
J. Korean Math. Soc. 54 (2017), No. 4, pp. 1331–1343
https://doi.org/10.4134/JKMS.j160508
pISSN: 0304-9914 / eISSN: 2234-3008

SLANT HELICES IN THE THREE-DIMENSIONAL SPHERE

Pascual Lucas and José Antonio Ortega-Yagües

Abstract. A curve γ immersed in the three-dimensional sphere S
3 is

said to be a slant helix if there exists a Killing vector field V (s) with con-
stant length along γ and such that the angle between V and the principal
normal is constant along γ. In this paper we characterize slant helices in
S
3 by means of a differential equation in the curvature κ and the torsion

τ of the curve. We define a helix surface in S
3 and give a method to

construct any helix surface. This method is based on the Kitagawa rep-
resentation of flat surfaces in S

3. Finally, we obtain a geometric approach
to the problem of solving natural equations for slant helices in the three-
dimensional sphere. We prove that the slant helices in S

3 are exactly the
geodesics of helix surfaces.

1. Introduction

A curve γ in R
3 with curvature κ > 0 is called a slant helix if the principal

normal lines of γ make a constant angle with a fixed direction, [8]. Observe that
the principal normal lines of a general helix (also called a Lancret curve, [1]) is
perpendicular to a fixed direction, so that a general helix is also a slant helix. A
classical result stated by M. A. Lancret in 1802 and first proved by B. de Saint
Venant in 1845 is ([16, p. 34]): a necessary and sufficient condition for a curve
γ be a general helix is that the ratio τ/κ of torsion to curvature be constant,
where κ and τ stand for the curvature and torsion of γ, respectively. Izumiya
and Takeuchi [8] have shown a similar result for slant helices: a necessary and
sufficient condition for a curve with κ > 0 be a slant helix is that the function

σ =
κ2

(κ2 + τ2)3/2

(τ

κ

)

′

be constant. Observe that σ ≡ 0 implies that α is a general helix. Somehow,
|σ| measures how much the curve moves away from being a general helix, and
|σ′| measures how much the curve moves away from being a slant helix.

The first attempt to extend the Lancret theorem to other ambient spaces is
due to M. Barros in [1]. He obtained a theorem of Lancret for general helices
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in a 3-dimensional real space form which gives a relevant difference between
hyperbolic and spherical geometries. The first task was to give a consistent
definition of general helix in a 3-dimensional real space form and for this goal
the author used the concept of Killing vector field along a curve (this concept
was introduced by J. Langer and D. A. Singer, [10, 11]). Barros showed that a
curve γ in the unit 3-sphere S

3 is a general helix if and only if either (i) τ ≡ 0
and γ is a curve in some unit 2-sphere S2, or (ii) there exists a constant b such
that τ = bκ± 1. As for curves in the unit hyperbolic space H3, it is shown that
γ is a general helix if and only if either (i) τ ≡ 0 and γ is a curve in some unit
hyperbolic plane H

2, or (ii) γ is a helix in H
3. Note that the spherical case is

nicely analogous to the Euclidean case, whereas in the hyperbolic case there
are only trivial general helices (i.e., plane curves and ordinary helices).

This work is inspired by the papers of M. Barros [1], and S. Izumiya and N.
Takeuchi [8]. We use the concept of Killing vector field along a curve γ in the
3-dimensional sphere S

3 to define the concept of slant helix in S
3. Of course

this is the natural extension of that for slant helices in the Euclidean 3-space.
A curve γ immersed in the three-dimensional sphere S

3 will be called a slant
helix if there exists a Killing vector field V (s) with constant length along γ
and such that the angle θ between V and the principal normal vector N of γ
is constant. V is said to be an axis of the slant helix. Trivial examples of slant
helices in S

3 are plane curves (for θ = 0) and general helices (for θ = π/2), so
that we assume θ ∈ (0, π/2). We obtain the following characterization of slant
helices in S

3 (Theorem 2):

Let γ be a unit speed curve in the 3-sphere S
3, with curvature κ > 0 and torsion

τ . The curve γ is a slant helix if and only if there are two constants λ and θ,
with λ2 = 1 and θ ∈ (0, π/2), such that

κ2

(

κ2 + (τ − λ)2
)3/2

(

τ − λ

κ

)

′

= cot θ.

