Hopf equation is derived. By solving the equation, the solution is obtained in a closed form. The intensity factors of the stress and the electric displacement are obtained for any crack length as well as inclined and wedge angles. Based on the results, the intensity factors are independent of the applied electric loads. The electric displacement intensity factor is always dependent on that of stress intensity factor, while the electric field intensity factor is zero. In addition, the energy release rate is computed. These solutions can be used as fundamental solutions which can be superposed to arbitrary electromechanical loadings.

FLOW PAST A RECTANGULAR CYLINDER (사각 실린더를 지나는 층류 유동특성)

  • Park, Doohyun;Yang, Kyung-Soo;Ahn, Hyungsu
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • This study performed numerical simulation to elucidate the characteristics of flow past a rectangular cylinder with various values of the aspect ratio(AR) of the cylinder. We calculated the flow field, force coefficients and Strouhal number of vortex shedding depending on the Reynolds number(Re) and the aspect ratio. The $AR{\approx}1$ is preferred for drag reduction, and 0.375$AR{\approx}0$ is recommended if suppression of the lift-coefficient fluctuation and the shedding frequency is desirable. Furthermore the criticality of the Hopf bifurcation is also reported for each AR.