In this case, an axis of the slant helix is given by

V =
τ − λ

√

κ2 + (τ − λ)2
sin θ T + cos θ N +

κ
√

κ2 + (τ − λ)2
sin θ B.

({T,N,B} is the Frenet frame of the curve.)

In the case of curves of the unit hyperbolic space H
3, we show that the

only slant curves are the trivial ones (i.e., plane curves and helices). On the
other hand, M. Barros also obtained a geometric approach to the problem of
solving natural equations for general helices in the 3-dimensional sphere. He
proved that a fully immersed curve in S

3 is a general helix if and only if it is
a geodesic in some Hopf cylinder in S

3. To extend this result to slant helices
in the 3-sphere we need to work with helix surfaces. To define helix surfaces
in S

3 we use the model of quaternions, in which S
3 is identified with the set

of unit quaternions. In this model, the Hopf fibration h : S3 → S
2 is given by
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h(p) = pip̄ (see Section 2 for details). A surface M2 ⊂ S
3, with unit normal

vector field η, will be called a helix surface if there is a Hopf vector field V
such that the angle between η and V is constant along M . As an example of
helix surface we have any Hopf cylinder, for which the angle between η and
V is π/2. The first property of this family of surfaces is stated in Section 4:
A helix surface Mφ in the 3-dimensional sphere S

3 is flat. At this point, the
construction of flat surfaces given by Kitagawa [9] (see also [6, 7]) allow us to
describe the family of helix surfaces (Theorem 7):

Let M2 ⊂ S
3 be an orientable surface. Then M2 is a helix surface if and only

if M2 is a flat surface and, according to Kitagawa’s representation, c1(u) is a

general helix in S
2 ⊂ R

3.

The construction of flat surfaces in S
3 is recalled in Theorem 6.

Finally, in Section 5 we study the problem of solving natural equations for
slant helices in the 3-sphere. We prove the following result (Theorem 9):

Let γ(s) be a unit speed curve in S
3, with κ > 0. Then γ is a slant helix of

constant angle θ if and only if γ is locally congruent to a geodesic of a helix

surface Mθ.

2. Preliminaries

Let S3 denote the 3-dimensional unit sphere in R
4, with constant curvature

c = 1. Let us consider γ = γ(t) : I ⊂ R → S
3 an immersed curve in S

3 with
speed v(t) = |γ′(t)|. If {T,N,B} is the Frenet frame along γ and ∇ denotes
the Levi-Civita connection of S3, then one can write the Frenet equations of γ
as follows

(1) ∇TT = κN, ∇TN = −κT + τB, ∇TB = −τN,

where κ and τ denote the curvature and torsion of γ, respectively. If ∇0 stands
for the Levi-Civita connection of R4, then the Gauss formula gives

∇0

TX = ∇TX − c 〈X,T 〉γ

for any tangent vector field X ∈ X(γ). In particular, we have

(2) ∇0

TT = κN − cγ, ∇0

TN = −κT + τB, ∇0

TB = −τN.

We consider variations Γ = Γ(t, z) : I × (−ε, ε) → S
3, with Γ(t, 0) = γ(t),

whose variational vector field along γ is given by V (t) = ∂Γ
∂z (t, 0). We will

use the notation V = V (t, z), T = T (t, z), v = v(t, z), etc. with the obvious
meaning. Finally we use s to denote the arclength parameter of the t-curves
in the variation Γ and write v(s, z), κ(s, z), τ(s, z), etc. for the corresponding
reparametrizations. According to [10], a vector field V (s) along γ(s) is said to
be a Killing vector field along γ if

(3)
∂v

∂z

∣

∣

∣

∣

z=0

=
∂κ2

∂z

∣

∣

∣

∣

z=0

=
∂τ2

∂z

∣

∣

∣

∣

z=0

= 0.
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By using standard arguments (see [10] for details) we deduce that Killing vector
fields along γ are characterized by the following equations:

∂v

∂z

∣

∣

∣

∣

z=0

=
〈

∇TV, T
〉

v = 0,(4)

∂κ2

∂z

∣

∣

∣

∣

z=0

= 2κ
〈

∇
2

TV,N
〉

− 4κ2
〈

∇TV, T
〉

+ 2cκ 〈V,N〉 = 0,(5)

∂τ2

∂z

∣

∣

∣

∣

z=0

=
2τ

κ

〈

∇
3

TV,B
〉

−
2κ′τ

κ2

〈

∇
2

TV + cV,B
〉

+
2τ(c+ κ2)

κ

〈

∇TV,B
〉

− 2τ2
〈

∇TV, T
〉

= 0,(6)

where 〈, 〉 denotes the standard metric of the 3-sphere and κ′ = ∂κ
∂s (s, 0). An

interesting property (see [10, 11]) is that a vector field V along γ is a Killing
vector field along γ if and only if it extends to a Killing field on S

3. This
property is also true for immersed curves in a complete, simply connected real
space form.

Inspired by the definition of general helix in S
3 given by M. Barros [1], we

present here the following definition.

Definition 1. A curve γ immersed in the three-dimensional sphere S
3 will

be called a slant helix if there exists a Killing vector field V (s) along γ with
constant length, whose extension to S

3 is also of constant length, and such that
the angle θ between V and the normal vector N is a constant along γ. We will
say that V is an axis of the slant helix γ.

Without loss of generality, we may assume that V is a unit Killing vector
field. Trivial examples of slant helices in S

3 are plane curves (i.e., curves with
τ ≡ 0) for θ = 0, and general helices for θ = π/2. Without loss of generality,
from now on we assume that θ ∈ (0, π/2).

A useful model for the unit 3-sphere is to regard R
4 as the set of quaternions

H and S
3 as the set of unit quaternions:

S
3 = {q = q11+ q2i+ q3j+ q4k ∈ H : |q|2 = qq̄ = 1}.

Here, q̄ = q11−q2i−q3j−q4k is the conjugate of q. In this setting, the 2-sphere
is identified with the set of unit pure quaternions. One of the advantages of this
model is that S3 is endowed with a Lie group structure. The usual metric of S3

is bi-invariant with respect to this structure (i.e., the left and right translations
turn out to be isometries), and then

〈p, q〉 = 〈pa, qa〉 = 〈ap, aq〉 for any p, q, a ∈ S
3.

The conjugation is an orientation reversing isometry of S3. Moreover, q̄ = q−1

whenever q ∈ S
3, and in addition q̄ = −q if q ∈ S

2 ⊂ S
3.

The classic Hopf fibration has a nice description via the quaternions. Let
us define Ad(q)p := qpq̄, where p, q ∈ S

3, then the Hopf fibration h : S3 → S
2
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is given by h(q) = Ad(q)i = qiq̄. Associated to this fibration we have the
canonical Hopf vector field in S

3, defined by V1(q) = iq, q ∈ S
3. V1 is a unit

Killing vector field tangent to the fibers of h. In general, a Hopf vector field
is any vector field V in S

3 congruent to V1. It is a well known result that the
unit Killing vector fields in S

3 are exactly the Hopf vector fields, [17, Theorem
1]. V1 is a vertical vector field and can be completed to a basis of S3 with two
horizontal unit vector fields V2 and V3.

The Hopf fibration is a particular case of Killing submersion π : M3 → M
2,

[5], whose fibers are the trajectories of a unit Killing vector field. By using
Proposition 2.6 and Lemma 2.8 of [5] we get

(7) ∇XV1 = λX × V1 for any X ∈ X(S3),

where λ is a constant such that λ2 = c.
A surface M of the Euclidean space R

3 is said to be a helix surface if there
is a fixed direction u ∈ R

3 such that the tangent space of the surface makes
a constant angle with u, [4]. This definition is equivalent to the fact that the
angle between the unit normal vector η and u is a constant function along M ,
i.e.,M is a constant angle surface (see e.g. [3, 13] and references therein). Since
a fixed direction in the Euclidean space can be regarded as a Killing vector field
of constant length (we may assume of unit length), the following definition is
natural, [12].

Definition 2. A surfaceM immersed in the three-dimensional sphere S3, with
unit normal vector field η, will be called a helix surface if there is a unit Killing
vector field (i.e., a Hopf vector field) V such that the angle φ between η and V
(i.e., 〈V, η〉 = cosφ) is a constant along M .

A helix surface M ⊂ S
3 of angle φ will be denoted by Mφ. Without loss

of generality, we can assume φ ∈ [0, π/2] and that V is the canonical Hopf
vector field V1. The cases φ = 0, π/2 can be discarded, [12]. If φ = 0, then the
vector fields V2 and V3 would be tangent to the surface M , but the horizontal
distribution of the Hopf fibration is not integrable; this is a contradiction. On
the other hand, if φ = π/2, then V1 is always tangent to M and hence M is
a Hopf tube, [14]. Therefore, from now on we assume that the constant angle
φ ∈ (0, π/2).

3. Slant helices

Let γ(s) be a slant helix with axis V (s), and let us denote by θ ∈ (0, π/2)
the constant angle between V and N . Then

(8) V (s) = sin θ sinϕ(s)T (s) + cos θ N(s) + sin θ cosϕ(s)B(s)

for a certain differentiable function ϕ(s). We can assume that V (s) is the
restriction to γ(s) of the Hopf vector field V1 ∈ X(S3).

From (8), and by using the Frenet equations of γ, we obtain

∇TV = (ϕ′ sin θ cosϕ− κ cos θ)T + sin θ(κ sinϕ− τ cosϕ)N
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+ (τ cos θ − ϕ′ sin θ sinϕ)B,

and then (4) leads to

κ = tan θ ϕ′ cosϕ,(9)

∇TV = g (− sin θ cosϕN + cos θ B),(10)

where g = τ−ϕ′ tan θ sinϕ. Bearing (9) in mind, we easily obtain the following
equation

(11)
κ2

(

κ2 + (τ − g)2
)3/2

(

τ − g

κ

)

′

= cot θ.

A direct computation from (8), and bearing (10) in mind, yields

(12) ∇TV = g T × V.

From here and (7) we deduce that the function g is constant, with g2 = c.
Therefore, bearing (11) in mind, we have shown the following result.

Proposition 1. Let γ be a unit speed curve in the 3-sphere S
3, with curvature

κ > 0 and torsion τ . If γ is a slant helix, then the following equation holds:

(13)
κ2

(

κ2 + (τ − λ)2
)3/2

(

τ − λ

κ

)

′

= cot θ,

where λ and θ are constant, with λ2 = c and θ ∈ (0, π/2).

We will now prove that equation (13) characterize the slant curves in S
3.

Suppose that γ is a unit speed curve satisfying (13). By taking derivative there
we obtain

(14) cos θ =
τ ′κ− (τ − λ)κ′

(

κ2 + (τ − λ)2
)3/2

sin θ.

Define the following vector field along γ:

(15) V =
τ − λ

√

κ2 + (τ − λ)2
sin θ T + cos θ N +

κ
√

κ2 + (τ − λ)2
sin θ B.

Note that |V | = 1 and 〈V,N〉 = cos θ is constant. Let us see now that V is a
Killing vector field along γ. A straightforward computation taking into account
the above equations yields:

∇TV =−
λκ sin θ

√

κ2 + (τ − λ)2
N + λ cos θ B,(16)

∇
2

TV =
λκ2 sin θ

√

κ2 + (τ − λ)2
T − λ2 cos θ N −

λκτ sin θ
√

κ2 + (τ − λ)2
B,(17)

∇
3

TV =

(

λκκ′ sin θ
√

κ2 + (τ − λ)2
+ λκ(2λ− τ) cos θ

)

T +
λκ(κ2 + τ2) sin θ
√

κ2 + (τ − λ)2
N
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+

(

λτ(τ − 2λ) cos θ −
λκτ ′ sin θ

√

κ2 + (τ − λ)2

)

B.(18)

It is not difficult to see that V satisfies the equations (4)–(6). Therefore, γ is a
slant helix in S

3 with axis V . This result and Proposition 1 can be put together
as follows.

Theorem 2. Let γ be a unit speed curve in the 3-sphere S
3, with curvature

κ > 0 and torsion τ . The curve γ is a slant helix if and only if there are two

constants λ and θ, with λ2 = c and θ ∈ (0, π/2), such that

(19)
κ2

(

κ2 + (τ − λ)2
)3/2

(

τ − λ

κ

)

′

= cot θ.

In this case, an axis of the slant helix is given by

V =
τ − λ

√

κ2 + (τ − λ)2
sin θ T + cos θ N +

κ
√

κ2 + (τ − λ)2
sin θ B.

Remark 1. In the Euclidean space R
3, the constant λ vanishes, and therefore

the equation (19) is exactly the same that appears in [8].

3.1. Slant helices in the 3-dimensional hyperbolic space

Let H
3 denote the 3-dimensional hyperbolic space of constant curvature

c = −1. The notion of a slant helix γ in H
3 can be defined similarly as in

S
3 (see Definition 1); in this case, a Killing vector field along γ satisfies the

equations (4)–(6), with c = −1.
The condition λ2 = c in Theorem 2 suggests that probably there are no

slant helices in the 3-dimensional hyperbolic space H3, other than plane curves
(i.e., τ ≡ 0) and ordinary helices (i.e., κ and τ are nonzero constants). This is
compatible with the results obtained in [1], where the author shows that these
curves are the only general helices in the 3-dimensional hyperbolic space H

3.
And certainly this is what happens.

In [2, Proposition 3], the authors show that on a Riemannian manifold of
nonpositive sectional curvature, the only Killing fields of constant length are
the parallel ones. As a consequence, the only unit Killing vector fields along
a slant curve γ in H

3 are the parallel ones. Then, if V (s) is given by (8), the
equations (4)–(6) yields

cκ cos θ = 0,

cκ′τ sin θ cosϕ = 0.

Therefore, we have shown the following result.

Theorem 3 (cf. Theorem 1 of [1]). A curve γ in H
3 is a slant helix if and

only if either

(1) τ ≡ 0 and γ is a curve in some unit hyperbolic plane H
2 ⊂ H

3, or

(2) γ is a helix in H
3.
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4. Helix surfaces

In this section we will find a useful representation of the helix surfaces in S
3.

Let Mφ be an oriented helix surface in S
3 of constant angle φ, with unit

normal vector field η. Then we have

〈V1, η〉 = cosφ.

Decomposing V1 in its tangential and normal components, we have

(20) V1 = sinφTV + cosφ η,

where TV is a unit tangent vector field, TV ∈ X(Mφ). From Gauss and Wein-
garten formulae we have

(21) ∇XV1 = (sinφ∇XTV − cosφAηX) + sinφ 〈AηTV , X〉 η, X ∈ X(Mφ),

where ∇ stands for the induced Levi-Civita connection on Mφ and Aη repre-
sents the shape operator of the surface in the 3-sphere.

Bearing (20) in mind, compute
〈

∇XV1, η
〉

by using (21) and also by using
(7). Then by equating the two equations we deduce

(22) AηTV = λTV × η = −λRTV ,

where R denotes the positive rotation of angle π/2 in the tangent space. Then
the shape operator Aη can be written, with respect to the basis {TV , RTV }, as

(23) Aη =

(

0 −λ
−λ ψ

)

,

for a certain function ψ = 〈Aη(RTV ), RTV 〉.

By equating the tangential component of ∇TV
V1 computed by using (7) and

(21) we deduce

sinφ 〈∇TV
TV , RTV 〉 = −2λ cosφ.

This equation leads to the following characterization of TV .

Proposition 4. Let Mφ be a helix surface in S
3 of angle φ. Then the inte-

gral curves of the vector field TV are exactly the curves with constant geodesic

curvature κg = −2λ cotφ.

Bearing in mind that the Gauss curvature ofMφ is given byK = c+det(Aη),
the following result is clear.

Proposition 5. A helix surface Mφ in the 3-dimensional sphere S
3 is flat.

The construction of flat surfaces in S
3 is essentially given by Kitagawa, [9].

We expose the method following [6] (see also [7]). Let us consider US
2 the unit

tangent bundle of S2, given by

US
2 = {(p, q) ∈ S

2 × S
2 : 〈p, q〉 = 0}.
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Theorem 6. Let c1(u), c2(v) be two regular curves in S
2, with ci(0) = i,

c′i(0) = ξ0, for some ξ0 ∈ S
3 orthogonal to both 1 and i, and such that k1(u) 6=

k2(v) for all u, v, where ki denotes the geodesic curvature of ci, i = 1, 2. Let

π : S3 → US
2 be the double cover given by

π(q) = (Ad(q)i,Ad(q)ξ0).

Let us consider a1(u), a2(v) two curves in S
3 parametrized by the arclength and

satisfying π(ai) = (ci, c
′

i/||c
′

i||), and define

Φ(u, v) = a1(u) a2(v),

η(u, v) = a1(u) ξ0 a2(v),

on a rectangle Ω ⊂ R
2. Then Φ(Ω) is a simply connected flat surface in S

3 with

unit normal η. Conversely, every flat surface in S
3 can be locally constructed

in this way for some ξ0.

Remark 2. If the flat surface is analytic, or complete with bounded mean
curvature, then the construction given in Theorem 6 is global, [6].

The next step is to determine which flat surfaces in S
3 are helix surfaces.

Take a local parametrization Φ(u, v) of a flat surface, with unit normal vector
field η(u, v), for some ξ0. Let q ∈ S

2 and consider a Hopf vector field V given
by V (x) = qx, x ∈ S

3. Then

〈V, η〉 (u, v) = 〈q a1(u) a2(v), a1(u) ξ0 a2(v)〉

= 〈q a1(u), a1(u) ξ0〉 = 〈q, a1(u) ξ0 a1(u)〉

= 〈q, Tc1(u)〉 ,

where Tc1(u) denotes the unit tangent vector to the curve c1. This equation
yields the following result (cf. [12, Theorem 3.1]).

Theorem 7. LetM2 ⊂ S
3 be an orientable surface. ThenM2 is a helix surface

if and only if M2 is a flat surface and, according to Kitagawa’s representation,

c1(u) is a general helix in S
2 ⊂ R

3.

Example 1 (Spherical general helices). Struik have shown that a spherical
helix making an angle θ with his axis projects on a plane perpendicular to its
axis in an arc of an epicycloid with fixed radius a = cos θ and rolling radius
b = sin2(θ/2), [16, p. 35]. Let c1(u) be a helix in S

2 of angle θ with axis k.
Then a parametrization of c1(u) = x(u)i+y(u)j+z(u)k is given as follows (see
e.g. [15]),

x(u) =
1 + cos θ

2
cos(u + u0 + α)−

1− cos θ

2
cos

(

1 + cos θ

1− cos θ
(u + u0) + α

)

,

y(u) =
1 + cos θ

2
sin(u+ u0 + α)−

1− cos θ

2
sin

(

1 + cos θ

1− cos θ
(u+ u0) + α

)

,

z(u) = sin θ cos

(

cos θ

1− cos θ
(u + u0)

)

,
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α and u0 being constants; the angle α represents a rotation about k-axis. These
constants can be chosen in such a way that c1(0) = i:

u0 =
π

2

1− cos θ

cos θ
and α = −

π

2

1 + cos θ

cos θ
.

The arc parameter s and the radius of curvature R = 1/κ of the epicycloid
(x(u), y(u)) are given by [16, p. 27]

s(u) =
4b(a+ b)

a
cos
(au

2b

)

and R(u) =
4b(a+ b)

a+ 2b
sin
(au

2b

)

.

5. Slant helices and helix surfaces

Let Mφ be a helix surface in S
3 of constant angle φ, and consider γ(s) =

Φ(u(s), v(s)) a unit speed geodesic of Mφ. Then the unit normal vector field
η of Mφ in S

3 and the principal normal N(s) of γ are collinear; let us assume
that η = N along the curve γ. Let V (s) be the restriction of V1 to the curve
γ, which is a Killing vector field along γ. Then we have

〈N, V 〉 (s) = 〈η, V1〉 (u(s), v(s)) = cosφ,

showing that γ is a slant helix. In the rest of the section we prove the converse,
i.e., that every slant curve is a geodesic of a certain helix surface.

The first task is to compute the ODE system that characterizes the geodesic
curves of a helix surface. According to Theorem 6, let Φ(u, v) = a1(u) a2(v) be
a helix surface Mφ of angle φ, with unit normal vector field given by η(u, v) =
a1(u) ξ0 a2(v), for some ξ0 ∈ S

3 orthogonal to both 1 and i. The first and second
fundamental forms of Mφ are given, in (u, v)-coordinates, by the following

(24)
I = du2 + 2 cosω du dv + dv2,
II = 2 sinω du dv,

for a certain differentiable function ω ≡ ω(u, v). For a flat immersion in S
3 the

function ω is usually called the angle function of the immersion and the Gauss
equation of the surface implies ωuv = 0. Then, locally, we can decompose ω as
a sum ω(u, v) = ω1(u) + ω2(v), where ωi are differentiable functions, [6, 9].

Let γ(s) = Φ(u(s), v(s)) be a unit speed geodesic in Mφ, then we have

(25) T (s) = u′(s)Φu(u(s), v(s)) + v′(s)Φv(u(s), v(s)),

and therefore

(26) u′(s)2 + v′(s)2 + 2u′(s)v′(s) cosω(u(s), v(s)) = 1.

By taking derivative in (25), and using the Frenet equations of γ, we obtain

−γ(s) + κ(s)N(s) = u′′(s)Φu(u(s), v(s)) + v′′(s)Φv(u(s), v(s))

+ u′(s)2 Φuu(u(s), v(s)) + v′(s)2 Φvv(u(s), v(s))

+ 2u′(s)v′(s)Φuv(u(s), v(s)),(27)
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where κ denotes the curvature of γ. On the other hand, bearing (24) in mind,
it is not difficult to see that

Φuu(u, v) = −κ1(u) cotω(u, v)Φu(u, v) +
κ1(u)

sinω(u, v)
Φv(u, v)− Φ(u, v),(28)

Φvv(u, v) =
κ2(v)

sinω(u, v)
Φu(u, v)− κ2(v) cotω(u, v)Φv(u, v)− Φ(u, v),(29)

Φuv(u, v) = sinω(u, v) η(u, v)− cosω(u, v) Φ(u, v),(30)

where κi is the curvature of ai, i = 1, 2. Taking into account the above equa-
tions, (27) is equivalent to the following ODE system

u′′(s) + v′′(s) cosω(u(s), v(s)) + κ2(v(s)) v
′(s)2 sinω(u(s), v(s)) = 0,(31)

v′′(s) + u′′(s) cosω(u(s), v(s)) + κ1(u(s))u
′(s)2 sinω(u(s), v(s)) = 0,(32)

2u′(s)v′(s) sinω(u(s), v(s)) = κ(s).(33)

A straightforward computation shows that the binormal vector field B(s) of γ
is given by

B(s) =−
v′(s) + u′(s) cosω(u(s), v(s))

sinω(u(s), v(s))
Φu(u(s), v(s))

+
u′(s) + v′(s) cosω(u(s), v(s))

sinω(u(s), v(s))
Φv(u(s), v(s)).

By taking derivative here, and using the Frenet equations, we get

(34) v′(s)2 − u′(s)2 = τ(s),

where τ denotes the torsion of γ. In other words, we have shown the following
result.

Proposition 8. Let Mφ be a helix surface in S
3, locally parametrized by

Φ(u, v). Then a curve γ(s) = Φ(u(s), v(s)) is a unit speed geodesic of Mφ

if and only if the equations (26), (31), (32), (33) and (34) are satisfied.

Let α(s) be a slant helix in S
3 with curvature κα and torsion τα. Then there

exists a Killing vector field V along α and a constant θ ∈ (0, π/2) such that
〈V,Nα〉 = cos θ, where Nα is the principal normal vector field of α. Let c1(u)
be a spherical helix in S

2 of angle θ, and consider Mθ a helix surface of angle
θ corresponding to c1 and another regular curve c2, that will be determined
later. Is there a geodesic γ(s) = Φ(u(s), v(s)) in Mθ congruent to α (i.e., with
curvature κα and torsion τα)? The answer is yes.

From (26) we get

(35) 2u′(s)v′(s) cosω(u(s), v(s)) = 1− (u′(s)2 + v′(s)2).

Squaring (33) and (35), and adding the resulting equations, leads to

(36) (u′(s)2 − v′(s)2)2 − 2(u′(s)2 + v′(s)2) + κα(s)
2 + 1 = 0.
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This equation, jointly with (34), yields

(37) u′(s)2 =
1

4
(κα(s)

2 + (τα(s)− 1)2),

which determine, up to a constant, the function u(s). Then v(s) can be com-
puted, up to a constant, from (34). Finally, the geodesic curvature k2 of c2
can be determined from (31), (32) and (26). In conclusion, we have shown the
following result.

Theorem 9. Let γ(s) be a unit speed curve in S
3, with κ > 0. Then γ is a

slant helix of constant angle θ if and only if γ is locally congruent to a geodesic

of a helix surface Mθ.
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